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1. Introduction

In this paper we deal with a homogeneous, thermally and elastically isotropic
Mindlin-Timoshenko plate subject to thermal deformations and hereditary heat
conduction law. We assume that the plate is of uniform thickness d > 0, and, in
equilibrium, it occupies a fixed bounded domain D ⊂ R

3 placed in a reference
frame x = (x1, x2, x3). The plate has a middle surface midway between its
faces in a region Ω ⊂ R

2 of the plane x3 = 0, with boundary Γ = ∂Ω. Denote
by u(x1, x2; t) the bending component of the displacement vector of the point
which, when the plate is in equilibrium, has coordinates (x1, x2, 0) at time
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t ≥ 0. ψ(x1, x2; t) and φ(x1, x2; t) represent the angles of rotation of the cross
section x1 = const., x2 = const. containing the filament which, when the plate
is equilibrium, is perpendicular to the middle surface at the point (x1, x2, 0) at
time t ≥ 0. Also, indicate by θ(x1, x2; t) the normal thermal gradient at the
point (x1, x2, 0) at time t ≥ 0 at equilibrium. Set Q = Ω×R

+ and Σ = Γ×R
+,

and put v = −
[

ψ
φ

]

. Then, the evolution of (v, u, θ) can be written as (see

[12])

∂ttv(t) −N(0)Av(t) +H(0) [∇u(t) + v(t)]

−
∫ ∞

0
N ′(s)Av(t− s)ds

+

∫ ∞

0
H ′(s) [∇u(t− s) + v(t− s)] ds+ ∇θ(t) =

[

f1(t)
f2(t)

]

,

∂ttu(t) −H(0)∇ · (v(t) + ∇u(t))

−
∫ ∞

0
H ′(s)∇ · [∇u(t− s) + v(t− s)] ds = f3(t),

∂tθ(t) −
∫ ∞

0
k(s)∆θ(t− s)ds+

∫ ∞

0
g′(s)θ(t− s)ds

+g(0)θ(t) + ∇ · ∂tv(t) = f4(t),

(1.1)

in Q, where N(0) > 0, H(0) > 0 and g(0) > 0 are the shear modulus of

elasticity, the bending moment distribution and the coefficient depending on

thermal conductivity, respectively. N ′ and H ′ are the memory kernels related
to viscoelastic effets, while k and g′ are the memory kernels accounting for
thermal effects. Functions fi(t), i = 1, 2, 3, 4, denote forces acting on the plate.
The spacial operator A is denoted by

A =











∂2

∂x2
1

+
1 − ν0

2

∂2

∂x2
2

1 + ν0

2

∂2

∂x1∂x2

1 + ν0

2

∂2

∂x1∂x2

1 − ν0

2

∂2

∂x2
1

+
∂2

∂x2
2











, (1.2)

where the viscoelastic Poisson’s ratio ν0 is assumed to be constant. Further-
more, we denote by ∇ = (∂/∂x1, ∂/∂x2) and ∂t = ∂/∂t.

Boundary conditions we consider here are given by

v(t) = 0, u(t) = 0, θ(t) = 0, on Σ, (1.3)
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whereas initial condition are

v(−t) = v0(t), u(−t) = u0(t), θ(−t) = θ0(t), in Ω × [0,∞),

vt(0) = v1, ut(0) = u1, in Ω,
(1.4)

for some given functions v0(t) : Ω × [0,∞) → R
2, u0(t) : Ω × [0,∞) → R,

θ0(t) : Ω × [0,∞) → R, v1 : Ω → R
2, u1 : Ω → R.

Our main interest concerns the longtime behavior of the energy of the sys-
tem above, and in particular, whether the dissipation given by the memory effect
in system (1.1) is strong enough to stabilize the whole system. As recalled in
other papers [1, 7] the introduction of the dissipative terms into memory ker-
nels do not produce any rate of decay if the relaxation functions do not decay
uniformly. Then, we assume that the memory kernels exponentially decay in
time. By uniform energy estimates, when external sources act on the plate, we
show the existence of an absorbing set [2, 18, 19, 25] for the solutions to model
(1.1)-(1.17); whereas without external sources, the energy decays exponentially,
provided the memory kernels go to zero exponentially.

We also remark that the longtime behavior of the plate model is investigated
by a direct approach of energy methods, using suitably sophisticated estimates
for multipliers.

In order to carry out this program, it is convenient to translate (1.1)-(1.4)
into a (linear) differential system on a suitable phase-space. Recalling the ap-
proach of Dafermos [3], we consider the past histories η = ηt(s) : Ω × R

+ ×
[0,∞) → R, ω = ωt(s) : Ω×R

+×[0,∞) → R, ζ = ζt(s) : Ω×R
+×[0,∞) → R

2,
defined as

ηt(s) =

∫ s

0
θ(t− τ)dτ, (1.5)

ωt(s) = u(t) − u(t− s), (1.6)

ζt(s) = v(t) − v(t− s). (1.7)

For every s ∈ R
+, we set

−N ′(s) = ν(s), −H ′(s) = µ(s),

− k′(s) = κ(s), − g′′(s) = ι0γ(s),

according to the following choices of g:

ι0 = 1 if g is bounded, nondecreasing and concave, (1.8)
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ι0 = −1 if g is summable, non increasing and convex. (1.9)

Both hypothesis are thermodynamically consistent (see [10] and references therein).
Set N∞ = lim

s→+∞
N(s), H∞ = lim

s→+∞
H(s), and assuming lim

s→+∞
k(s) = 0,

lim
s→+∞

g′(s) = 0, a formal integration by parts in integral terms of (1.1) leads to

∫ ∞

0
k(s)∆θ(t− s)ds =

∫ ∞

0
k(s)∆∂sη

t(s)ds = −
∫ ∞

0
k′(s)∆ηt(s)ds,

∫ ∞

0
g′(s)θ(t− s)ds = −

∫ ∞

0
g′′(s)ηt(s)ds,

∫ ∞

0
N ′(s)Av(t− s)ds = [N∞ −N(0)]Av(t) −

∫ ∞

0
N ′(s)Aζt(s)ds,

∫ ∞

0
H ′(s)[∇u(t− s) + v(t− s)]ds

= [H∞ −H(0)][∇u(t) + v(t)] −
∫ ∞

0
H ′(s)[∇ωt(s) + ζt(s)]ds.

Without loss of generality, we set N∞ = H∞ = 1. Introducing Q = Q × R
+,

we end up with the following system

∂ttv(t) −Av(t) + ∇u(t) + v(t) + ∇θ(t)

