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1. Banach Valued Analytic Maps

In [1] and [2], Example 1, we used the same non-separable Banach space BK,
K = C or R, constructed in [4] (or see [3], Proposition 8) for two different
purposes. Here there is a description of BK.

Example 1. Take K = C or R. Fix an uncountable set A and let BK =
C0(A, K) be the Banach space of all K-valued functions f on A which vanish at
infinity with the supremum norm, i.e. such that for every ǫ > 0 there is finite
set S ⊂ A such that |f(i)| < ǫ for every i ∈ A\S. Let U be an open subset
of BK. We will say that a function h : U → K is analytic if it is continuous
and Gatêaux analytic. Every analytic function h : U → K depends only on a
countable number of variables ([4] or [3], Proposition 8).

The quickest way to explain our extension of [1] and [2] to Banach valued
“functions” is to state now the two results we will prove in this note.

Theorem 1. Let Wi, i ≥ 1, be countably many complex Banach spaces.

Assume that for each index i either the dual Wi
′ is separable or Wi has a
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Schauder basis. Fix integers di > 0, i ≥ 1, and a continuous homogeneous

degree di and Wi-valued polynomial fi : P di(BC) → Wi. Let X ⊂ P(BC) be

the common zero-locus of all the polynomials fi, i ≥ 1. Then X is a cone

whose vertex has uncountable dimension. Hence if X is not a linear subspace

of P(BC), then X is singular.

Theorem 2. Let Wi, i ≥ 1, be countably many real Banach spaces.

Assume that for each index i either the dual Wi
′ is separable or Wi has a

Schauder basis. Fix an open subset U ⊆ BR, P ∈ U and real analytic functions

fi : U → Wi such that fi(P ) = 0 for all i. Then
⋂

i≥1
f−1

i
(0) contains the

intersection with U of a linear subspace of BR with uncountable dimension.

In particular, there is no isolated zero-locus of countably many real analytic

Wi-valued functions.

It is obvious that in the statement of Theorem 2 we need to assume some
conditions on the target Banach spaces: 0 ∈ BR is an isolated zero of the
indentity map BR → BR. Similary, if we take a decomposition BC = A ⊕ W

with A finite-dimensional, it is easy to get two Banach valued homogeneous
forms whose common zero-locus is a non-linear smooth hypersurface of the
finite-dimensional projective space P(A). In [1] we stated the case of Theorem
1 corresponding to finitely many C-valued polynomials (see the last four lines
of [1]).

Proof of Theorem 1. First assume that Wi
′ is separable. Take a countable

and dense subset S of Wi
′. For any λ ∈ S set A(λ) := {a ∈ A : λ ◦ fi(a) =

0}. Set Ai :=
⋂

λ∈S
A(λ). By [4] or [3], Proposition 8, each set A\A(λ)

is countable. Hence the set A\Ai is countable. Now assume that Wi has a
Schauder basis {en}n≥1. Use the continuous functionals e∗n : W → C defined by
e∗n(

∑
n

αnen) := αn ([5], Corollary 4.1.16) to define the set Ai and Bi := A\Ai.
Set E := ∩i≥iAi. By construction X is a cone with vertex containing P(E).

Proof of Theorem 2. Copy the proof of Theorem 1.
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