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Abstract: In this paper, we consider the estimation of the kurtosis param-
eter in elliptical distributions. The consistent estimators based on measures
of multivariate kurtosis independently defined by Mardia [5] and Srivastava [7]
are presented. In order to investigate accuracy of estimations, asymptotic ex-
pansions of the expectation and the asymptotic variance of the estimators are
derived by a perturbation method under elliptical populations. Some numerical
examples obtained by Monte Carlo simulation for some selected parameters are
also provided.
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1. Introduction

It is well known that the fourth order cumulant in elliptical distributions is
essentially equal to the kurtosis parameter from the relation between moments
and cumulants. Estimation of the kurtosis parameter is important in the study
of multivariate statistical analysis for elliptical populations. The kurtosis pa-
rameter, especially with relation to the estimation problem, has been considered
by many authors. It is on the basis of the measure of multivariate kurtosis in-
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troduced by Mardia [5] that used commonly as an estimator of the fourth order
cumulant at present. The sample analogue of this measure is also proposed as
tests of normality, and its asymptotic distribution is derived for sample from
a multivariate normal population. The related discussion of Mardia’s sample
measure under the elliptical distribution has been given by Berkane and Bentler
[2], Seo and Toyama [8], Anderson [1] and Maruyama and Seo [6]. For general
distributions, the asymptotic variance of Mardia’s sample measure has been
discussed in Henze [3]. On the other hand, Srivastava [7] suggested another
measure of multivariate kurtosis from the viewpoint of a principle component,
and obtained the asymptotic distribution of its sample measure under normal-
ity, too. However there is almost no work has been done regarding estimations
under non-normality compared with the case of Mardia’s measure. In addi-
tion, it seems that the characteristic which the estimator based on Srivastava’s
measure itself has, are not completely known. Therefore, the purpose of this
paper is to specify the asymptotic properties of Srivastava’s sample kurtosis.
In order to achieve our purpose, asymptotic expansions of the expectation and
the asymptotic variance are given up to the order n−1 as the size n of sample
tends to infinity. An overview of the present paper is as follows. In Section 2,
some properties of the class of elliptical distributions are explained. Secondly
we construct the consistent estimator of the kurtosis parameter based on Sri-
vastava’s measure. In Section 3, the asymptotic properties of the estimator for
elliptical distributions are presented in the two cases for which the population
covariance matrix is known and unknown. The theory discussed in Section 3
is applied for a moment parameter which generalized the kurtosis parameter in
Section 4, and is used to find other estimation with bias correction in Section
5. Moreover, we investigate bias and MSE of the estimators by Monte Carlo
simulation applied to some selected parameters, and evaluate the confidence
intervals for the kurtosis parameter with the asymptotic properties.

2. Utility Notations and Definitions

In this section, we present notations, definitions and basic facts that we use in
the proof of our main results. Let a p-variate random vector X be distributed
as a p-variate elliptical distribution with parameters µ and Λ, i.e., Ep(µ,Λ),
where Λ is some positive definite symmetric matrix. If the probability density
function exists, it has the form f(x) = cp|Λ|−1/2 h(t(x − µ)Λ−1(x − µ)) for
some non-negative function h, where cp is the normalizing constant and tX
denotes a transposition of a vector X. The characteristic function is φ(θ) =
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exp[i tθµ]ψ(tθΛθ) for some function ψ, where i =
√
−1. Note that E(X) = µ and

Cov(X) = −2ψ′(0)Λ =: Σ = (σij), respectively. For example, the multivariate
normal, the multivariate t and the contaminated normal distributions belong
to the class of elliptical distributions.

The following is given in Maruyama and Seo [6]. The odd order moments
of X − µ are 0, the 2m-th order moments, µi1i2···i2m

:= E[(Xi1 − µi1)(Xi2 −
µi2) · · · (Xi2m

− µi2m
)] are expressible in the form:

µi1i2···i2m
= (K(m) + 1)

∑

(dm)

σi1i2 · · · σi2m−1i2m
, (1)

where
∑

(dm) means the sum of all dm :=
∏m

k=1(2k − 1) possible combinations
(i1, i2, · · · , i2m) and

K(m) :=
ψ(m)(0)

(ψ′(0))m
− 1.

