International Journal of Pure and Applied Mathematics

Volume 21 No. 3 2005, 135-136

ON THE ZERO-LOCUS OF REAL ANALYTIC FUNCTIONS ON DOMAINS OF TOPOLOGICAL VECTOR SPACES

E. Ballico

Department of Mathematics University of Trento 380 50 Povo (Trento) - Via Sommarive, 14, ITALY e-mail: ballico@science.unitn.it

Abstract: Let V be a real Fréchet space without a continuos norm, W a real Banach space, U an open subset of V and $f: U \to W$ a real analytic function. Then for every $P \in f^{-1}(0)$ there is no open subset Ω of P in U and a closed finite-dimension real submanifold Z of Ω such that $f^{-1}(0) \cap \Omega \subseteq Z$. Furthermore, there is an open neighborhood A of P such for every integer $z \geq 1$, there is an a z-dimensional closed real submanifold T_z of A such that $P \in T_z \subset f^{-1}(0)$.

AMS Subject Classification: 32C05, 32D20, 46E99

Key Words: real analytic function, real analytic function in infinite-dimensional topological vector spaces, topological vector space without a continuous norm

1. Zero-Loci of Real Analytic Functions

In [1] we used [2] on the zero-loci of real analytic functions on open subsets of real Fréchet spaces without a continuos norm: no such zero-locus may have an isolated point. Using [2] and [4] we also proved that there is a Banach space with the same properties. Here we adapt [1], proof of Th. 1, to prove the following result.

Theorem 1. Let V be a real Fréchet space without a continuos norm, W a real Banach space, U an open subset of V and $f: U \to W$ a real analytic

Received: May 6, 2005

© 2005, Academic Publications Ltd.

function. Then for every $P \in f^{-1}(0)$ there is no open subset Ω of P in U and a closed finite-dimension real submanifold Z of Ω such that $f^{-1}(0) \cap \Omega \subseteq Z$. Furthermore, there is an open neighborhood A of P such for every integer $z \ge 1$, there is an a z-dimensional closed real submanifold T_z of A such that $P \in T_z \subset f^{-1}(0)$.

Proof. By [5], Th. 2.6.13, V has a subspace E isomorphic to $\mathbb{R}^{\mathbb{N}}$. Hence we reduce to the case $V = \mathbb{R}^{\mathbb{N}}$. Hence it is sufficient to check the extension of [3], Cor. 1, to the Banach valued case.

Remark 1. Take V, U, W and f as in Theorem 1. Assume that V has the stronger property " every continuous seminorm " vanishes on a finite codimensional linear subspace. Then for every $P \in f^{-1}(0)$ there is an open neighborhhod B of P in U and a finite-codimensional closed real analytic submanifold T of B such that $P \in T \subseteq f^{-1}(0)$.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- E. Ballico, Real analytic functions with isolated zeroes on domains of topological vector spaces, Yokohama Math. J. 51 (2005), no. 1, 99–102.
- [2] S. Dineen, Growth properties of pseudo-convex domains and domains of holomorphy in locally convex topological vector spaces, Math. Ann. 226 (1977), 229–236.
- [3] A. Hirschowitz, Remarques sur les ouverts d'holomorphie d'un produit dénombrable de droites, Ann. Inst. Fourier 19 (1969), no. 1, 219–229.
- [4] B. Josefson, A counterexample to the Levi problem, Proc. in Infinite Dimensional Holomorphy, Lect. Notes in Math. 364, pp. 168–177, Berlin -Heidelberg - New York, Springer, 1974.
- [5] J. Pérez Carreras and J. Bonnet, Barrelled Locally Convex Spaces, North-Holland, Amsterdam - New York, 1987.