−
∫ ∞

0
ν(s)Aζt(s)ds

+

∫ ∞

0
µ(s)[∇ωt(s) + ζt(s)]ds =

[

f1(t)
f2(t)

]

in Q, (1.10)

∂ttu(t) −∇ · [v(t) + ∇u(t)]

−
∫ ∞

0
µ(s)∇ · [∇ωt(s) + ζt(s)]ds = f3(t) in Q, (1.11)

∂tθ(t) −
∫ ∞

0
κ(s)∆ηt(s)ds + ι0

∫ ∞

0
γ(s)ηt(s)ds

+ θ(t) + ∇ · ∂tv(t) = f4(t) in Q, (1.12)

∂tζ
t(s) + ∂sζ

t(s) = ∂tv(t) in Q, (1.13)

∂tω
t(s) + ∂sω

t(s) = ∂tu(t) in Q, (1.14)
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∂tη
t(s) + ∂sη

t(s) = θ(t) in Q. (1.15)

Initial and boundary conditions become

v(0) = v0, vt(0) = v1, in Ω,

u(0) = u0, ut(0) = u1, in Ω,

θ(0) = θ0, in Ω,

ζ0(s) = ζ0(s), ω0(s) = ω0(s), η0(s) = η0(s), in Ω × R
+,

(1.16)

having set v0 = v0(0), u0 = u0(0), ζ0(s) = v0(0)−v0(s), ω0(s) = u0(0)−u0(s),

η0(s) =

∫ s

0
θ0(τ) dτ , and

v(t) = 0, u(t) = 0, θ(t) = 0, on Γ, t ≥ 0,

ζt(s) = 0, ωt(s) = 0, ηt(s) = 0, on Γ, s > 0, t ≥ 0,

ζt(0) = lim
s→0

ζt(s) = 0, in Ω, t ≥ 0,

ωt(0) = lim
s→0

ωt(s) = 0, in Ω, t ≥ 0,

ηt(0) = lim
s→0

ηt(s) = 0, in Ω, t ≥ 0.

(1.17)

We briefly sketch the plan of the paper. In Section 2 we recall the con-
stitutive equations considered for our model and resume some previous results
presented in literature and related to our problem. Section 3 contains conditions
on memory kernelys and external sources of the plate, functional setting and
notation used in the paper. In Section 4 well-posedness of the Cauchy-Dirichlet
problem is recalled. The main results are stated in Section 5 and proved in
latter sections via uniform energy estimates.

2. Thermo-Visco-Elastic Mindlin-Timoshenko Plate Model

and Literature

The material composing the plate is homogeneous and (elastically and ther-
mally) isotropic, so that its stress-strain law is given by

T(x, t)=L(0)ε(x, t) +

∫ ∞

0
L
′(τ)ε(x, t− τ)dτ− L(0)α0ϑ(x, t)I, (2.1)
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where the elastic strain ε, the stress T are second-order tensors, I is the second-
order identity tensor. Furthermore, at any fixed τ ∈ R, L(τ) is an isotropic
fourth-order tensor which vanishes for τ < 0 and involves two independent
relaxations functions l and m, such that

L(τ) = l(τ) I ⊗ I + 2m(τ) I , for τ ≥ 0 . (2.2)

The last term in (2.1) represents the thermal strain and the positive constant
α0 is called the coefficient of thermal expansion. Moreover, ϑ := Θ−Θ0 denotes
the variation of the absolute temperature Θ with respect to a reference value

Θ0. In order to account for small temperature variations inside the plate, we
assume that ϑ obeys the approximate relation

ϑ(x, t) = ϑ(x1, x2, x3; t) = θ̄(x1, x2; t) + x3 θ(x1, x2; t), (2.3)

where θ̄ and θ denote respectively the temperature of the middle surface and
the normal thermal gradient .

Let q : Ω×R → R
3 be the mean heat flux vector in the plate. Gurtin-Pipkin

heat flux for a thermally isotropic body is

q(x, t) = −
∫ ∞

0
K(τ) ∇ϑ(x, t− τ) dτ, (2.4)

where K : R
+ → R is the heat flux memory kernel.

The usual energy balance equation is replaced by

ρ0 h(x, t) = −∇ · q(x, t) + ρ0 r(x, t) , (2.5)

where h is the thermal power, which denotes the rate of heat absorption per
unit of volume, ρ0 > 0 is the mass density in the reference initial configuration,
and r is the external heat supply per unit of mass.

Neglecting any hereditary contribution to mechanical dissipation, h is de-
scribed by the following linearized constitutive equation (see [22]):

h(x, t) =
Θ0

ρ0

[

B ·Et(x, t) +
ρ0c

Θ0
ϑt(x, t) +

∫ ∞

0
a(τ)ϑt(x, t− τ) dτ

]

, (2.6)

where B is a symmetric second order tensor, a : R
+ → R is the energy memory

kernel, c > 0 is the specific heat of the body and · represents the tensorial scalar
product.

According to previous constitutive equations, in [12] a mathematical model
for a Mindlin-Timoshenko thermo-viscoelastic plate is derived, and a system of
the type (1.1) is obtained.
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Questions related to longtime behavior and stabilization of Timoshenko sys-
tems have attracted considerable attention in recent years. We start to recall
some results about the Timoshenko beam without internal damping; subse-
quently, we consider some problems concerning Timoshenko beam with internal
damping of memory type, and Timoshenko plate or with internal viscoelastic
dissipation or with viscoelastic dissipation boundary condition.