We also define K(m) as the 2m-th order moment parameter. In case of m = 2,
K(2) is simply denoted by κ and called a kurtosis parameter, that is a key
parameter in elliptical distributions.

Next, we give careful consideration to the consistent estimators of kurto-
sis parameter. Suppose that X1, · · · ,Xn are independent and identically dis-
tributed random vectors according to Ep(µ,Λ). In Mardia [5], a multivariate
coefficient of kurtosis is defined as β2,p := E[{t(X − µ)Σ−1(X − µ)}2], and the
affine invariant sample analogue of β2,p is obtained by b2,p := (1/n)

∑n
j=1{t(Xj−

X)U−1(Xj − X)}2, where X is the sample mean and U is the unbiased sam-
ple covariance matrix. Since β2,p can be calculated as p(p + 2)(κ + 1) with
(1), we have the consistent estimator of κ by κ̂ = (1/p(p + 2))b2,p − 1. On
the other hand, Srivastava [7] proposed a measure of multivariate kurtosis us-
ing the principle component method. Let Q be an orthogonal matrix such
that tQΣQ = Dλ := diag(λ1, · · · , λp), where λ1, · · · , λp are the eigenvalues
of Σ. Then we can write β2,p = E[(trZ2)2], where Z := diag(z1, · · · , zp)
and z := D

−1/2
λ

tQ(X − µ) = t(z1, · · · , zp). Note that γ2,p := E(trZ4) is
another measure in [7]. Now γ2,p can be calculated as 3p(κ + 1) with (1).

Further suppose that Aj := diag(a1j , · · · , apj), aj := D
−1/2
w

tH(Xj − X) =
t(a1j , · · · , apj), where w1, · · · , wp are the eigenvalues of U , and H is an or-
thogonal matrix such that tHUH = Dw := diag(w1, · · · , wp). Then we can
write b2,p = (1/n)

∑n
j=1(trA

2
j)

2. Also the sample measure correspond to γ2,p

is defined by g2,p = (1/n)
∑n

j=1(trA
4
j). Therefore we have another consistent

estimator as κ̃ = (1/(3p))g2,p − 1.
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3. The Main Results

In this section, we consider the second order asymptotic on the estimator κ̃
under elliptical populations. Let X1, · · · ,Xn and κ̃ be defined as in Section 2.

Proposition 1. As n gets large, to the order n−1 with known Σ we have

E(g2,p) = 3p(κ+ 1) +
1

n

{

−12p(κ+ 1) + 6p
}

+O(n−2),

Var(g2,p) =
1

n

{

(9p2 + 96p)(K(4) + 1) − 9p2(κ+ 1)2
}

+O(n−2).

Proof. It is assumed without loss of generality that Σ = Ip. Letting Yj :=
tHXj = t(y1j , · · · , ypj) for j = 1, · · · , n, then g2,p can be written

g2,p =
1

n

p
∑

i=1

n
∑

j=1

χ2
ij,

where χij := (yij − yi)
2 and Y := (1/n)

∑n
j=1 Yj = t(y1, · · · , yp). If we define

the mean of all the observations except the j-th observation as Y (j) := (1/(n−
1))

∑n
k 6=j Yk, then Yj − Y = (1 − 1/n)(Yj − Y (j)). Note that Yj and Y (j) are

independent. To obtain the expectation of κ̃ by the perturbation method, we
put ζ :=

√
n− 1Y (j). Then χ2

ij can be expanded with ζ = t(ζ1, · · · , ζp) as

χ2
ij = y4

ij −
1√
n

4y3
ij ζi +

1

n
(6y2

ij ζ
2
i − 4y4

ij) +O(n−3/2).

