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Abstract: We study the almost sure convergence of normalized random vec-
tors when the limit of the cumulant generating functions does not exist or one
is unable to find it. As such, familiar tools like differentiability, convexity, expo-
nential tightness, etc. are no longer at hand. We give examples and applications
in both finite and infinite dimension.
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1. Introduction

We consider a o-algebra & of subsets of a Hausdorff topological vector space E
and, for each n > 1, an F-valued £-measurable random vector X,, defined on
a probability space (2,4, P). Given £ € E*, the topological dual space of E,
and a strictly positive sequence {ay},>1 with lim a, = 400, let us consider
- n—oo

the cumulant generating functions

1

On (&) == a—log E(exp < &, X, >),

n
where < -,- > represents the duality between E and E*. If the convex function
lim ¢, (&) exists, is finite and differentiable at any & € E = R? (d > 1), then
n—od

{X,}n>1 satisfies the large deviation principle (see Ellis [6] and Gértner [9]).
Essentially the same holds in infinite dimension if in addition {X},},>1 is expo-
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nentially tight (see Dembo and Zeitouni [4]). The large deviation principle is

closely related to the almost sure (a.s.) convergence properties of {X,,/an}n>1.

For instance, suppose that lim ¢, (¢) exists and is finite for all £ € E = R?
n—oo

(d > 1), and the following technical condition holds:

Z exp(—apnM) < +o0 for all M > 0; (1)

n=1
then {X,,/an}n>1 converges a.s. if and only if lim ¢,(§) is differentiable at
- n—oo

¢ = 0 (see Ellis [6], Theorem IV.1). Also, in infinite dimension, the existence
and differentiability of lim ¢, (§) at & = 0 are intimately related to {X,, }n>1
n—oo =

being exponentially tight (see Cox and Griffeath [3] and Sun [12]).
It is the purpose of this paper to analyze the a.s. behavior of {X,,/a,}n>1
under more pessimistic scenarios, namely lim ¢, (&) does not exist or one is
n—oo

unable to find it; what type of hypotheses will still ensure the a.s. convergence
of {Xn/an}tn>17 We present two such results, with examples and practical
applications; they both complement the large and moderate deviation problems
treated in the literature in both finite and infinite dimension.

2. A Convex Dominating Function

In the first result, one needs to find a finite convex function ¢ dominating
limsup ¢,,(£), and with no supplementary properties (differentiability, etc).

n—oo
Theorem 1. Assume (1) and the existence of a convex function ¢ on E*
with ¢(0) = 0 and

—oo < liminf ¢,(¢) < limsup ¢,(§) < ¢(§) < +oo for € € E*. (2)

n—0oo n—00

If D¢¢(0) denote the right-hand and left-hand derivatives at t = 0 of the
function ¢¢(t) := ¢(t§),t € R, we then have:

X, X,
D™ ¢¢(0) < liminf M < lim sup M

n—00 G, n—oo Qnp,

< D" ¢¢(0)
a.s. for £ € E*.

Remarks. As the function ¢¢ in Theorem 1 is convex on R, notice that
both D*¢¢(0) exist, but as extended real numbers. If

B(€) < liminf 6, (€) < limsup 6,(€) < (&) < B(E) for € € B,

- n—oo
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for some convex functions ¢ and ¢, and under additional assumptions (includ-
ing differentiability of ¢), large deviation principles for {X,,},>1 are proved
in Cox and Griffeath [3], Lemma 7, Lee and Rémillard [10], Lemma 9, and
Wu [13], Theorem 1.2; therefore they guarantee the logarithmic order of decay
of P{X,/a,}. Under milder assumptions, our Theorem 1 complements their
results in describing the a.s. asymptotic behavior of {X,,/a, }n>1.

Proof. First we have the following;:

a) if @ > D™ ¢¢(0), there exists ¢t > 0 such that at > ¢¢(t).

b) if a < DT ¢¢(0), there exists t > 0 such that —at > ¢¢(—t).

Indeed, by Lemma VII 3.1 in Ellis [7], for « as in a) and b) above, the

Legendre-Fenchel transform gf)z(a) of ¢¢(a) is strictly positive. As, by definition,
we have

¢g() = sup {at — g¢(t)} = sup {—at — de(=1)},
teR teR

and using again the above quoted result, we obtain that each sup in the above
formulas is attained at some strictly positive ¢, hence a) and b) are proved.
For fixed £ € E*, let @ > DT ¢¢(0), and ¢ > 0 given by b). We have

1
—log P

Gn Gn

<& X, > Za]

1
< —log exp(—anat)/ exp(t < &, X, >)dP| < —at + ¢, (tf).
Qp {<€¢,Xn>>0an}

Pass to limsup in the above inequalities and use b) to deduce that

<& X, >
(7%

1
limsup —log P

n—oo Un

> a] < —at+ P(t€) = —at + ¢e(t) < 0. (3)

