p-BANACH COMMUTATIVE ALGEBRAS WHOSE RADICAL IDEALS ARE FINITELY GENERATED OR CLOSED

E. Ballico

Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Let A be a commutative unitary and complete p-normed algebra, 0 . Consider the following conditions:

- (i) every prime ideal of A is closed;
- (ii) every radical ideal of A is closed;
- (iii) every radical ideal of A is finitely generated.
- (iv) every chain of prime ideals of A is stationary;
- (v) every chain of radical ideals of A is stationary;
- (vi) every radical ideal of A is the radical of a finitely generated ideal.

Then: (i) \iff (ii); (ii) \implies (v) \implies (iv); (ii) \implies (v) \implies (vi) and (iii) \implies (ii).

AMS Subject Classification: 32K05, 32K99

Key Words: *p*-Banach spaces, topological algebra, topological noetherian algebra, radical ideal

1. Closed and Finitely Generated Radical Ideals

Let A be a topological complex algebras. In many cases if a certain property Γ is true for all ideals of A, then another property Λ is true and sometimes

Received: June 21, 2005 © 2005, Academic Publications Ltd.

332 E. Ballico

also the reverse is true (see [2], [3], [6] and [7] for the case Γ = "closed" and Λ = "finitely generated"). Here we consider the same type of results, when the properties Γ and Λ are assumed to be true only for a class of ideal (e.g. all prime ideals or all radical ideal). We prove the following result.

Theorem 1. Let A be a commutative unitary and complete p-normed algebra, 0 . Consider the following conditions:

- (i) every prime ideal of A is closed;
- (ii) every radical ideal of A is closed;
- (iii) every radical ideal of A is finitely generated.
- (iv) every chain of prime ideals of A is stationary;
- (v) every chain of radical ideals of A is stationary;
- (vi) every radical ideal of A is the radical of a finitely generated ideal.

Then: (i) \iff (ii); (ii) \implies (v) \implies (iv); (ii) \implies (v) \implies (vi) and (iii) \implies (ii).

For many properties of p-normes topological vector spaces, see [1], [5], p. 3, or [4], pp. 40–41.

Lemma 1. Let A be any commutative ring and $I \subset A$ an ideal such that $x^2 \in I$ implies $x \in I$. Then I is radical.

Proof. Fix $x \in A$ such that $x^k \in I$ for some integer k > 0. We need to check that $x \in I$. This is obviously true if $k \leq 2$. Assume $k \geq 3$ and let a be the first integer such that $k \leq 2^a$. Notice that $x^{2^a} = x^k x^{2^a - k} \in I$. Hence we get $x^{2^{a-1}} \in I$. Iterating this trick, we conclude.

Lemma 2. Let $(A, || ||_p)$ be a commutative unitary and complete p-normed algebra, $0 . Then the 2-power map <math>\phi_2 : A^* \to A^*$ defined by $y \mapsto y^2$ is open.

Proof. A is a Q-algebra (use [4], Lemma I.6.2, and the classical proof for Banach algebras). It is sufficient to prove it in a neighborhood of e. Take $x \in A$ such that $||x-e||_p \ll 1$. As in the classical Banach case use the expansion $\sum_{n>0} {1 \choose n} (x-e)$ to get $x^{\frac{1}{2}}$.

Lemma 3. Let $(A, || ||_p)$ be a commutative unitary and complete p-normed algebra, $0 . Then <math>\bar{I}$ is radical.

Proof. By Lemma 1 it is sufficient to prove that $x^2 \in \overline{I}$ implies $x \in \overline{I}$. Fix $x \in A$ such that $x^2 \in \overline{I}$ for some k > 0. By Lemma 2 the map $y \mapsto y^2$ is open at e. Hence there is an open neighborhood V of 0 such that $e + V \subset A^*$ and the set $S := \{x^2(e+t)^2\}_{t \in V}$ contains an open neighborhood U of x^2 . Since

 $x^2 \in \overline{I}$, there is $z \in I$ such that $z = x^2(e+t)^2$ for some $t \in V$. Since I is a radical ideal, we get $x(e+t) \in I$. Taking instead of V a fundamental system of neighborhoods of 0 contained in V we get $x \in \overline{I}$.

Remark 1. Let A be any algebra such that all radical ideals are finitely generated. Since the union of a filtered set of radical ideals is radical, it is straightforward to check that the set of all radicals ideals of A satisfies the Ascending Chain Condition.

Proof of Theorem 1. Since every prime ideal is radical, (ii) implies (i) and (iv) implies (v). Since every radical ideal of A is an intersection of prime ideals, (i) implies (ii).

- (a) Here we assume (ii) and prove (v). Let $\{I_n\}_{n\geq 1}$ be an increasing sequence of radical ideal. The ideal $I:=\bigcup_{n\geq 1}I_n$ is radical. Hence I is closed. Since each I_n is closed, we have $I=I_m$ for some $m\geq 1$ by Baire's Theorem.
- (b) Here we assume (iii) and prove (ii). Assume that (ii) is false. By Remark 1 the set of all radical ideals of A satisfies the Ascending Chain Condition. Hence by Zorn Lemma there is a maximal non-closed radical ideal I. By Lemma 3 \bar{I} is a radical ideal. Hence it is finitely generated. As in the proof of [6], Lemma 4, or [7], Lemma 7, we get $I = \bar{I}$, contradiction.
- (c) The implication "(v) \Longrightarrow (vi)" is elementary and true in any commutative ring. \Box

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] A. Bayoumi, Foundations of Complex Analysis in Non Locally Convex Spaces, North-Holland (2003).
- [2] R. Choukri, A. El Kinani, Topological algebras with ascending and descending chain conditions, *Arch. Math.*, Basel, **72**, No. 6 (1999), 438-443.
- [3] R. Choukri, A. El Kinani, M. Oudadess, Algèbres topologiques à idéaux fermés, *Studia Math.*, **168**, No. 2 (2005), 159-164.
- [4] A. Mallios, *Topological Algebras Selected Topics*, North-Holland, Amsterdam (1986).

334 E. Ballico

[5] L. Waelbroeck, *Topological Vector Spaces and Algebras*, Lect. Notes in Math., **230**, Springer, Berlin (1971).

- [6] W. Żelazko, A characterization of commutative Fréchet algebras with all ideals closed, *Studia Math.*, **112**, No. 3 (1994), 293-300.
- [7] W. Żelazko, A characterization of F-algebras with all one-sided ideals closed, Studia Math., 168, No. 2 (2005), 135-145.