Therefore, calculating the expectation with respect to Yj and ζ, we obtain the
second order asymptotic mean of g2,p. In a similar way to above, we find after
some algebra the variance of g2,p to order n−1. Thus we complete the proof. �

From Proposition 1, we have the following immediately.

Corollary 1. Under the condition that Σ is known, the asymptotic ex-

pectation of κ̃ is

E(κ̃) = κ+
1

n

{

−2(2κ + 1)
}

+O(n−2), (2)

and the asymptotic variance of Tκ̃ :=
√
n(κ̃− κ) is

σ2
κ̃ =

35 + 3(p − 1)

3p
(K(4) + 1) − (κ+ 1)2 +O(n−1). (3)
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We note that in the case when Σ is known, the expectation of κ̃ is asymp-
totically equivalent to that of κ̂ up to the order n−1.

Proposition 2. As n gets large, to the order n−1 with unknown Σ we

have

E(g2,p) = 3p(κ+ 1) +
1

n

{

27p(κ + 1)2 − 15p(κ + 1) − 30p(K(3) + 1) + 6p
}

+O(n−2),

Var(g2,p) =
1

n

{

(9p2 + 96p)(K(4) + 1) − 36p(p + 4)(K(3) + 1)(κ + 1)

+ 36p(p + 2)(κ+ 1)3 − 9p2(κ+ 1)2
}

+O(n−2).

Proof. Since Yj , Y andDw are not independent, we put Tij := w−1
i (yij−yi)

2

and Y (j) := (1/(n − 1))
∑n

k 6=j Yk. Similarly, the covariance matrix Σ should be
estimated without the j-th observation. That is by

D(j) :=
1

n− 2

n
∑

k 6=j

(Yk − Y (j))
t(Yk − Y (j)).

Then, it can be shown thatDw = (1−1/(n−1))D(j)+(1/n)(Yj−Y (j))
t(Yj−Y (j))

and

D−1
w =

n− 1

n− 2
D−1

(j) −
(n− 1)2/(n(n − 2)2)D−1

(j)(Yj − Y (j))
t(Yj − Y (j))D

−1
(j)

1 + (n− 1)/(n(n − 2)) t(Yj − Y (j))D
−1
(j)(Yj − Y (j))

.

Further, let ζ :=
√
n− 1Y (j) and M :=

√
n− 1(D(j) − Ip). Note that it is

enough if only diagonal elements are calculated. Then, T 2
ij is stochastically

expanded with ζ and M = (mij) as

T 2
ij = y4

ij +
1√
n

(−4y3
ij ζi − 2mii y

4
ij)

+
1

n
(−2y6

ij − 2y4
ij + 3m2

ii y
4
ij + 6ζ2

i y
2
ij + 8mii y

3
ij ζi) +O(n−3/2).

We can calculate the expectation for the expansion of T 2
ij by using the asymp-

totic expanded joint probability density function (j.p.d.f) of ζ and M (see
Iwashita [4] and Wakaki [9]). Then we obtain the second order asymptotic
mean of g2,p.
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Using a similar idea, we may obtain the variance. In order to avoid the
dependence of Yj , Yl, Y and Dw, we define

Y (j,l) :=
1

n− 2

n
∑

k 6=j,l

Yk,

D(j,l) :=
1

n− 3

n
∑

k 6=j,l

(Yk − Y (j,l))
t(Yk − Y (j,l)).

Note that E(g2
2,p) = (1/n)B1 + (1 − 1/n)B2 where

B1 := E

[

(

p
∑

i=1

T 2
ij

)2
]

, B2 := E





p
∑

i,α

T 2
ijT

2
αl



 .

In order to compute B1 and B2, let ζ∗ :=
√
n− 2Y (j,l) and M∗ :=

√
n− 2

(D(j,l) − Ip). For evaluation of B1, we calculate the expectation with respect to
Yj , ζ and M , and then for calculating B2, we use an asymptotic expansion of
j.p.d.f. of ζ∗ and M∗. Then we have the asymptotic variance up to the order
n−1. Thus we complete the proof. �

An immediate consequence of Proposition 2 is given in the following results.