For m > 1, consider the following events in A:

T8, = {ﬂ > D e (0) + %}

%9
By formula (3) there exist M > 0 and N > 1 such that

1
—log P(Ty,,) < —M

an,



532 G. Stoica

for n > N, therefore

Y P =) ) P(T5,)+ ) P(T,) <o

n>1 n<N n>N

by using hypothesis (1). Borel-Cantelli’s Lemma gives P(limsup 75,) = 0 for
n—oo
m > 1, and hence

limsup —2Xn > o D+¢5(0)] ~1.

n—o00 Gn

P

Similarly one can prove the second inequality in Theorem 1, by considering the

events %ﬁ’p < D™ ¢¢(0) — & ¢ and using a) in showing that

<& X, >
an,

1
limsup — log P

n—oo Qn

§a] <0

for a < D™ ¢¢(0). O

Examples. (i) Assume F = R and take £ = 1 in Theorem 1; one obtains

D™ ¢(0) < liminf Zn < limsup Zn < DT¢(0) as.,
n—oo  Gp n—oo Qp
where D*¢(0) are the right-hand and left-hand derivatives at 0 of ¢.

For instance, if X,, = (—1)"n, we have ¢9,(§) = & and ¢o,41(§) = —€. A
dominating function satisfying hypothesis (2) in Theorem 1 is ¢(§) = |¢], and
hence D¥¢¢(0) = £1, precisely the limsup and liminf values of {X,,/n},>1.

Consider a sequence {X,},>1 such that P[X, = b,] = p, and P[X,, =
¢n] =1 —py. Here 0 < p, <1 forn > 1, and {b,}n>1,{cn}n>1 are strictly
positive numbers with lim,,_,, max(b,,c,) = +oo. We have

log[2 max(pp, 1 — py)]
max (b, ¢,)

log[2 min(py, 1 — py)]
max (b, ¢,)

—& + <on(§) <€+ :
where ¢* denote the positive and negative part of &, hence we deduce that a
dominating convex function satisfying hypothesis (2) is ¢(§) = £*. In this case
we have D™ ¢¢(0) = 0 and DT ¢¢(0) = 1, precisely the limsup and lim inf values

of {X,,/max(by, cp) tn>1.



CONDITIONS FOR ALMOST SURE CONVERGENCE 533

(ii) In infinite dimension, let us consider E = L?[0,1], a, = n, and X,, =
(=1)"n on the set [0,1 — 1/n] and X,, = 0 otherwise. By Riesz’ Theorem,
each element in E* is represented by a function ¢ € L?[0,1]. As such, we can
identify in Theorem 1: ¢(&§) = [|¢|[110,1) and D*¢e(0) = £|€[[£1j0,1), precisely
the liminf and limsup values of {< &, X, > /n}p>1.

3. An Exponential Submartingale Condition

An alternative to Theorem 1 is to check the following non-convex hypotheses
for a.s. convergence.

Theorem 2. Assume (1) and let F' C E* be a linear subspace such that
all ¢ € F are E-measurable. Consider A,, A : F x E — R such that A,(&,-) are
E-measurable, A(&,-) is continuous,

1
lim sup | —A, (& z)— A&, z)| =0 for £ € F, (4)
n—+00 Lcp|Gp
and
Elexp(< &, Xp > —An(§, X)) <1for§ € Fandn > 1. (5)
Then x
lim sup <&6Xn > <sup A(§,x) a.s. for & € F.
n—00 Qn z€E

If, in addition,

lim sup An(a ) <0, or lim sup [An(ga ) + An(_ga )] <0 for 5 € F, (6)

n—oo n—oo

then

X
inf A(¢,z) < liminf <&&n >

el n— o0 anp,

a.s. for £ € F.

Remarks. Although the function A(&,-) in Theorem 2 is assumed con-
tinuous, the topological vector space E is not assumed compact, hence both
inf A(¢,-) and sup A(&,-) exist, but as extended real numbers. Formula (5)
might be thought of as an exponential submartingale condition; it supplies the
lack of information on the existence of nh_)r{)lo ¢n (&) by a smooth behavior upon

the correction terms A, (&,-). For a general submartingale, A, (&,-) are typi-
cally negative, yielding the first condition in (6). The second hypothesis in (6)
is natural (and obviously satisfied) when F is a space of functions and A, (¢, x)
are (Daniell or Bochner) integrals of « against the measure &.
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Proof. Fix £ € F and denote b = sup,cp A(§,x); for @ > b we want to
prove that

<& X, >

an,

1
limsup — log P

n—oo Qp

za] < 0.

