
International Journal of Pure and Applied Mathematics
————————————————————————–
Volume 22 No. 4 2005, 529-537

CONDITIONS FOR ALMOST SURE CONVERGENCE

George Stoica

Department of Mathematical Sciences
University of New Brunswick Saint John

P.O. Box 5050, Saint John NB, E2L 4L5, CANADA

e-mail: stoica@unbsj.ca

Abstract: We study the almost sure convergence of normalized random vec-
tors when the limit of the cumulant generating functions does not exist or one
is unable to find it. As such, familiar tools like differentiability, convexity, expo-
nential tightness, etc. are no longer at hand. We give examples and applications
in both finite and infinite dimension.
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1. Introduction

We consider a σ-algebra E of subsets of a Hausdorff topological vector space E
and, for each n ≥ 1, an E-valued E-measurable random vector Xn defined on
a probability space (Ω,A, P ). Given ξ ∈ E∗, the topological dual space of E,
and a strictly positive sequence {an}n≥1 with lim

n→∞
an = +∞, let us consider

the cumulant generating functions

φn(ξ) :=
1

an
log E(exp < ξ,Xn >),

where < ·, · > represents the duality between E and E∗. If the convex function
lim

n→∞
φn(ξ) exists, is finite and differentiable at any ξ ∈ E = R

d (d ≥ 1), then

{Xn}n≥1 satisfies the large deviation principle (see Ellis [6] and Gärtner [9]).
Essentially the same holds in infinite dimension if in addition {Xn}n≥1 is expo-
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nentially tight (see Dembo and Zeitouni [4]). The large deviation principle is
closely related to the almost sure (a.s.) convergence properties of {Xn/an}n≥1.
For instance, suppose that lim

n→∞
φn(ξ) exists and is finite for all ξ ∈ E = R

d

(d ≥ 1), and the following technical condition holds:

∞
∑

n=1

exp(−anM) < +∞ for all M > 0; (1)

then {Xn/an}n≥1 converges a.s. if and only if lim
n→∞

φn(ξ) is differentiable at

ξ = 0 (see Ellis [6], Theorem IV.1). Also, in infinite dimension, the existence
and differentiability of lim

n→∞
φn(ξ) at ξ = 0 are intimately related to {Xn}n≥1

being exponentially tight (see Cox and Griffeath [3] and Sun [12]).
It is the purpose of this paper to analyze the a.s. behavior of {Xn/an}n≥1

under more pessimistic scenarios, namely lim
n→∞

φn(ξ) does not exist or one is

unable to find it; what type of hypotheses will still ensure the a.s. convergence
of {Xn/an}n≥1? We present two such results, with examples and practical
applications; they both complement the large and moderate deviation problems
treated in the literature in both finite and infinite dimension.

2. A Convex Dominating Function

In the first result, one needs to find a finite convex function φ dominating
lim sup

n→∞
φn(ξ), and with no supplementary properties (differentiability, etc).

Theorem 1. Assume (1) and the existence of a convex function φ on E∗

with φ(0) = 0 and

−∞ < lim inf
n→∞

φn(ξ) ≤ lim sup
n→∞

φn(ξ) ≤ φ(ξ) < +∞ for ξ ∈ E∗. (2)

If D±φξ(0) denote the right-hand and left-hand derivatives at t = 0 of the
function φξ(t) := φ(tξ), t ∈ R, we then have:

D−φξ(0) ≤ lim inf
n→∞

< ξ,Xn >

an
≤ lim sup

n→∞

< ξ,Xn >

an
≤ D+φξ(0)

a.s. for ξ ∈ E∗.