Corollary 2. Under the condition that unknown Σ, the asymptotic ex-

pectation of κ̃ is

E(κ̃) = κ+
1

n

{

9(κ + 1)2 − 5(κ+ 1) − 10(K(3) + 1) + 2
}

+O(n−2), (4)

and the asymptotic variance of Tκ̃ :=
√
n(κ̃− κ) is

σ2
κ̃ =

3p + 32

3p
(K(4) + 1)

− 4(p + 4)

p
(K(3) + 1)(κ + 1) +

4(p + 2)

p
(κ+ 1)3 − (κ+ 1)2 +O(n−1). (5)

When the underlying distribution is normal, it follows from Proposition 2
that E(g2,p) = 3p − 12p/n + O(n−2) and Var(g2,p) = 24p/n + O(n−2). These
expressions are essentially equivalent to those obtained by Srivastava [7].

Example 1. We shall compare the empirical distribution of κ̃ in several
elliptical populations with the theoretical distribution on the basis of the ex-
pansion (4) when Σ is unknown, and investigate how rapidly the estimators
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p n CN(0.1, 3) Normal MT(9) CU(1,2)

κ = 1.78 κ = 0 κ = 0.4 κ = 0.16
κ̂ κ̃ κ̂ κ̃ κ̂ κ̃ κ̂ κ̃

5 100 0.965 1.124 −0.391∗ −0.390∗ 0.204 0.244 0.878∗ 0.951∗

0.692 1.087 −0.400∗ 0.095 0.199 0.807∗ 0.958∗

200 1.301 1.396 −0.197∗ −0.196∗ 0.278 0.312 0.127 0.130
1.235 1.432 −0.200∗ 0.247 0.300 0.123 0.131

500 1.569 1.606 −0.820∗∗ −0.801∗∗ 0.337 0.359 0.150 0.152
1.560 1.639 −0.800∗∗ 0.339 0.359 0.149 0.152

4000 1.749 1.761 −0.102∗∗ −0.100∗∗ 0.380 0.385 0.164 0.165
1.750 1.760 −0.100∗∗ 0.392 0.394 0.164 0.165

* : value×10−1, ** : value×10−2.

Table 1: The mean of estimators based on simulation study (upper)
and asymptotic expansion (lower) when Σ is unknown

converge on κ. Table 1 shows the sample means for κ̂ and κ̃ based on 10,000
simulations under assumption that Σ = Ip without any loss of generality. On
the other hand, the approximate values by the expansion (4) are obtained. In
the case of κ̂, we used the results given by Seo and Toyama [8]. The ellip-
tical populations we considered are the contaminated normal CN(ω, τ) with
ω = 0.1; τ = 3, the multivariate normal, the multivariate t with 9 degrees of
freedom MT(9) and the compound normal denoted by CU(1,2) (meaning that
the random vector X from CU(1,2) is the product of a standard normal vector
and the inverse of a random variable according to the uniform distribution on
the interval [1, 2]. The approximations are also illustrated with Figure 1.

Example 2. The asymptotic normality of Tκ̃ also enables us to easily con-
struct the confidence intervals for κ. A confidence interval for κ with confidence
coefficient 1−α is approximately [κ̃± zα/2 σκ̃/

√
n] where zα/2 is the two-tailed

100α% point of the standard normal distribution. In the same way, we have
another interval for κ by means of κ̂, that is to say [κ̂ ± zα/2 σκ̂/

√
n] where

Tκ̂ :=
√
n(κ̂ − κ) and σ2

κ̂ is the asymptotic variance of Tκ̂ (see [8]). Table 2
presents the confidence intervals for κ with nominal confidence coefficient 0.95.
Those are the confidence limit with κ̃ (lower) and with κ̂ (upper).
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Figure 1: Approximations to the mean of estimators κ̂ (mrd) and κ̃
(srv)

4. Application to the Moment Parameter

Generally it is not easy to derive the exact distribution of test statistics or the
percentiles for the testing problem under the elliptical populations, and so the
asymptotic expansion of the statistics is considered. In particular an asymptotic
expression given up to the higher order includes not only the kurtosis parameter
but the more general higher order moment parameters as well. Then we have
to speculate about the estimation of the moment parameters as a practical
problem.

