ON GAMMA-IDEAL EXPANSIONS OF GAMMA-RINGS

Young Bae Jun1, Mehmet Ali Öztürk2, Mustafa Uçkun3§

1Department of Mathematical Education
Gyeongsang National University
Chinju, 660-701, KOREA
e-mail: ybjun@gsnu.ac.kr

2Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
Sivas, 58140, TURKEY
e-mail: maozturk@cumhuriyet.edu.tr

3Department of Mathematics
Faculty of Arts and Sciences
İnönü University
Malatya, 44069, TURKEY
e-mail: muckun@inonu.edu.tr

Abstract: The notion of (intersection preserving, global) Γ-ideal expansion of a Γ-ring is introduced, and several properties are investigated.

AMS Subject Classification: 13A15

Key Words: Γ-ideal, intersection preserving, global Γ-ideal expansion, Γ-ring homomorphism

1. Introduction

Nobusawa \cite{4} introduced the notion of a Γ-ring, as more general than a ring. Barnes \cite{1} weakened slightly the conditions in the definition of the Γ-ring in the sense of Nobusawa. Barnes \cite{1}, Kyuno \cite{2} and Luh \cite{3} studied the structure of
\(\Gamma\)-rings and obtained various generalizations analogous to corresponding parts in ring theory. Prime ideals and primary ideals are two of the most important structures in ring theory. Zhao [5] investigated the possibility of a unified approach to studying such two ideals, and introduced the notion of \(\delta\)-primary ideals for a mapping \(\delta\) that assigns to each ideal \(I\) an ideal \(\delta(I)\) of the same ring. Such \(\delta\)-primary ideals unify the prime and primary ideals under one frame. The purpose of this paper is to apply the Zhao's idea in ring theory to a \(\Gamma\)-ring which is a generalization of a ring. We introduce the notion of (intersection preserving, global) \(\Gamma\)-ideal expansions in \(\Gamma\)-rings, and investigate several properties.

2. Preliminaries

Let \(M\) and \(\Gamma\) be two Abelian groups. If for all \(x, y, z \in M\) and all \(\alpha, \beta \in \Gamma\) the conditions:

1. \(x\alpha y \in M\);
2. \((x + y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha + \beta)z = x\alpha z + x\beta z, \ x\alpha(y + z) = x\alpha y + x\alpha z;\)
3. \((x\alpha y)\beta z = x\alpha(y\beta z);\)

are satisfied, then we call \(M\) a \(\Gamma\)-ring. By a right (resp. left) \(\Gamma\)-ideal of a \(\Gamma\)-ring \(M\) we mean an additive subgroup \(U\) of \(M\) such that \(U\Gamma M \subseteq U\) (resp. \(M\Gamma U \subseteq U\)). If \(U\) is both a right and a left \(\Gamma\)-ideal, then we say that \(U\) is a \(\Gamma\)-ideal of \(M\). A \(\Gamma\)-ideal \(I\) of \(M\) is said to be prime if for any ideals \(U\) and \(V\) of \(M\), \(U\Gamma V \subseteq I\) implies \(U \subseteq I\) or \(V \subseteq I\). We note from [1] that a proper \(\Gamma\)-ideal \(I\) of \(M\) is prime if \(a\Gamma b \subseteq I\) implies \(a \in I\) or \(b \in I\) for all \(a, b \in M\). A mapping \(\sigma : M \rightarrow M'\) of \(\Gamma\)-rings is called a \(\Gamma\)-ring homomorphism if it satisfies:

1. \(\sigma(a + b) = \sigma(a) + \sigma(b)\) for all \(a, b \in M\);
2. \(\sigma(a\gamma b) = \sigma(a)\gamma \sigma(b)\) for all \(a, b \in M\) and \(\gamma \in \Gamma\).

3. \(\Gamma\)-ideal Expansions

In what follows let \(M\) denote a \(\Gamma\)-ring unless otherwise specified.

Definition 1. A \(\Gamma\)-ideal \(I\) of \(M\) is said to be primary if it satisfies:

\[(\forall a, b \in M)(\forall \gamma \in \Gamma)(a\gamma b \in I, a \notin I \Rightarrow b \in \sqrt{I}),\]

where \(\sqrt{I} := \{x \in M \mid (x\gamma)^{n-1}x \in I\}\) for some \(n \in \mathbb{N}\) and \(\gamma \in \Gamma\), and \((x\gamma)^{n-1}x = x\) when \(n = 1\).
Denote by $\mathcal{J}(M)$ the set of all Γ-ideals of M.