Remarks. As the function φξ in Theorem 1 is convex on R, notice that
both D±φξ(0) exist, but as extended real numbers. If

φ(ξ) ≤ lim inf
n→∞

φn(ξ) ≤ lim sup
n→∞

φn(ξ) ≤ φ(ξ) ≤ φ(ξ) for ξ ∈ E∗,
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for some convex functions φ and φ, and under additional assumptions (includ-

ing differentiability of φ), large deviation principles for {Xn}n≥1 are proved
in Cox and Griffeath [3], Lemma 7, Lee and Rémillard [10], Lemma 9, and
Wu [13], Theorem 1.2; therefore they guarantee the logarithmic order of decay
of P{Xn/an}. Under milder assumptions, our Theorem 1 complements their
results in describing the a.s. asymptotic behavior of {Xn/an}n≥1.

Proof. First we have the following:

a) if α ≥ D−φξ(0), there exists t > 0 such that αt > φξ(t).

b) if α ≤ D+φξ(0), there exists t > 0 such that −αt > φξ(−t).

Indeed, by Lemma VII 3.1 in Ellis [7], for α as in a) and b) above, the
Legendre-Fenchel transform φ∗

ξ(α) of φξ(α) is strictly positive. As, by definition,
we have

φ∗
ξ(α) = sup

t∈R

{αt − φξ(t)} = sup
t∈R

{−αt − φξ(−t)},

and using again the above quoted result, we obtain that each sup in the above
formulas is attained at some strictly positive t, hence a) and b) are proved.

For fixed ξ ∈ E∗, let α > D+φξ(0), and t > 0 given by b). We have

1

an
log P

[

< ξ,Xn >

an
≥ α

]

≤
1

an
log

[

exp(−anαt)

∫

{<ξ,Xn>≥αan}
exp(t < ξ,Xn >)dP

]

≤ −αt + φn(tξ).

Pass to lim sup in the above inequalities and use b) to deduce that

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≥ α

]

≤ −αt + φ(tξ) = −αt + φξ(t) < 0. (3)

For m ≥ 1, consider the following events in A:

T ξ
mn =

{

< ξ,Xn >

an
≥ D+φξ(0) +

1

m

}

.

By formula (3) there exist M > 0 and N ≥ 1 such that

1

an
log P (T ξ

mn) ≤ −M
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for n ≥ N , therefore

∑

n≥1

P (T ξ
mn) =

∑

n<N

P (T ξ
mn) +

∑

n≥N

P (T ξ
mn) < ∞

by using hypothesis (1). Borel-Cantelli’s Lemma gives P (lim sup
n→∞

T ξ
mn) = 0 for

m ≥ 1, and hence

P

[

lim sup
n→∞

< ξ,Xn >

an
≤ D+φξ(0)

]

= 1.

Similarly one can prove the second inequality in Theorem 1, by considering the

events

{

<ξ,Xn>
an

≤ D−φξ(0) −
1
m

}

and using a) in showing that

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≤ α

]

< 0

for α < D−φξ(0).

Examples. (i) Assume E = R and take ξ = 1 in Theorem 1; one obtains

D−φ(0) ≤ lim inf
n→∞

Xn

an
≤ lim sup

n→∞

Xn

an
≤ D+φ(0) a.s.,

where D±φ(0) are the right-hand and left-hand derivatives at 0 of φ.

For instance, if Xn = (−1)nn, we have φ2n(ξ) = ξ and φ2n+1(ξ) = −ξ. A
dominating function satisfying hypothesis (2) in Theorem 1 is φ(ξ) = |ξ|, and
hence D±φξ(0) = ±1, precisely the lim sup and lim inf values of {Xn/n}n≥1.

Consider a sequence {Xn}n≥1 such that P [Xn = bn] = pn and P [Xn =
cn] = 1 − pn. Here 0 < pn ≤ 1 for n ≥ 1, and {bn}n≥1, {cn}n≥1 are strictly
positive numbers with limn→∞ max(bn, cn) = +∞. We have