By the energy method combined with the theory of semigroups, Kim and
Renardy [20] investigate uniform stabilization of the Timoshenko beam with
boundary control. Subsequently, Feng, Shi and Zhang [8] study the stabilization
of vibrations in a Timoshenko beam by nonlinear boundary feedback. Analo-
gously to the previous work, well-posedness is proved when the feedback opera-
tors are maximal monotone. Sufficient additional conditions are then given for
energy to decay asymptotically or at a uniform algebraic or exponential rate.

Yan, Hou and Feng [26] obtain necessary and sufficient conditions for asymp-
totic stability and exponential energy decay for the Timoshenko beam equations

ρ ∂ttw + ∂x[K(ϕ− ∂xw)] = 0, Iρ ∂ttϕ− ∂x(EI ∂xϕ) +K(ϕ− ∂xw) = 0,

with clamped left end.
Liu and Peng [23] study the exponential stability of a Timoshenko beam

with viscoelastic damping of memory type. The corresponding model is given
by

ρ ∂ttu(t) − ∂x

{

g1(0) [∂xu(t) − φ(t)]

+

∫ ∞

0
g′1(s) [∂xu(t− s) − φ(t− s)] ds

}

= 0,

Iρ ∂ttφ(t) − ∂xx

[

g2(0)φ(t) +

∫ ∞

0
g′2(s)φ(t− s) ds

]

−
{

g1(0) [∂xu(t) − φ(t)]

+

∫ ∞

0
g′1(s) [∂xu(t− s) − φ(t− s)] ds

}

= 0,

where gi (i = 1, 2) are relaxation functions which decay exponentially and
have appropriate sign properties, producing the dissipation of the system. By
contradiction arguments, involving the necessary and sufficient condition for



182 M.G. Naso, F.M. Vegni

a strongly continuous semigroup to be exponentially stable, the exponential
stability is found.

Ammar-Khodja et al [1] study the rates of energy decay for a Timoshenko
beam with internal damping, given by a functional in the bending history only,
described by the following system

ρ1 ∂ttϕ(t) − k ∂x[∂xϕ(t) + ψ(t)] = 0,

ρ2 ∂ttψ(t) − b ∂xxψ(t) +

∫ t

0
g(t− s)∂xxψ(s) ds

+k[∂xϕ(t) + ψ(t)] = 0,

with homogeneous boundary conditions. The positive, decreasing memory ker-
nel g belongs to C2[0,∞), and b−

∫ ∞

0 g(s) ds > 0. First, the case k/ρ1 = b/ρ2

is considered. If g decays exponentially, then energy decays at a uniform expo-
nential rate. Via energy integrals, if g decays like t−p (p > 2) (and is convex),
then E decays uniformly and at least this fast. Subsequently, by approximating
the memory kernel with exponential polynomials and analyzing the resulting
problem by semigroup methods, if k/ρ1 6= b/ρ2 and g decays exponentially,
then energy does not decay at a uniform rate.

Giorgi and Vegni [14] investigate a mathematical model for viscoelastic
beams, based on the Mindlin-Timoshenko assumptions, and derived in the
framework of the well-established theory of linear viscoelasticity, according to
the approximation procedure due to Lagnese [21] for the Kirchhoff viscoelastic
beams and plates. Assuming a nonlinear body force acting on the beam, they
show that this model generates a strongly continuous semigroup which acts on
the appropriate phase space. The existence of an absorbing set for the solu-
tion of the problem is also studied. Furthermore, in [13] they investigate the
longtime behavior of the mathematical model of a homogeneous viscoelastic
plate based on the Mindlin-Timoshenko assumptions. Supposing that memory
kernels decay exponentially, the exponentially decay of the energy is found. In
this case, no thermal effects, acting on the plate, are considered.

In [15], Grasselli and Pata deal with a class of infinite-dimensional dissipa-
tive dynamical systems generated by evolution equations with linear memory
terms and subject to time-dependent external forces. The longtime behavior of
these systems is studied, and viscoelasticity and heat conduction with memory
are considered as examples.

Moreover, Grasselli, Pata and Prouse [16] study the Timoshenko model of
a viscoelastic beam consisting of two coupled second order linear integrodiffer-
ential hyperbolic equations with semilinear external forces acting on the beam.
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The existence of a uniform attractor is showed, provided the semilinear external
forces satisfy appropriate conditions.

De Lima Santos [4] analyses the solutions to a Timoshenko system of the
form

∂ttu(t) − ∆u(t) − α

n
∑

i=1

∂xi
v(t) + βu(t) = 0 in Ω × (0,∞),

∂ttv(t) − ∆v(t) + α

n
∑

i=1

∂xi
u(t) + f (v(t)) = 0 in Ω × (0,∞),

along with Dirichlet type conditions on Γ0, one part of the boundary, and
memory type boundary conditions on Γ1, another part of the boundary. Under
suitable assumptions, it is shown that exponential decay leads to exponential
decay of the energy while polynomial decay of the kernels leads to polyno-
mial decay. The technique of proof is based on the construction of Lyapunov
functionals.

Muñoz Rivera and Oquendo [24] consider the Mindlin-Timoshenko plate
with viscoelastic dissipation boundary conditions on part of the boundary. The
energy of the system decays exponentially (respectively polynomially) to zero as
time goes to infinity provided the relaxation functions appearing in the bound-
ary conditions decay exponentially (respectively polynomially) to zero.

3. Hypotheses, Notations and Mathematic Tools

Given a Hilbert space H, we denote by 〈·, ·〉H and ‖ · ‖H the inner product and
the norm on H, respectively. We shall often be concerned with 2-dimensional
vector functions with both components in L2(Ω) or in H1(Ω) or in another
Hilbert space H. We shall use the notation

L2(Ω) = [L2(Ω)]2, H1(Ω) = [H1(Ω)]2, H = H2.