Now we shall generalize β2,p in following so as to discuss extensions of the
estimation of kurtosis parameter. We can calculate E[{t(X−µ)Σ−1(X−µ)}m] =
2m(p/2)m(K(m) +1) with (1). Then we have a consistent estimator of the 2m-th
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p n CN(0.1, 3) Normal MT(9) CU(1,2)

κ = 1.78 κ = 0 κ = 0.4 κ = 0.16
lower upper lower upper lower upper lower upper

2 100 κ̂ −0.97 3.26 −0.23 0.16 −1.75 2.22 −0.25 0.45
κ̃ −1.12 3.48 −0.26 0.18 −1.81 2.29 −0.29 0.49

200 κ̂ −0.07 2.93 −0.15 0.12 −1.10 1.70 −0.12 0.38
κ̃ −0.17 3.08 −0.17 0.14 −1.14 1.76 −0.14 0.40

500 κ̂ 0.67 2.57 −0.09 0.08 −0.54 1.24 −0.01 0.31
κ̃ 0.60 2.66 −0.10 0.09 −0.56 1.27 −0.02 0.32

4000 κ̂ 1.41 2.10 −0.03 0.03 0.07 0.70 0.10 0.22
κ̃ 1.40 2.12 −0.03 0.03 0.06 0.70 0.10 0.22

5 100 κ̂ −0.21 2.14 −0.13 0.05 −1.12 1.52 −0.10 0.28
κ̃ −0.33 2.58 −0.18 0.10 −1.17 1.65 −0.15 0.34

200 κ̂ 0.46 2.13 −0.08 0.04 −0.65 1.21 −0.01 0.26
κ̃ 0.36 2.42 −0.12 0.08 −0.68 1.31 −0.04 0.30

500 κ̂ 1.04 2.09 −0.05 0.03 −0.25 0.93 0.06 0.23
κ̃ 0.96 2.25 −0.07 0.05 −0.27 0.99 0.04 0.26

4000 κ̂ 1.56 1.93 −0.02 0.01 0.17 0.59 0.13 0.19
κ̃ 1.53 1.97 −0.02 0.02 0.16 0.60 0.13 0.20

Table 2: Confidence interval for κ when Σ is unknown

order moment parameter as

K̂(m) =
1

n2m(p/2)m

n
∑

j=1

{

t(Xj −X)U−1(Xj −X)
}m − 1,

where (a)m := a(a+1) · · · (a+m−1). The expectation of K̂(m) can be expanded
as

E(K̂(m)) = K(m) +
m

n
C1 +O(n−2), (6)

where

C1 =
3m+ 2p + 1

2
(K(m) +1)(κ+1)−m+ 3

2
(K(m) +1)−(p+2m)(K(m+1) +1)

+ K(m−1) + 1,

and the asymptotic variance of T1 :=
√
n(K̂(m) −K(m)) is obtained by

σ2
T1

=
(p/2 +m)m

(p/2)m
(K(2m) + 1) +

m2(p+ 2)

p
(K(m) + 1)2(κ+ 1)−
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2m(p + 2m)

p
(K(m+1) + 1)(K(m) + 1) − (m− 1)2(K(m) + 1)2 +O(n−1). (7)

Note that the expansions by (6) and (7) do not agree with the results in
Maruyama and Seo [6] because it differ from the definition of this paper in
a sample covariance matrix, that is S := (1/n)

∑n
i=1(Xi −X) t(Xi −X).

In the same way, another estimator of K(m) is also given by generalizing
γ2,p. Since E(trZ2m) = p 2m(1/2)m(K(m) + 1) under assumptions in Section 2,
we have

K̃(m) =
1

np2m(1/2)m

n
∑

j=1

(

trA2m
j

)

− 1.