Definition 2. Let $\mathcal{O}(M)$ be a set of objects in M. An *expansion of objects* in M is defined to be a function $\sigma : \mathcal{O}(M) \rightarrow \mathcal{O}(M)$ such that:

(i) $(\forall G \in \mathcal{O}(M))(G \subseteq \sigma(G))$;

(ii) $(\forall G, H \in \mathcal{O}(M))(G \subseteq H \Rightarrow \sigma(G) \subseteq \sigma(H))$.

If $\mathcal{O}(M) = \mathcal{J}(M)$, we say that σ is an *expansion of Γ-ideals* or a *Γ-ideal expansion* of M.

Example 3.
(1) The identity function $1 : \mathcal{J}(M) \rightarrow \mathcal{J}(M)$ is a Γ-ideal expansion of M.

(2) Denote $M(I) := \bigcap \{ J \mid I \subseteq J \text{ and } J \text{ is a maximal } \Gamma \text{-ideal of } M \}$. A function $g : \mathcal{J}(M) \rightarrow \mathcal{J}(M)$ given by $g(I) = M(I)$ for all $I \in \mathcal{J}(M)$ is a Γ-ideal expansion of M.

(3) The constant function $c : \mathcal{J}(M) \rightarrow \mathcal{J}(M)$, $I \mapsto M$, is a Γ-ideal expansion of M.

Definition 4. Given a Γ-ideal expansion f of M, a Γ-ideal $I \in \mathcal{J}(M)$ is said to be f-*primary* if it satisfies:

$$(\forall a, b \in M)(\forall \gamma \in \Gamma)(a\gamma b \in I, a \notin I \Rightarrow b \in f(I)).$$

Example 5. Every Γ-ideal $I \in \mathcal{J}(M)$ is c-primary, where c is a Γ-ideal expansion of M in Example 3(3).

Theorem 6. Let f and g be Γ-ideal expansions of M. If $f(I) \subseteq g(I)$ for all $I \in \mathcal{J}(M)$, then every f-primary Γ-ideal is also g-primary.

Proof. Let I be an f-primary Γ-ideal of M. Let $a, b \in M$ and $\gamma \in \Gamma$ be such that $a\gamma b \in I$ and $a \notin I$. Then $b \in f(I) \subseteq g(I)$ by assumption. Hence I is a g-primary Γ-ideal of M. \square

Theorem 7. Let f_1 and f_2 be Γ-ideal expansions of M and let f be a self map of $\mathcal{J}(M)$ defined by $f(I) = f_1(I) \cap f_2(I)$ for all $I \in \mathcal{J}(M)$. Then f is a Γ-ideal expansion of M.

Proof. For every $I \in \mathcal{J}(M)$, we have $I \subseteq f_1(I)$ and $I \subseteq f_2(I)$ by (o1), and so $I \subseteq f_1(I) \cap f_2(I) = f(I)$. Let $G, H \in \mathcal{J}(M)$ be such that $G \subseteq H$. Then $f_1(G) \subseteq f_1(H)$ and $f_2(G) \subseteq f_2(H)$ by (o2), which imply that

$$f(G) = f_1(G) \cap f_2(G) \subseteq f_1(H) \cap f_2(H) = f(H).$$

Hence f is a Γ-ideal expansion of M. \square
Generally, if \(\{ f_i \mid i \in \Lambda \} \) is a collection of \(\Gamma \)-ideal expansions of \(M \), then the function \(\bigcap_{i \in \Lambda} f_i : \mathcal{I}(M) \to \mathcal{I}(M) \) given by \((\bigcap_{i \in \Lambda} f_i)(I) = \bigcap_{i \in \Lambda} f_i(I) \) for all \(I \in \mathcal{I}(M) \) is a \(\Gamma \)-ideal expansion of \(M \).

Theorem 8. Let \(f \) be a \(\Gamma \)-ideal expansion of \(M \). For any subset \(S \) of \(M \), denote by \(\mathcal{I}_f(S) \) the intersection of all \(f \)-primary \(\Gamma \)-ideals of \(M \) containing \(S \). Then the function \(h : \mathcal{I}(M) \to \mathcal{I}(M) \) given by \(h(I) = \mathcal{I}_f(I) \) for all \(I \in \mathcal{I}(M) \) is a \(\Gamma \)-ideal expansion of \(M \).