The inner product and the norm on L2(Ω) or L2(Ω) are denoted by 〈·, ·〉 and
‖ · ‖, without subscript.

Furthermore, we introduce the weighted L2-spaces with respect to the mea-
sure α(s)ds, endowed with the inner product on H, as

L2
α(R+,H) =

{

φ : R
+ → H : ‖φ‖2

L2
α(R+,H) =

∫ ∞

0
α(s)‖φ‖2

Hds <∞
}

, (3.1)

where α : R
+ → [0,∞) is a given measurable function.
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In order to give a precise formulation of our problem, on account of (1.2),
for any v, w ∈ H1(Ω), we can set (see, e.g., [13])

〈−Av,w〉 =

∫

Ω

[(

∂v1
∂x1

+ ν0
∂v2
∂x2

)

∂w1

∂x1
+

1 − ν0

2

(

∂v1
∂x2

+
∂v2
∂x1

)

∂w1

∂x2

+
1 − ν0

2

(

∂v1
∂x2

+
∂v2
∂x1

)

∂w2

∂x1
+

(

ν0
∂v1
∂x1

+
∂v2
∂x2

)

∂w2

∂x2

]

dΩ,

and in particular we have

〈−Av,v〉 =

∫

Ω

[

∣

∣

∣

∣

∂v1
∂x1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂v2
∂x2

∣

∣

∣

∣

2

+ 2ν0
∂v1
∂x1

∂v2
∂x2

+
1 − ν0

2

∣

∣

∣

∣

∂v1
∂x2

+
∂v2
∂x1

∣

∣

∣

∣

2
]

dΩ.

Then, we introduce the Hilbert space

V =

{

v = (v1, v2) ∈ L2(Ω) :
∂v1
∂x1

,
∂v2
∂x2

,
∂v1
∂x2

+
∂v2
∂x1

∈ L2(Ω)

}

,

with the norm

‖v‖2
V =

∫

Ω

[

v1 + v2 +

∣

∣

∣

∣

∂v1
∂x1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂v2
∂x2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂v1
∂x2

+
∂v2
∂x1

∣

∣

∣

∣

2
]

dΩ.

The kernel of −A is a subspace of V of the linear function of the type

[

c0x2 + c1
−c0x1 + c2

]

,

where c0, c1, c2 are constants. Afterwards, we denote by VA the linear subspace
of V which is orthogonal in L2(Ω) to the kernel of −A, and is characterized by
the conditions

∫

Ω
(x2v1 − x1v2)dΩ = 0,

∫

Ω
v1 dΩ = 0,

∫

Ω
v2 dΩ = 0.

Conditions on Memory Kernels. We assume

ν, µ, κ, γ ∈ C1(R+) ∩ L1(R+), (H.0)
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such that for any s ∈ R
+

ν(s) ≥ 0, µ(s) ≥ 0, κ(s) ≥ 0, γ(s) ≥ 0, (H.1)

ν ′(s) ≤ 0, µ′(s) ≤ 0, κ′(s) ≤ 0, γ′(s) ≤ 0, (H.2)

hold. In view of (H.0)-(H.1), we define

µ0 =

∫ ∞

0
µ(s)ds, ν0 =

∫ ∞

0
ν(s)ds, κ0 =

∫ ∞

0
κ(s)ds, γ0 =

∫ ∞

0
γ(s)ds.

Besides, for every s ∈ R
+ and some δµ, δν , δκ, δγ > 0

µ′(s) + δµµ(s) ≤ 0, ν ′(s) + δνν(s) ≤ 0,
κ′(s) + δκκ(s) ≤ 0, γ′(s) + δγγ(s) ≤ 0,

(H.3)

are assumed. Let δ = min{δµ, δν , δκ, δγ}. There exists also sµ, sν > 0 such that
µ′ ∈ L2(0, sµ) and ν ′ ∈ L2(0, sν)

µ′(s) +Mµµ(s) ≥ 0, ν ′(s) +Mνν(s) ≥ 0, (H.4)

for every s > sµ and s > sν , respectively, and some Mµ,Mν > 0. Finally, let µ
be suitably dominated by ν, namely, for any s ∈ R

+

µ(s) ≤ ν(s). (H.5)

Remark 3.1. Assumption (H.3) implies the exponential decay of the
kernels. This hypothesis seems unavoidable in order to have exponential decay
of the associated linear problem and it is standard assumed (cf., e.g., [6, 23]).
On the other hand, it seems quite obvious that to have exponential decay of
the energy, the kernels must show the same rate of decay (see [11]).

Conditions on External Sources. For i = 1, 2, 3, 4

fi ∈ L1(R+, L2(Ω)). (F.0)

Hilbert Spaces. Finally, we consider the Hilbert spaces

H = L2(Ω), V = H1
0 (Ω),

Hν = L2
ν(R

+,H), Vν = L2
ν(R

+, V ), VνA = L2
ν(R

+, VA),

Hµ = L2
ν(R

+,H), Vµ = L2
µ(R+, V ),

Hγ = L2
γ(R+,H), Vγ = L2

γ(R+, V ),

Hκ = L2
κ(R+,H), Vκ = L2

ν(R
+, V ).

Introduce also

Z = VA × H × V ×H ×H × (VνA ∩ Hµ) × Vµ × (Vκ ∩Hγ).



186 M.G. Naso, F.M. Vegni

Remark 3.2. In account of Korn inequality (see, e.g., [5, 9]), it is possible
to prove [13] that the operator −A in V is coercive and consequently that it
defines a norm which is equivalent to the usual norm in H1(Ω). We shall often
exploit this fact during calculations.

Remark 3.3. Since the model we study is quite heavy, to lighten the
notation and help the reader to follow calculations, we will not stress the ex-
plicit dependance on the constants arising in inequalities due to equivalence
between norms. Indeed, we shall use different norms in Euclidean spaces, and,
on account of Remark 3.2, different norms in V .