Moreover, we have the following results for the asymptotic properties of K̃(m)

up to the order n−1. The expectation of K̃(m) is expanded as E(K̃(m)) =
K(m) +mC2/n+O(n−2), where

C2 =
3(m+ 1)

2
(K(m) + 1)(κ+ 1)− m+ 3

2
(K(m) + 1) − (2m+ 1)(K(m+1) + 1)

+ K(m−1) + 1.

The asymptotic variance of T2 :=
√
n(K̃(m) − K(m)) with unknown Σ is given

by

σ2
T2

=
(m+ 1/2)m + (p− 1)(1/2)m

p(1/2)m
(K(2m) +1)+

m2(p + 2)

p
(K(m) +1)2(κ+1)

− 2m(p + 2m)

p
(K(m+1) + 1)(K(m) + 1) − (m− 1)2(K(m) + 1)2 +O(n−1).

5. Bias Correction

In this section, we shall correct the bias of κ̃. It follows from (2) that the bias in
κ̃ is of order n−1 when Σ is known. Then an estimator with the bias correction
is given by

κ̃⋆ := κ̃+
1

n

{

2(2κ̃ + 1)
}

. (8)

In the case of unknown Σ, we may obtain another estimator as

κ̃⋆ := κ̃− 1

n
(9κ̃2 + 13κ̃ − 10K̃(3) − 4). (9)
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Remark that the bias in κ̃⋆, both (8) and (9), are of order n−2 with the same
variance up to the order n−1 as that of κ̃. Further, estimators with bias correc-
tion for K(m) can be obtained in a similar way.

Example 3. We make investigations into the bias and the MSE for es-
timators by Monte Carlo simulation for some selected values of parameters.
Consider the elliptical distributions of Example 1 as reproduced, the contami-
nated normal CN(0.1, 3), the multivariate normal, the multivariate tMT(9) and
the compound normal CU(1,2). Computations are made for each case where
the population covariance matrix Σ is unknown. If Σ is known, we use only
(8). Table 3 gives the bias for two estimators κ̂ and κ̃ and the modified them
κ̂⋆ and κ̃⋆ in (9) (see also [8]) based on 10,000 simulations when Σ is unknown.
The MSE is presented in Table 4.

6. Conclusion

From Table 1, we can see that the simulation results nearly coincide with the
approximate values for normal and CU(1,2). But in the other cases CN(0.1, 3)
and MT(9), it seems that the convergence is quite slow and the approximate
expression (4) is not always precise. Moreover it may be found from Figure 1
that the approximations for κ̂ become inaccurate as the value of p is large. But
κ̃ is not so because the approximation (4) is independent of p. In all cases, both
values agree for a sufficiently large n.

It can be seen from Table 2 that the large n has the small range of the
confidence interval. The confidence interval by means of κ̂ has a slightly small
range by contrast with that of κ̃. Because Tκ̃ has a little bigger asymptotic
variance than σ2

κ̂. It may be found that the intervals are small for fixed n
with large p. In addition, note that both of the asymptotic variances σ2

κ̂ and
σ2

κ̃ decrease monotonously when p is large. In a practical situation, we will
need to use the estimators σ̃2

κ̃ (or σ̂2
κ̂) instead of σ2

κ̃ (or σ2
κ̂) where the σ̃2

κ̃ (or
σ̂2

κ̂) is defined from σ̃2
κ̃ (or σ̂2

κ̂) by replacing unknown parameters K(m) by the

consistent estimators K̃(m) (or K̂(m)), respectively. In this case we have seen
that the proposed approximations do not very bad as in the case when the
moment parameters K(m) are known, through a numerical study.

