International Journal of Pure and Applied Mathematics

Volume 22 No. 4 2005, 569-571

BANACH VALUED REAL OR COMPLEX ANALYTIC MAPS AND THEIR ZERO-SETS: AN EXAMPLE WITH A "BAD" BANACH DOMAIN

E. Ballico

Department of Mathematics University of Trento 380 50 Povo (Trento) - Via Sommarive, 14, ITALY e-mail: ballico@science.unitn.it

AMS Subject Classification: 32K05, 32D20, 46E99

Key Words: complex Banach manifold, homorphic functions on Banach spaces, Banach valued holomorphic functions, real analytic function in infinitedimensional Banach space

1. Banach Valued Analytic Maps

In [1] and [2], Example 1, we used the same non-separable Banach space $B_{\mathbb{K}}$, $\mathbb{K} = \mathbb{C}$ or \mathbb{R} , constructed in [4] (or see [3], Proposition 8) for two different purposes. Here there is a description of $B_{\mathbb{K}}$.

Example 1. Take $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . Fix an uncountable set A and let $B_{\mathbb{K}} = C_0(A, \mathbb{K})$ be the Banach space of all \mathbb{K} -valued functions f on A which vanish at infinity with the supremum norm, i.e. such that for every $\epsilon > 0$ there is finite set $S \subset A$ such that $|f(i)| < \epsilon$ for every $i \in A \setminus S$. Let U be an open subset of $B_{\mathbb{K}}$. We will say that a function $h : U \to \mathbb{K}$ is analytic if it is continuous and Gatêaux analytic. Every analytic function $h : U \to \mathbb{K}$ depends only on a countable number of variables ([4] or [3], Proposition 8).

The quickest way to explain our extension of [1] and [2] to Banach valued "functions" is to state now the two results we will prove in this note.

Theorem 1. Let W_i , $i \ge 1$, be countably many complex Banach spaces. Assume that for each index i either the dual W'_i is separable or W_i has a

Received: July 12, 2005

© 2005, Academic Publications Ltd.

Schauder basis. Fix integers $d_i > 0$, $i \ge 1$, and a continuous homogeneous degree d_i and W_i -valued polynomial $f_i : P^{d_i}(B_{\mathbb{C}}) \to W_i$. Let $X \subset \mathbf{P}(B_{\mathbb{C}})$ be the common zero-locus of all the polynomials f_i , $i \ge 1$. Then X is a cone whose vertex has uncountable dimension. Hence if X is not a linear subspace of $\mathbf{P}(B_{\mathbb{C}})$, then X is singular.

Theorem 2. Let W_i , $i \geq 1$, be countably many real Banach spaces. Assume that for each index i either the dual W'_i is separable or W_i has a Schauder basis. Fix an open subset $U \subseteq B_{\mathbb{R}}$, $P \in U$ and real analytic functions $f_i: U \to W_i$ such that $f_i(P) = 0$ for all *i*. Then $\bigcap_{i>1} f_i^{-1}(0)$ contains the intersection with U of a linear subspace of $B_{\mathbb{R}}$ with uncountable dimension. In particular, there is no isolated zero-locus of countably many real analytic W_i -valued functions.

It is obvious that in the statement of Theorem 2 we need to assume some conditions on the target Banach spaces: $0 \in B_{\mathbb{R}}$ is an isolated zero of the indentity map $B_{\mathbb{R}} \to B_{\mathbb{R}}$. Similarly, if we take a decomposition $B_{\mathbb{C}} = A \oplus W$ with A finite-dimensional, it is easy to get two Banach valued homogeneous forms whose common zero-locus is a non-linear smooth hypersurface of the finite-dimensional projective space $\mathbf{P}(A)$. In [1] we stated the case of Theorem 1 corresponding to finitely many C-valued polynomials (see the last four lines of [1]).

Proof of Theorem 1. First assume that W'_i is separable. Take a countable and dense subset S of W_i' . For any $\lambda \in S$ set $A(\lambda) := \{a \in A : \lambda \circ f_i(a) =$ 0}. Set $A_i := \bigcap_{\lambda \in S} A(\lambda)$. By [4] or [3], Proposition 8, each set $A \setminus A(\lambda)$ is countable. Hence the set $A \setminus A_i$ is countable. Now assume that W_i has a Schauder basis $\{e_n\}_{n\geq 1}$. Use the continuous functionals $e_n^*: W \to \mathbb{C}$ defined by $e_n^*(\sum_n \alpha_n e_n) := \alpha_n$ ([5], Corollary 4.1.16) to define the set A_i and $B_i := A \setminus A_i$. Set $E := \bigcap_{i > i} A_i$. By construction X is a cone with vertex containing $\mathbf{P}(E)$. \Box

Proof of Theorem 2. Copy the proof of Theorem 1.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] E. Ballico, An example of a Banach space V such that all degree $d \ge 2$ hypersurfaces of $\mathbf{P}(V)$ are singular, *Extracta Math.*, **19**, No. 3 (2004), 317-318.
- [2] E. Ballico, Real analytic functions with isolated zeroes on domains of topological vector spaces, *Yokohama Math. J.*, **51**, No. 1 (2005), 99-102.
- [3] S. Dineen, Growth properties of pseudo-convex domains and domains of holomorphy in locally convex topological vector spaces, *Math. Ann.*, 226, No. 3 (1977), 229-236.
- [4] B. Josefson, A counterexample to the Levi problem, In: Proc. on Infinite Dimensional Holomorphy, Lect. Notes in Math., 364, Springer, Berlin (1974), 168-177.
- [5] R.E. Megginson, An Introduction to Banach Space Theory, Springer, Berlin (1998).