4. Well-Posedness

Theorem 4.1. Assume conditions (H.0)-(H.2) and (F.0) hold true. Sup-

pose also

(v0,v1, u0, u1, θ0, ζ0, ω0, η0) ∈ Z.

Then, for any T > 0, system (1.10)-(1.17) has a unique solution on [0, T ]

(v,vt, u, ut, θ, ζ, ω, η) ∈ C0([0, T ], Z).

Furthermore, suppose that (vi,vti, ui, uti, θi, ζ
t
i, ω

t
i , η

t
i), are solutions correspond-

ing to initial data (v0i,v1i, u0i, u1i, θ0i, ζ0i, ω0i, η0i), and external sources fji,

j = 1, 2, 3, 4, i = 1, 2. Then, there exists an increasing function Φ : [0,∞) →
[0,∞) such that whenever

‖(v0i,v1i, u0i, u1i, θ0i, ζ0i, ω0i, η0i)‖Z +
4

∑

j=1

‖fji‖L1([0,T ],H) ≤M,

for some M ≥ 0, it is verified that

‖v1(t) − v2(t)‖VνA
+ ‖vt1(t) − vt2(t)‖ + ‖u1(t) − u2(t)‖V

+ ‖ut1(t) − ut2(t)‖ + ‖θ1(t) − θ2(t)‖ + ‖ζt
1 − ζt

2‖VνA

+ ‖ζt
1 − ζt

2‖Hµ
+ ‖ωt

1 − ωt
2‖Vµ

+ ‖ηt
1 − ηt

2‖Vκ
+ ‖ηt

1 − ηt
2‖Hγ

≤ Φ(M) (‖v01 − v02‖VνA
+ ‖v11 − v12‖ + ‖u01 − u02‖V

+ ‖u11 − u12‖ + ‖θ01 − θ02‖ + ‖ζ01 − ζ02‖VνA

+ ‖ζ01 − ζ02‖Hµ
‖ω01 − ω02‖Vµ

+ ‖η01 − η02‖Vκ
+ ‖η01 − η02‖Hγ

+ ‖f11 − f12‖L1([0,T ],H) + ‖f21 − f22‖L1([0,T ],H)
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+‖f31 − f32‖L1([0,T ],H) + ‖f41 − f42‖L1([0,T ],H)

)

. (4.1)

The proof of the above theorem is omitted. It can be carried out via Faedo-
Galerkin method (with due technical modifications, see for instance [14]).

Let us denote the solution

z(t) =
[

v(t) vt(t) u(t) ut(t) θ(t) ζt ωt ηt
]

,

with initial data z(0) = z0 ∈ Z by S(t)z0. Hence, on account of Theorem 4.1,
the solution is described by the continuous semigroup S(t) acting on the space
Z, i.e. S(t) enjoys the following properties:

(i) S(t) : Z → Z, continuous for every t ≥ 0,
(ii) S(0) = I (identity on Z),
(iii) lim

t→0+
S(t)z = z for every z ∈ Z,

(iv) S(t)S(τ) = S(t+ τ), for every t, τ ≥ 0.

5. The Main Result

Let us introduce the energy of system (1.10)-(1.17)

E(t) = ‖v(t)‖2
VA

+ ‖∂tv(t)‖2 + ‖∂tu(t)‖2 + ‖θ(t)‖2

+ ‖∇u(t) + v(t)‖2 + ‖ζt‖2
VνA

+ ‖∇ωt + ζt‖2
Hµ

+ ‖ηt‖2
Vκ∩Hγ

. (5.1)

Theorem 5.1. Assume conditions (H.0)-(H.4) and (F.0) hold true. Then

there exist ǫ > 0 and two positive constants C1, C2 such that, for every t ≥ 0,
the following estimate

E(t) ≤ C1E(0)e−ǫt +

{

C2

∫ t

0
e−ǫ/2(t−τ) [‖f1(τ)‖ + ‖f2(τ)‖

+‖f3(τ)‖ + ‖f4(τ)‖] dτ
}2

holds.

We can state also the following corollary.

Corollary 5.2. If, for a positive real constant K

sup
σ≥0

∫ σ+1

σ
[‖f1(τ)‖ + ‖f2(τ)‖ + ‖f3(τ)‖ + ‖f4(τ)‖] dτ ≤ K
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holds, then every ball B0 of Z centered at zero and of radius greater than

C2 = C2(K) is an absorbing set1 for the semigroup S(t) generated by the

system (1.10)-(1.17).

6. Proof of Theorem 5.1

In the sequel, we will denote by C > 0 a generic constant, which may vary even
within the same formula.

We start from equation (1.10) and multiply it in H by ∂tv, to obtain

1

2

d

dt

(

‖∂tv‖2 + ‖v‖2
VA

)

+ 〈∇u+ v, ∂tv〉 + 〈∇θ, ∂tv〉

−
∫ ∞

0
ν(s)〈Aζ(s), ∂tv〉ds

+

∫ ∞

0
µ(s)〈∇ω(s) + ζ(s), ∂tv〉ds = 〈

[

f1

f2

]

, ∂tv〉.

We consider equation (1.11) multiplied in H by ∂tu. Performing some integra-
tion by parts, we have

1

2

d

dt
‖∂tu‖2 + 〈∇u+ v, ∂t∇u〉

+

∫ ∞

0
µ(s)〈∇ω(s) + ζ(s), ∂t∇u〉 = 〈f3, ∂tu〉.

We consider equation (1.12), and multiply it in H by θ. After integration by
parts, we end

1

2

d

dt
‖θ‖2 + ‖θ‖2 − 〈∂tv,∇θ〉 +

∫ ∞

0
κ(s)〈∇η(s),∇θ〉ds

+ ι0

∫ ∞

0
γ(s)〈η(s), θ〉ds = 〈f4, θ〉.