It may be seen from simulation results in Table 3 that the expectation of the
estimators converges to the kurtosis parameter when the sample size is large.
Especially in normal population, it is noted that κ̃ rapidly approaches κ and κ̃⋆

is more than. The values obtained for the estimators were acceptable for a large
n and improved as ω increased for the contaminated normal distributions, and
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p Model n κ̂ κ̂⋆ κ̃ κ̃⋆

2 CN(0.1, 3) 100 −0.633 −0.282 −0.594 −0.210

κ = 1.78 200 −0.348 −0.911∗ −0.325 −0.783∗

500 −0.153 −0.216∗ −0.139 −0.210∗

4000 −0.220∗ −0.289∗∗ −0.114∗ −0.258∗∗

Normal 100 −0.405∗ −0.520∗∗ −0.403∗ −0.173∗∗

κ = 0 200 −0.197∗ −0.899∗∗∗ −0.196∗ −0.145∗∗∗

500 −0.707∗∗ −0.770∗∗∗ −0.687∗∗ −0.720∗∗∗

4000 −0.106∗∗ −0.677† −0.104∗∗ −0.346†

MT(9) 100 −0.165 −0.680∗ −0.156 −0.564∗

κ = 0.4 200 −0.101 −0.371∗ −0.929∗ −0.324∗

500 −0.510∗ −0.169∗ −0.456∗ −0.150∗

4000 −0.195∗ −0.144∗ −0.180∗ −0.135∗

CU(1,2) 100 −0.691∗ −0.106∗ −0.662∗ −0.510∗∗

κ = 0.16 200 −0.380∗ −0.547∗∗ −0.372∗ −0.462∗∗

500 −0.137∗ −0.388∗∗∗ −0.129∗ −0.105∗∗∗

4000 −0.213∗∗ −0.288∗∗∗ −0.195∗∗ −0.191∗∗∗

5 CN(0.1, 3) 100 −0.812 −0.375 −0.652 −0.636∗

κ = 1.78 200 −0.476 −0.141 −0.381 −0.403∗

500 −0.208 −0.314∗ −0.171 −0.299∗

4000 −0.279∗ −0.154∗∗ −0.175∗ −0.135∗∗

Normal 100 −0.391∗ −0.374∗∗ −0.390∗ −0.300∗∗

κ = 0 200 −0.197∗ −0.997∗∗∗ −0.196∗ −0.973∗∗∗

500 −0.820∗∗ −0.411∗∗∗ −0.801∗∗ −0.405∗∗∗

4000 −0.102∗∗ −0.308† −0.100∗∗ −0.303†

MT(9) 100 −0.195 −0.836∗ −0.155 −0.150∗

κ = 0.4 200 −0.121 −0.424∗ −0.871∗ −0.779∗∗

500 −0.625∗ −0.207∗ −0.408∗ −0.976∗∗

4000 −0.199∗ −0.131∗ −0.147∗ −0.101∗

CU(1,2) 100 −0.788∗ −0.145∗ −0.715∗ −0.134∗

κ = 0.16 200 −0.396∗ −0.242∗∗ −0.363∗ −0.237∗∗

500 −0.165∗ −0.409∗∗∗ −0.142∗ −0.266∗∗∗

4000 −0.197∗∗ −0.161∗∗∗ −0.180∗∗ −0.289†

* : value×10−1, ** : value×10−2, *** : value×10−3, †: value×10−4

Table 3: Simulation results for the bias of estimators when Σ is unknown

when n increased for the compound normal CU(1,2). Also from Table 3, we note
that the estimator κ̃ is underestimated as well as κ̂ for elliptical populations.
The bias of κ̃ is actually smaller in magnitude than that of κ̂. It may be noted
that the size of p does not have much effect on the bias of estimators. These
results are true for small sample sizes, not more than n = 50, when Σ is known.
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p Model n κ̂ κ̂⋆ κ̃ κ̃⋆

2 CN(0.1, 3) 100 0.805 0.830 0.851 1.307

κ = 1.78 200 0.459 0.557 0.517 0.611
500 0.209 0.243 0.244 0.272
4000 0.287∗ 0.294∗ 0.335∗ 0.340∗