−ξ− +
log[2min(pn, 1 − pn)]

max(bn, cn)
≤ φn(ξ) ≤ ξ+ +

log[2max(pn, 1 − pn)]

max(bn, cn)
,

where ξ± denote the positive and negative part of ξ, hence we deduce that a
dominating convex function satisfying hypothesis (2) is φ(ξ) = ξ+. In this case
we have D−φξ(0) = 0 and D+φξ(0) = 1, precisely the lim sup and lim inf values
of {Xn/max(bn, cn)}n≥1.
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(ii) In infinite dimension, let us consider E = L2[0, 1], an = n, and Xn =
(−1)nn on the set [0, 1 − 1/n] and Xn = 0 otherwise. By Riesz’ Theorem,
each element in E∗ is represented by a function ξ ∈ L2[0, 1]. As such, we can
identify in Theorem 1: φ(ξ) = ||ξ||L1[0,1] and D±φξ(0) = ±||ξ||L1[0,1], precisely
the lim inf and lim sup values of {< ξ,Xn > /n}n≥1.

3. An Exponential Submartingale Condition

An alternative to Theorem 1 is to check the following non-convex hypotheses
for a.s. convergence.

Theorem 2. Assume (1) and let F ⊂ E∗ be a linear subspace such that
all ξ ∈ F are E-measurable. Consider An, A : F ×E → R such that An(ξ, ·) are
E-measurable, A(ξ, ·) is continuous,

lim
n→+∞

sup
x∈E

∣

∣

∣

∣

1

an
An(ξ, x) − A(ξ, x)

∣

∣

∣

∣

= 0 for ξ ∈ F, (4)

and
E[exp(< ξ,Xn > −An(ξ,Xn))] ≤ 1 for ξ ∈ F and n ≥ 1. (5)

Then

lim sup
n→∞

< ξ,Xn >

an
≤ sup

x∈E
A(ξ, x) a.s. for ξ ∈ F.

If, in addition,

lim sup
n→∞

An(·, ·) ≤ 0, or lim sup
n→∞

[An(ξ, ·) + An(−ξ, ·)] ≤ 0 for ξ ∈ F, (6)

then

inf
x∈E

A(ξ, x) ≤ lim inf
n→∞

< ξ,Xn >

an
a.s. for ξ ∈ F.

Remarks. Although the function A(ξ, ·) in Theorem 2 is assumed con-
tinuous, the topological vector space E is not assumed compact, hence both
inf A(ξ, ·) and supA(ξ, ·) exist, but as extended real numbers. Formula (5)
might be thought of as an exponential submartingale condition; it supplies the
lack of information on the existence of lim

n→∞
φn(ξ) by a smooth behavior upon

the correction terms An(ξ, ·). For a general submartingale, An(ξ, ·) are typi-
cally negative, yielding the first condition in (6). The second hypothesis in (6)
is natural (and obviously satisfied) when E is a space of functions and An(ξ, x)
are (Daniell or Bochner) integrals of x against the measure ξ.
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Proof. Fix ξ ∈ F and denote b = supx∈E A(ξ, x); for α > b we want to
prove that

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≥ α

]

< 0.

By hypothesis (4), there exist N ≥ 1 such that An(ξ, x) ≤ ban for x ∈ E and n ≥
N. Hence

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≥ α

]

≤ lim sup
n→∞

1

an

× log

[

exp[an(−α + b)]

∫

{<ξ,Xn>≥αan}
exp(< ξ,Xn > −An(ξ,Xn))dP

]

≤ (−α + b) + lim sup
n→∞

1

an
log E[exp(< ξ,Xn > −An(ξ,Xn))] ≤ −α + b < 0,

by using hypothesis (5). Similarly one can prove that

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≤ α

]

< 0

for α < a, where a = infx∈E A(ξ, x). Indeed, by (4), there exist N ≥ 1 such
that An(ξ, x) ≥ aan for x ∈ E and n ≥ N ; hence

1

an
log P

[

< ξ,Xn >

an
≤ α

]

≤
1

an

× log

[

exp[an(α − a)]

∫

{<ξ,Xn>≤αan}
exp(− < ξ,Xn > +An(±ξ,Xn))dP

]

.