By adding the three previous equations we have got, we obtain

1

2

d

dt

(

‖∂tv‖2 + ‖v‖2
VA

+ ‖∂tu‖2 + ‖θ‖2 + ‖∇u+ v‖2
)

+ ‖θ‖2

1A set B0 ⊂ Z is said to be absorbing for the semigroup {S(t)} if for any bounded set
B ⊂ Z there exists tB ≥ 0 such that S(t)B ⊂ B0 for every t ≥ tB.
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−
∫ ∞

0
ν(s)〈Aζ(s), ∂tv〉ds +

∫ ∞

0
µ(s)〈∇ω(s) + ζ(s), ∂tv + ∂t∇u〉ds

+

∫ ∞

0
κ(s)〈∇η(s),∇θ〉ds + ι0

∫ ∞

0
γ(s)〈η(s), θ〉ds = 〈

[

f1

f2

]

, ∂tv〉

+ 〈f3, ∂tu〉 + 〈f4, θ〉. (6.1)

We proceed by performing some estimates on the equations governing the mem-
ory terms. We consider (1.13) and multiply it in VνA by ζ, obtaining

1

2

d

dt
‖ζ‖2

VνA
+ 〈∂sζ, ζ〉VνA

= 〈ζ, ∂tv〉VνA
. (6.2)

We add equation (1.13) to the gradient of (1.14), to have

∂t(ζ + ∇ω) + ∂s(ζ + ∇ω) = ∂t(v + ∇u).

We multiply this equation by (ζ + ∇ω) in Hµ, and get

1

2

d

dt
‖ζ + ∇ω‖2

Hµ
+ 〈∂s(ζ + ∇ω), ζ + ∇ω〉Hµ

= 〈∂t(v + ∇u), ζ + ∇ω〉Hµ . (6.3)

We consider equation (1.15), and multiply it by η in Vκ ∩Hγ ; this yields to

1

2

d

dt
‖η‖2

Vκ∩Hγ
+ 〈∂sη, η〉Vκ∩Hγ

= 〈η, θ〉Vκ∩Hγ
. (6.4)

Observe that (H.3) gives us an estimate on the term 〈∂sζ(s), ζ(s)〉Vν
in equation

(6.2). Indeed by integration by parts we have

〈∂sζ(s), ζ(s)〉VνA
≥ δ

2
‖ζ‖2

VνA
.

In account of (H.3), this estimate may be repeated on the similar terms ap-
pearing in equations (6.3) and (6.4). Hence, adding (6.2)-(6.4), we obtain:

1

2

d

dt

(

‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

+ ‖η‖2
Vκ∩Hγ

)

+
δ

2

(

‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

+ ‖η‖2
Vκ∩Hγ

)

≤ 〈ζ, ∂tv〉VνA
+ 〈∂t(v + ∇u), ζ + ∇ω〉Hµ

+ 〈η, θ〉Vκ∩Hγ
. (6.5)
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We add equation (6.1) to (6.5), and have

1

2

d

dt

(

‖∂tv‖2 + ‖v‖2
VA

+ ‖∂tu‖2 + ‖θ‖2 + ‖∇u+ v‖2
H

+ ‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

+ ‖η‖2
Vκ∩Hγ

)

+ ‖θ‖2
H +

δ

2

(

‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

+ ‖η‖2
Vκ∩Hγ

)

≤ 〈
[

f1

f2

]

, ∂tv〉 + 〈f3, ∂tu〉 + 〈f4, θ〉. (6.6)

Remark 6.1. We consider here the case ι0 = 1. The case ι0 = −1 can also
be dealt with minor modifications. We just point out that to treat the term

2

∫ ∞

0
γ(s)(η(s), θ〉ds it is necessary to have the memory kernel γ to be suitably

dominated by κ: γ(σ) ≤ δ0κ(σ) and κ′(σ) + δκ(σ) ≤ 0 for all σ ∈ R
+ for some

0 < δ0 < δ (see [17]).

Equation (6.6) can be rewritten as

1

2

d

dt
E ≤ (‖f1‖ + ‖f2‖ + ‖f3‖ + ‖f4‖) E1/2 (6.7)

and, using (F.0) and a Gronwall type Lemma (see, e.g. Lemma 2.4 in [17]), we
deduce that E is bounded over R

+.
We consider the product in H of equation (1.10) by v; after performing

some integration by parts, we have

〈∂ttv,v〉 + ‖v‖2
VA

+ 〈∇θ,v〉 + 〈∇u+ v,v〉 + 〈ζ,v〉VνA

+ 〈∇ω + ζ,v〉Hµ
= 〈

[

f1

f2

]

,v〉. (6.8)

Multiplication of equation (1.11) by u in H, and some integration by parts lead
to

(∂ttu, u〉 + (∇u+ v,∇u〉 + (∇ω + ζ,∇u)Hµ
= (f3, u〉.

Adding last two equations, we have

〈∂ttv,v〉 + 〈∂ttu, u〉 + ‖v‖2
VA

+ 〈∇θ,v〉 + ‖∇u+ v‖2

+ 〈ζ,v〉VνA
+ 〈∇ω + ζ,∇u+ v〉Hµ = 〈

[

f1

f2

]

,v〉 + 〈f3, u〉.
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Integrating by parts and using Young inequality, we have

〈∂ttv,v〉 + 〈∂ttu, u〉 +
1

6
‖v‖2

VA
+

1

2
‖∇u+ v‖2

H

≤ C
(

‖∇ω + ζ‖2
Hµ

+ ‖ζ‖2
VνA

+ ‖θ‖2
H

)

+ 〈
[

f1

f2

]

,v〉 + 〈f3, u〉. (6.9)

We introduce the functionals

L1 = −〈∂tv,

∫ ∞

0
ν(s)ζ(s)ds〉, (6.10)

L2 = −〈∂tu,

∫ ∞

0
µ(s)ω(s)ds〉, (6.11)

and study the behavior of their derivatives with respect to the time. In account
of equations (1.10) and (1.13), we have