By hypothesis (4), there exist N > 1 such that A, (£, z) < ba,, for x € F and n >
N. Hence

1
limsup — log P

n—oo an

ﬂ > oz] < lim sup i
G,

n—oo Qp

x log

explan(—a + b)]/ exp(< &, Xy > —Ap (&, Xn))dP
{<€,Xn>>aan}

1
< (—a+b) + limsup a—logE[exp(< £, Xn > —A,0, X)) < —a+b<0,

n—~o0 n

by using hypothesis (5). Similarly one can prove that

<& X >

an,

1
limsup — log P

n—oo Qp

§a] <0

for a < a, where a = inf,cp A(§,x). Indeed, by (4), there exist N > 1 such
that A, (£, x) > aay, for x € E and n > N; hence

1 X 1
— log P M < oz] < =
an an aTL
x log | explan (a — a)]/ exp(— < &, Xp > +An (£, Xp))dP|.
{<€Xn><aan}

By using hypothesis (5) and (6), we deduce that

<§,Xn><a]

an,

1
limsup — log P

n—oo Qn

1
< (a—a)+limsup —log Flexp(< =&, X,, > —A, (=&, X)) <a—a<0.

n—oo n

To finish the proof, apply to the events

X 1 X 1
{w>b+_}and{<&7n><a__}
an m an m

a similar argument as we did to Tﬁm in Theorem 1. O
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Examples. (i) Consider a seuence {X,},>1 with P[X, = 1] = P[X,, =
—1] = 1/2; Theorem 2 applies with a,, = n, A, (¢, z) = { sgn(x) and A(z,§) = 0.
Consider a seuence {X,, }n,>1 with P[X,, = n| = P[X,, = —n| = 1/2; Theorem
1 applies with a,, = n and ¢(§) = [¢|. However, in the latter case, hypotheses
(5)-(6) in Theorem 2 are satisfied with A, (£,x) = |z|¢ , but hypothesis (4) is
not satisfied. Therefore, Theorem 1 is preferred to apply in finite dimension.

(ii) To check condition (2) and to compute D*¢¢(0) in Theorem 1 may
become rather cumbersome in infinite dimension, hence Theorem 2 may be
a better solution. For instance, consider the case of It6 stochastic equations
driven by Brownian motion W; and a Poisson random measure pu(dt), with
E = D|[0, 1], Skorohod’s space, and F' = the space of Borel measures on [0, 1]:

t t t
XP = X0+ / b(s, X™)ds + n—1/2/ o(s, X1)dW, + n—l/ Fs, XM u(ds),
0 0 0

for t € (0,1]; if the above coefficients are non-degenerate, bounded and uni-
formly Lipschitz, there is a unique a.s. strong solution X,. As proved in de
Acosta [1], Proposition 4.4, assumptions (4)-(6) are satisfied for some function
A, hence our Theorem 2 says that the liminf and lim sup values of % | X,dg,
for £ € F, both exist and are finite a.s. It is interesting to remark that, un-
der additional assumptions (including convexity and Gateaux differentiability
of A), non-convex large deviation principles for {X,,},>1 are proved in Dupuis
and Ellis [5], de Acosta [1], Feng [8].

4. Applications

In statistical mechanics, X,, represent configuration-dependent quantities in a
sequence of physical systems which are proportional to a,. As the cumulant
generating functions associated to {X,,},>1 may fail to converge (or the limit
is difficult to compute), the total spin in Ising and related models of ferromag-
netism may fail to converge, too. Theorem 1 and Theorem 2 offer bounds for
the limiting values of almost all configurations, that is, estimates of how bad
the above lack of convergence might be. In physical terminology (see Ellis [7],
Chapters 3-4), our theorems estimate the ferromagnetic phase transition or the
spontaneous magnetization.

In mathematical economics, X, refers to the total excess demand at a given
price in an economy of size a,. In spite of the fact that hypotheses (2) or (4)-
(6) do not ensure validity of the law of large numbers for random economies
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(see Nummelin [11], Theorem 2), however our Theorem 1 and Theorem 2 mea-
sure the distance between the limit values of random excess demands and their
counterparts in the “expectation economy”, that is, in which the excess demand
equals its expected value.

Let {X,}n>1 be a Galton-Watson branching process in varying environ-
ments. In the supercritical case, the suitably normalized population size con-
verges a.s. to a non-degenerate limit; the latter is strictly positive on the sur-
vival set {X,, — +00} of the process. Theorem 1 measures how far {X,,/a, }n>1
is from a.s. convergence in the critical and subcritical cases. In the uni-
formly supercritical case, Theorem 2 measures the degree of degeneracy of a.s.-
lim,, oo Xy /an, where {a,}n>1 is the Seneta-Heyde norming of {X,}n>1 (see
Cohn [2], Section 4).
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