Proof. Obviously, \(I \subseteq \mathcal{I}_f(I) = h(I) \) for all \(I \in \mathcal{I}(M) \). Let \(I, J \in \mathcal{I}(M) \) be such that \(I \subseteq J \). Then

\[
h(I) = \mathcal{I}_f(I) = \bigcap \{ H \in \mathcal{I}(M) \mid I \subseteq H \text{ and } H \text{ is } f \text{-primary} \}
\leq \bigcap \{ H \in \mathcal{I}(M) \mid J \subseteq H \text{ and } H \text{ is } f \text{-primary} \} = \mathcal{I}_f(J) = h(J).
\]

Hence \(h \) is a \(\Gamma \)-ideal expansion of \(M \).

Theorem 9. Let \(f \) be a \(\Gamma \)-ideal expansion of \(M \). If \(\{ J_i \mid i \in \Lambda \} \) is a directed collection of \(f \)-primary \(\Gamma \)-ideals of \(M \), where \(\Lambda \) is an index set, then the \(\Gamma \)-ideal \(J := \bigcup_{i \in \Lambda} J_i \) is \(f \)-primary.

Proof. Let \(a, b \in M \) and \(\gamma \in \Gamma \) be such that \(a \gamma b \in J \) and \(a \notin J \). Then there exists \(J_i \) such that \(a \gamma b \in J_i \) and \(a \notin J_i \). Since \(J_i \) is \(f \)-primary and \(J_i \subseteq J \), it follows that \(b \in f(J_i) \subseteq f(J) \) so that \(J \) is \(f \)-primary.

Theorem 10. Let \(f \) be a \(\Gamma \)-ideal expansion of \(M \). If \(P \) is an \(f \)-primary \(\Gamma \)-ideal of \(M \), then

\[
(\forall I, J \in \mathcal{I}(M)) (I \Gamma J \subseteq P, I \not\subseteq P \Rightarrow J \subseteq f(P)).
\]

Proof. Assume that \(P \) is an \(f \)-primary \(\Gamma \)-ideal of \(M \) and let \(I, J \in \mathcal{I}(M) \) be such that \(I \Gamma J \subseteq P \) and \(I \not\subseteq P \). Suppose that \(J \not\subseteq f(P) \). Then there exist \(a \in I \setminus P \) and \(b \in J \setminus f(P) \), which imply that \(a \gamma b \in I \Gamma J \subseteq P \). But \(a \notin P \) and \(b \notin f(P) \). This contradicts the assumption that \(P \) is \(f \)-primary. Consequently, the result is valid.

Definition 11. A \(\Gamma \)-ideal expansion \(f \) is said to be **intersection preserving** if it satisfies:

\[
(\forall I, J \in \mathcal{I}(M))(f(I \cap J) = f(I) \cap f(J)).
\]
A Γ-ideal expansion f is said to be global if for each Γ-ring homomorphism $\sigma : M \to M'$ of Γ-rings, the following holds:

$$\forall I \in \mathcal{I}(M') \ (f(\sigma^{-1}(I)) = \sigma^{-1}(f(I))).$$

Note that the Γ-ideal expansion 1 of M in Example 3(1) is both intersection preserving and global.

Theorem 12. For each $I \in \mathcal{I}(M)$, let

$$\Psi(I) := \bigcap\{J \mid I \subseteq J \text{ and } J \text{ is a prime } \Gamma \text{-ideal of } M\}.$$

Then a function $f : \mathcal{I}(M) \to \mathcal{I}(M)$ given by $f(I) = \Psi(I)$ for all $I \in \mathcal{I}(M)$ is an intersection preserving Γ-ideal expansion of M.

Proof. Obviously, f is a Γ-ideal expansion of M. For every $I, J \in \mathcal{I}(M)$, let

$$\Psi_1 := \{P \mid I \cap J \subseteq P \text{ and } P \text{ is a prime } \Gamma \text{-ideal of } M\}$$

and

$$\Psi_2 := \{P \mid I \subseteq P \text{ or } J \subseteq P, \ P \text{ is a prime } \Gamma \text{-ideal of } M\}.$$

Then $\bigcap \Psi_1 = \Psi(I \cap J)$ and $\bigcap \Psi_2 = \Psi(I) \cap \Psi(J)$. Obviously, $\Psi_2 \subseteq \Psi_1$. If $P \in \Psi_1$, then $I \cap J \subseteq I \cap J \subseteq P$ and so $I \subseteq P$ or $J \subseteq P$ because P is prime. Hence $P \in \Psi_2$, and thus $\Psi_1 = \Psi_2$. Therefore

$$f(I \cap J) = \Psi(I \cap J) = \bigcap \Psi_1 = \bigcap \Psi_2 = \Psi(I) \cap \Psi(J) = f(I) \cap f(J).$$

This completes the proof. □

Theorem 13. Let f be a Γ-ideal expansion of M which is intersection preserving. If I_1, I_2, \cdots, I_n are f-primary Γ-ideals of M and $J = f(I_k)$ for all $k = 1, 2, \cdots, n$, then $I := \bigcap_{k=1}^n I_k$ is an f-primary Γ-ideal of M.