∂tL1 = − 〈∂ttv,

∫ ∞

0
ν(s)ζ(s)ds〉 − 〈∂tv,

∫ ∞

0
ν(s)∂tζ(s)ds〉

= − 〈Av,

∫ ∞

0
ν(s)ζ(s)ds〉 + 〈∇u+ v,

∫ ∞

0
ν(s)ζ(s)ds〉

+ 〈∇θ,
∫ ∞

0
ν(s)ζ(s)ds〉 − 〈

∫ ∞

0
ν(s)Aζ(s)ds,

∫ ∞

0
ν(s)ζ(s)ds〉

+ 〈
∫ ∞

0
µ(s)[∇ω(s) + ζ(s)]ds,

∫ ∞

0
ν(s)ζ(s)ds〉 − ν0‖∂tv‖2

H

− 〈
[

f1

f2

]

,

∫ ∞

0
ν(s)ζ(s)ds〉 + 〈∂tv,

∫ ∞

0
ν(s)∂sζ(s)ds〉. (6.12)

We notice that for every function u ∈ Hν and v ∈ Hµ, using Schwartz inequality
in L2(R+) and then in H, we have

〈
∫ ∞

0
ν(s)u(s)ds,

∫ ∞

0
µ(s)v(s)ds〉

≤√
ν0µ0〈

[
∫ ∞

0
ν(s)u2(s)ds

]1/2

,

[
∫ ∞

0
µ(s)v2(s)ds

]1/2

〉

≤√
ν0µ0 ‖u‖Hν

‖v‖Hµ. (6.13)

Now, we devote some effort to estimate the term appearing in the right hand
side of equation (6.12). After integration by parts, exploiting (6.13) and using
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Young inequality, we obtain

− 〈Av,

∫ ∞

0
ν(s)ζ(s)ds〉 ≤ ǫ‖v‖2

VA
+ C(ǫ)‖ζ‖2

VνA
, (6.14)

〈∇u+ v,

∫ ∞

0
ν(s)ζ(s)ds〉 ≤ ǫ‖∇u+ v‖2

H + C(ǫ)‖ζ‖2
Hν
, (6.15)

− 〈
∫ ∞

0
ν(s)Aζ(s)ds,

∫ ∞

0
ν(s)ζ(s)ds〉 ≤ ν0‖ζ‖2

VνA
, (6.16)

〈
∫ ∞

0
µ(s)[∇ω(s) + ζ(s)]ds,

∫ ∞

0
ν(s)ζ(s)ds〉

≤ µ0

2
‖∇ω + ζ‖2

Hµ
+
ν0

2
‖ζ‖2

Hν
, (6.17)

〈∇θ,
∫ ∞

0
ν(s)ζ(s)ds〉 = −〈θ,

∫ ∞

0
ν(s)∇ · ζ(s)ds〉

≤
√
ν0 ‖θ‖H‖∇ · ζ‖Hν

≤ ǫ‖θ‖2
H + C(ǫ)‖ζ‖2

VνA
, (6.18)

where ǫ > 0 and C(ǫ) > 0 appear in Young inequality, and ǫ will be fixed small
later.

Recalling [11], in view of (H.4), we get

− ν0‖∂tv‖2
H + 〈∂tv,

∫ ∞

0
ν(s)∂sζ(s)ds〉

≤ −ν0

2
‖∂tv‖2

H + C‖ζ‖2
Hν
. (6.19)

Collecting inequalities (6.14)-(6.19) in equation (6.12), we have

∂tL1 +
ν0

2
‖∂tv‖2 ≤ ǫ(‖v‖2

VA
+ ‖∇u+ v‖2 + ‖θ‖2)

+ C(ǫ)(‖ζ‖2
VνA

+ ‖∇ω + ζ‖2
Hµ

) − 〈
[

f1

f2

]

,

∫ ∞

0
ν(s)ζ(s)ds〉. (6.20)

Following the same path, we estimate the time derivative of L2. Using equation
(1.11) and (1.14) together with some integration by parts, we obtain

∂tL2 = − 〈∂ttu,

∫ ∞

0
µ(s)ω(s)ds〉 − 〈∂tu,

∫ ∞

0
µ(s)∂tω(s)ds〉

=〈v + ∇u,
∫ ∞

0
µ(s)∇ω(s)ds〉 − µ0‖∂tu‖2
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+ 〈
∫ ∞

0
µ(s)(ζ(s) + ∇ω(s))ds,

∫ ∞

0
µ(s)∇ω(s)ds〉

+ 〈∂tu,

∫ ∞

0
µ(s)∂sω(s)ds〉 − 〈f3,

∫ ∞

0
µ(s)ω(s)ds〉. (6.21)

We estimate the right hand side terms. Recall (6.13) and (6.19), we have

〈v + ∇u,
∫ ∞

0
µ(s)∇ω(s)ds〉 ≤ ǫ‖v + ∇u‖2 + C(ǫ)‖∇ω‖2

Hµ
, (6.22)

− µ0‖∂tu‖2 + 〈∂tu,

∫ ∞

0
µ(s)∂sω(s)ds〉

≤ −µ0

2
‖∂tu‖2 +C‖∇ω‖2

Hµ
, (6.23)

〈
∫ ∞

0
µ(s)[ζ(s) + ∇ω(s)]ds,

∫ ∞

0
µ(s)∇ω(s)ds〉

≤ µ0

2
‖ζ + ∇ω‖2

Hµ
+
µ0

2
‖∇ω‖2

Hµ
. (6.24)

Using the estimates (6.22)-(6.24) in equation (6.21), we have

∂tL2 +
µ0

2
‖∂tu‖2 ≤ ǫ‖v + ∇u‖2

+ C(ǫ)(‖∇ω‖2
H µ

+ ‖ζ + ∇ω‖2
Hµ

) − 〈f3,

∫ ∞

0
µ(s)ω(s)ds〉, (6.25)

and recalling (H.5), we easily obtain

∂tL2 +
µ0

2
‖∂tu‖2 ≤ ǫ‖v + ∇u‖2

+ C(ǫ)(‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

) − 〈f3,

∫ ∞

0
µ(s)ω(s)ds〉. (6.26)

