IJPAM: Volume 27, No. 2 (2006)

ABOUT THE COLORING PROPERTIES
OF $W_m$ GENERAL MYCIELSKI-GRAPH

Muchun Li$^1$, Huiying Qiang$^2$, Zhongfu Zhang$^3$
$^{1,2,3}$Institute of Applied Mathematics
Lanzhou Jiaotong University
Lanzhou, 730070, P.R. CHINA
$^2$e-mail: qhy2005ww@126. com


Abstract.$M_n(G)$ is called general Mycielski graph $G$, if $n$ is natural number, and
\begin{align*}
&V(M_n(G)) =\{v_{00}, v_{01},... v_{0m};v_{10}, v_{11},... v_{1m}...
...\in{E(G)},\ 0\leq{j},\ k\leq{m},\\
&\qquad i=0, 1, \cdots, n-1\}.
\end{align*}
The general Mycielski graph of wheel with order $(m+1)$ is noted $M_n(W_m)$. In this paper, some results of $M_n(W_{m})$ graphs are obtained.

Received: November 1, 2005

AMS Subject Classification: 05C15, 68R10, 94C15

Key Words and Phrases: general Mycielski graph, total coloring, adjacent-vertex-distinguishing total coloring

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2006
Volume: 27
Issue: 2