Proof. Obviously, $I := \bigcap_{k=1}^n I_k$ is a Γ-ideal of M. Let $a, b \in M$ and $\gamma \in \Gamma$ be such that $a\gamma b \in I$ and $a \notin I$. Then $a \notin I_k$ for some $k \in \{1, 2, \cdots, n\}$. But $a\gamma b \in I \subseteq I_k$ and I_k is f-primary, which imply that $b \in f(I_k)$. Since f is intersection preserving, we have

$$f(I) = f(\bigcap_{k=1}^n I_k) = \bigcap_{k=1}^n f(I_k) = J = f(I_k),$$

and so $b \in f(I)$. Therefore I is an f-primary Γ-ideal of M. □
Let $\sigma : M \to M'$ be a Γ-ring homomorphism of Γ-rings. Note that if J is a Γ-ideal of M', then $\sigma^{-1}(J)$ is a Γ-ideal of M, and that if σ is surjective and I is a Γ-ideal of M, then $\sigma(I)$ is a Γ-ideal of M'.

Theorem 14. Let f be a Γ-ideal expansion which is global and let $\sigma : M \to M'$ be a Γ-ring homomorphism of Γ-rings. If J is an f-primary Γ-ideal of M', then $\sigma^{-1}(J)$ is an f-primary Γ-ideal of M.

Proof. Let $a, b \in M$ and $\gamma \in \Gamma$ be such that $a\gamma b \in \sigma^{-1}(J)$ and $a \notin \sigma^{-1}(J)$. Then $\sigma(a)\gamma\sigma(b) = \sigma(a\gamma b) \in J$ and $\sigma(a) \notin J$, which imply from (1) that $\sigma(b) \in f(J)$. Since f is global, it follows that $b \in \sigma^{-1}(f(J)) = f(\sigma^{-1}(J))$. Hence $\sigma^{-1}(J)$ is f-primary.

It can be easily verified that if $\sigma : M \to M'$ is a Γ-ring homomorphism of Γ-rings, then $\sigma^{-1}(\sigma(I)) = I$ for any $I \in \mathcal{I}(M)$ that contains $\ker(\sigma)$.

Theorem 15. Let $\sigma : M \to M'$ be a surjective Γ-ring homomorphism of Γ-rings and let I be a Γ-ideal of M that contains $\ker(\sigma)$. Then I is f-primary if and only if $\sigma(I)$ is an f-primary Γ-ideal of M', where f is a global Γ-ideal expansion.

Proof. If $\sigma(I)$ is an f-primary Γ-ideal of M', then I is f-primary by $I = \sigma^{-1}(\sigma(I))$ and Theorem 14. Suppose that I is f-primary. Let $x, y \in M'$ and $\gamma \in \Gamma$ be such that $x\gamma y \in \sigma(I)$ and $x \notin \sigma(I)$. Since σ is surjective, we have $\sigma(a) = x$ and $\sigma(b) = y$ for some $a, b \in M$. Then $\sigma(a\gamma b) = \sigma(a)\gamma\sigma(b) = x\gamma y \in \sigma(I)$ and $\sigma(a) = x \notin \sigma(I)$, which imply that $a\gamma b \in \sigma^{-1}(\sigma(I)) = I$ and $a \notin \sigma^{-1}(\sigma(I)) = I$. Since I is f-primary, it follows that $b \in f(I)$ so that $y = \sigma(b) \in \sigma(f(I))$. Using the fact that f is global, we have

$$f(I) = f(\sigma^{-1}(\sigma(I))) = \sigma^{-1}(f(\sigma(I))) ,$$

and so $\sigma(f(I)) = \sigma(\sigma^{-1}(f(\sigma(I)))) = f(\sigma(I))$ since σ is surjective. Therefore $\sigma(I)$ is f-primary. This completes the proof.

Acknowledgements

The first author was supported by Korea Research Foundation Grant (KRF-2003-005-C00013).
References