Now, we add (6.20) to (6.26), with a suitable choice of the parameter ǫ, we
obtain

∂t(L1 + L2) +
ν0

2
‖∂tv‖2 +

µ0

2
‖∂tu‖2 ≤ ǫ(‖v‖2

VA
+ ‖v + ∇u‖2 + ‖θ‖2

H)

+ C(ǫ)(‖ζ + ∇ω‖2
Hµ

+ ‖ζ‖2
VνA)

− 〈
[

f1

f2

]

,

∫ ∞

0
ν(s)ζ(s)ds〉 − 〈f3,

∫ ∞

0
µ(s)ω(s)ds〉. (6.27)

Let α and α be two positive constants, which will be fixed later; we add (6.9)
multiplied by α to (6.27) multiplied by α to (6.6). Using the trivial identity
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〈∂ttu, u〉 = ∂t〈∂tu, u〉 − ‖∂tu‖2, we obtain

∂t(E + αL1 + αL2 + α〈∂tv,v〉 + α〈∂tu, u〉) + (1 − αǫ− αC)‖θ‖2
H

+

[

δ

2
− αC(ǫ) − αC

]

(‖ζ‖2
VνA

+ ‖ζ + ∇ω‖2
Hµ

) +
δ

2
‖η‖2

Vκ∩Hγ

+

(

αν

2
− α

)

‖∂tv‖2 +

(

αµ

2
− α

)

‖∂tu‖2

+

(

α

2
− αǫ

)

‖v + ∇u‖2 +

(

α

6
− αǫ

)

‖v‖2
VA

≤ α〈
[

f1

f2

]

,v〉 + α〈f3, u〉 + 〈
[

f1

f2

]

, ∂tv〉 + 〈f3, ∂tu〉 + 〈f4, θ〉

− α〈
[

f1

f2

]

,

∫ ∞

0
ν(s)ζ(s)ds〉 − α〈f3,

∫ ∞

0
µ(s)ω(s)ds〉. (6.28)

We observe that the constants appearing in the left hand side of equation
(6.28) are compatible; indeed, we want to guarantee that

1 − αǫ− αC > 0, (6.29)

δ

2
− αC(ǫ) − αC > 0, (6.30)

αν

2
− α > 0, (6.31)

αµ

2
− α > 0, (6.32)

α

2
− αǫ > 0, (6.33)

α

6
− αǫ > 0, (6.34)

and it is clear that (6.33) holds when (6.34) is satisfied. We verify that (6.34)
is compatible with (6.31) and (6.32), if ǫ < ν/12 and ǫ < µ/12, respectively.
Hence, for instance, we choose ǫ = βµ < min{ν/12, µ/12} = µ/12, with 0 <
β < 1/12, so to fix C∗ = C(ǫ). Now, (6.29)-(6.30) are satisfied when

α < min

{

1

βµ
(1 − αC),

1

C∗

(

δ

2
− αC

)}

, (6.35)

with

α <
1

C
min

{

1,
δ

2

}

.
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From (6.31)-(6.32) and (H.5), we find α > (2/µ)α, and this is compatible with
(6.35) if

α <
1

2β + C
or α <

δµ

2(µC + 2C∗)
,

respectively and depending on the minimum of (6.35).
Previous inequalities on the coefficients appearing in equation (6.28) guar-

antee that there exists a small coefficient ι > 0 such that

∂t(E + αL1 + αL2 + α(∂tv,v〉 + α(∂tu, u〉) + ιE
≤ C (‖f1‖ + ‖f2‖ + ‖f3‖ + ‖f4‖) E1/2, (6.36)

where Schwartz inequality is applied in the right-hand side of (6.28).
We observe that the energy E and the functional

L = E + αL1 + αL2 + α〈∂tv,v〉 + α〈∂tu, u〉

are equivalent when α and α are chosen small enough. Indeed, using Schwartz
inequality it is immediate to see that there exists c1 > 0 such that

L ≤ c1E ,

vice versa, when α and α are small, L is a quadratic form positively defined,
hence we find c2 > 0 such that

E ≤ c2L.

Then, we can rewrite equation (6.36) as

∂tL + ǫL ≤ C (‖f1‖ + ‖f2‖ + ‖f3‖ + ‖f4‖)L1/2,

for some C, ǫ > 0. By virtue of a generalized Gronwall Lemma (see, e.g. Lemma
2.5 in [17]), we deduce

L(t) ≤ C1L(0)e−ǫt +

{

C2

∫ t

0
e−ǫ(t−τ)/2 [‖f1(τ)‖ + ‖f2(τ)‖

+‖f3(τ)‖ + ‖f4(τ)‖] dτ
}2

.

We deduce that a uniform energy estimate of this kind also holds for E , regard-
less the names of the constants.
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7. Proof of Corollary 5.2

Notice that the following inequality

∫ t

τ
m(y)e−ǫ(t−y)dy ≤ eǫ

ǫ
sup
r≥τ

∫ r+1

r
m(y)dy

holds for any non-negative locally summable function m on (τ,+∞). Hence,

C2

∫ t

0
e−ǫ/2(t−τ) [‖f1(τ)‖ + ‖f2(τ)‖ + ‖f3(τ)‖ + ‖f4(τ)‖] dτ

≤ 2eǫ/2

ǫ
sup
r≥0

∫ r+1

r
[‖f1(τ)‖ + ‖f2(τ)‖ + ‖f3(τ)‖ + ‖f4(τ)‖] dτ = C

1/2
2 (K).

This implies immediately the existence of a bounded absorbing set B0 in the
phase space Z for the semigroup S(t) associated to the solution of the problem:
we can chose every ball B0 of Z centered at zero and of radius strictly greater
than C2.
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