By using hypothesis (5) and (6), we deduce that

lim sup
n→∞

1

an
log P

[

< ξ,Xn >

an
≤ α

]

≤ (α − a) + lim sup
n→∞

1

an
log E[exp(< −ξ,Xn > −An(−ξ,Xn))] ≤ α − a < 0.

To finish the proof, apply to the events
{

< Xn, ξ >

an
≥ b +

1

m

}

and

{

< ξ,Xn >

an
≤ a −

1

m

}

a similar argument as we did to T ξ
mn in Theorem 1.
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Examples. (i) Consider a seuence {Xn}n≥1 with P [Xn = 1] = P [Xn =
−1] = 1/2; Theorem 2 applies with an = n, An(ξ, x) = ξ sgn(x) and A(x, ξ) = 0.
Consider a seuence {Xn}n≥1 with P [Xn = n] = P [Xn = −n] = 1/2; Theorem
1 applies with an = n and φ(ξ) = |ξ|. However, in the latter case, hypotheses
(5)-(6) in Theorem 2 are satisfied with An(ξ, x) = |x|ξ , but hypothesis (4) is
not satisfied. Therefore, Theorem 1 is preferred to apply in finite dimension.

(ii) To check condition (2) and to compute D±φξ(0) in Theorem 1 may
become rather cumbersome in infinite dimension, hence Theorem 2 may be
a better solution. For instance, consider the case of Itô stochastic equations
driven by Brownian motion Wt and a Poisson random measure µ(dt), with
E = D[0, 1], Skorohod’s space, and F = the space of Borel measures on [0, 1]:

Xn
t = X0

t +

∫ t

0
b(s,Xn

s )ds + n−1/2

∫ t

0
σ(s,Xn

s )dWs + n−1

∫ t

0
f(s,Xn

s )µ(ds),

for t ∈ (0, 1]; if the above coefficients are non-degenerate, bounded and uni-
formly Lipschitz, there is a unique a.s. strong solution Xn. As proved in de
Acosta [1], Proposition 4.4, assumptions (4)-(6) are satisfied for some function
A, hence our Theorem 2 says that the lim inf and lim sup values of 1

n

∫

Xndξ,
for ξ ∈ F , both exist and are finite a.s. It is interesting to remark that, un-
der additional assumptions (including convexity and Gâteaux differentiability
of A), non-convex large deviation principles for {Xn}n≥1 are proved in Dupuis
and Ellis [5], de Acosta [1], Feng [8].

4. Applications

In statistical mechanics, Xn represent configuration-dependent quantities in a
sequence of physical systems which are proportional to an. As the cumulant
generating functions associated to {Xn}n≥1 may fail to converge (or the limit
is difficult to compute), the total spin in Ising and related models of ferromag-
netism may fail to converge, too. Theorem 1 and Theorem 2 offer bounds for
the limiting values of almost all configurations, that is, estimates of how bad
the above lack of convergence might be. In physical terminology (see Ellis [7],
Chapters 3-4), our theorems estimate the ferromagnetic phase transition or the

spontaneous magnetization.

In mathematical economics, Xn refers to the total excess demand at a given
price in an economy of size an. In spite of the fact that hypotheses (2) or (4)-
(6) do not ensure validity of the law of large numbers for random economies
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(see Nummelin [11], Theorem 2), however our Theorem 1 and Theorem 2 mea-
sure the distance between the limit values of random excess demands and their

counterparts in the “expectation economy”, that is, in which the excess demand
equals its expected value.

Let {Xn}n≥1 be a Galton-Watson branching process in varying environ-
ments. In the supercritical case, the suitably normalized population size con-
verges a.s. to a non-degenerate limit; the latter is strictly positive on the sur-
vival set {Xn → +∞} of the process. Theorem 1 measures how far {Xn/an}n≥1

is from a.s. convergence in the critical and subcritical cases. In the uni-

formly supercritical case, Theorem 2 measures the degree of degeneracy of a.s.-
limn→∞ Xn/an, where {an}n≥1 is the Seneta-Heyde norming of {Xn}n≥1 (see
Cohn [2], Section 4).
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