Normal 100 0.968∗∗ 0.109∗ 0.127∗ 0.134∗

κ = 0 200 0.494∗∗ 0.538∗∗ 0.637∗∗ 0.656∗∗

500 0.199∗∗ 0.209∗∗ 0.261∗∗ 0.267∗∗

4000 0.257∗∗∗ 0.258∗∗∗ 0.336∗∗∗ 0.336∗∗∗

MT(9) 100 0.108 0.167 0.135 0.197

κ = 0.4 200 0.835∗ 0.130 0.107 0.149
500 0.680∗ 0.106 0.926∗ 0.121
4000 0.116∗ 0.125∗ 0.135∗ 0.142∗

CU(1,2) 100 0.263∗ 0.332∗ 0.323∗ 0.381∗

κ = 0.16 200 0.142∗ 0.165∗ 0.175∗ 0.192∗

500 0.607∗∗ 0.661∗∗ 0.750∗∗ 0.788∗∗

4000 0.812∗∗∗ 0.820∗∗∗ 0.999∗∗∗ 0.100∗∗

5 CN(0.1, 3) 100 0.767 0.368 0.632 0.331

κ = 1.78 200 0.320 0.187 0.307 0.185
500 0.985∗ 0.770∗ 0.115 0.101
4000 0.952∗∗ 0.921∗∗ 0.139∗ 0.136∗

Normal 100 0.325∗∗ 0.257∗∗ 0.599∗∗ 0.530∗∗

κ = 0 200 0.139∗∗ 0.125∗∗ 0.281∗∗ 0.250∗∗

500 0.501∗∗∗ 0.477∗∗∗ 0.107∗∗ 0.101∗∗

4000 0.578† 0.575† 0.136∗∗∗ 0.134∗∗∗

MT(9) 100 0.577∗ 0.550∗ 0.805∗ 0.760∗

κ = 0.4 200 0.377∗ 0.347∗ 0.724∗ 0.602∗

500 0.216∗ 0.202∗ 0.417∗ 0.397∗

4000 0.520∗∗ 0.500∗∗ 0.856∗∗ 0.802∗∗

CU(1,2) 100 0.115∗ 0.935∗∗ 0.161∗ 0.155∗

κ = 0.16 200 0.507∗∗ 0.492∗∗ 0.792∗∗ 0.746∗∗

500 0.188∗∗ 0.187∗∗ 0.312∗∗ 0.302∗∗

4000 0.233∗∗∗ 0.231∗∗∗ 0.401∗∗∗ 0.399∗∗∗

* : value×10−1, ** : value×10−2, *** : value×10−3, †: value×10−4

Table 4: Simulation results for the MSE of estimators when Σ is un-
known

As for the MSE, from Table 4, when Σ is unknown with large p, the MSE of
the modified estimators κ̂⋆ and κ̃⋆ are smaller than that of each original one,
that is, κ̂ and κ̃. But, on the contrary, the MSE of each estimator gets larger
in inverse proportion to the bias of them for fixed n with small p. It can be
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seen form Table 3 and Table 4 that the bias as well as the MSE for estimators
is reduced when the sample size is large and the covariance matrix is unknown.
As far as we can judge these results, κ̃ is better than κ̂, and κ̃⋆ is good more
than in the point of bias.

The facts mentioned above may be applied to the case when Σ is known,
but details are abbreviated in the present paper. Here, we cite only one or two
instances. For the mean of estimators, it was seen that the simulation results
almost agree with the approximate values (2) in each elliptical population. Also
we found that the MSE of estimators are not as small as those in the case of
an unknown Σ. As for the asymptotic variance of Tκ̃, the approximated value
given in (3) with known Σ is large in comparison with that in (5) when Σ is
unknown.

As a result, we conclude to recommend κ̃⋆ as a better estimator of κ judging
from bias only. Taking MSE into consideration, we can suggest κ̃ rather than κ̂
on condition that the value of p is large and the sample size is also moderately
large.
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