ON COPRIMELY PACKED MULTIPLICATION MODULES

Ünsal Tekir
Department of Mathematics
University of Marmara
Ziverbey, Göztepe, Istanbul 34722, TURKEY
e-mail: utekir@marmara.edu.tr

Abstract: Let M be a non-zero multiplication R-module. Then, M is called coprimely packed if every submodule of M is coprimely packed. We generalize the notion of a coprimely packed ring to coprimely packed multiplication modules.

AMS Subject Classification: 13C05, 13C13, 15A18
Key Words: multiplication modules, prime submodules

1. Introduction

Throughout this paper all rings will be commutative with identity and all modules will be non-zero and unitary. A ring R is defined to be compactly packed by prime ideals if whenever an ideal I of R is contained in the union of a family of prime ideals of R, I is actually contained in one of the prime ideals of the family. An ideal I of a ring is said to be coprimely packed $I + P_s = R$, where $P_s (s \in S)$ are prime ideals of R; then $I \not\subseteq \bigcup_{s \in S} P_s$. A non-empty subset X of the set of prime ideals of R is said to be coprimely packed if whenever an element P of X is coprime to each element of a subset Y of X, then $P \not\subseteq \bigcup_{Q \in Y} Q$. If every ideal of R is coprimely packed, then R is a coprimely packed ring, see [3], [5], [4].

Let M be an R-module. A proper submodule K of M is called prime if $rm \in K$, for $r \in R$ and $m \in M$, then $m \in K$ or $r \in (K : M)$, where $(K : M) = \{ r \in R : rM \subseteq K \}$. An R-module M is called a multiplication module if for each submodule N of M, $N = IM$ for some ideal I of R. A multiplication module M is defined to be compactly packed by prime submodules if whenever
a submodule N of M is contained in the union of a family of prime submodules of M, N is actually contained in one of the prime submodules of the family. A submodule N of M is said to be coprimely packed by prime submodules of M if whenever N is coprime to each element of a family of prime submodules of M, N is not contained in the union of prime submodules of the family. We say that M is coprimely packed if every submodule of M is coprimely packed. Here we generalize the notion of a coprimely packed ring to coprimely packed multiplication modules.

We recall from [7], [1] the following facts.

Theorem 1. (The Prime Avoidance Theorem) Let M be an R-module, $L_1, L_2, ..., L_n$ a finite number of submodules of M, and L a submodule of M such that $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$. Assume that at most two of the L_i’s are not prime, and that $(L_j : M) \nsubseteq (L_k : M)$ whenever $j \neq k$. Then $L \subseteq L_k$ for some k.

Let $L_1, L_2, ..., L_n$ be submodules of an R-module M. We call a covering $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$ efficient if no L_k is superfluous.

Theorem 2. (The Prime Avoidance Theorem For Multiplication Modules) Let M be a multiplication R-module, $L_1, L_2, ..., L_n$ a finite number of submodules of M, and L a submodule of M such that $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$. Assume that at most two of the L_i’s are not prime. Then $L \subseteq L_k$ for some k.

Proof. We may assume that the covering is efficient. Then $(L_j : M) \nsubseteq (L_k : M)$ whenever $j \neq k$. Otherwise, if $(L_j : M) \subseteq (L_k : M)$, then $L_j = (L_j : M) M \subseteq (L_k : M) M = L_k$. This is a contradiction. Consequently, $L \subseteq L_k$ for some k by Theorem 1. \qed

For any R-module M, let $\text{Spec}(M)$ denote the collection of all prime submodules of M. Note that some modules M have no prime submodules. (i.e., $\text{Spec}(M) = \emptyset$), see [6]. Let M be a multiplication R-module. Since $\text{Ann}(M) \neq R$, it follows that there exists a maximal ideal P of R such that $\text{Ann}(M) \subseteq P$ and $M \neq PM$ by [2], Theorem 2.5. PM is a prime submodule of M by [2], Corollary 2.11. Consequently, if M is a multiplication R-module, then $\text{Spec}(M) \neq \emptyset$.

Definition 1. A multiplication R-module M is defined to be compactly packed by prime submodules if whenever a submodule N of M is contained in the union of a family of prime submodules of M, N is actually contained in one of the prime submodules of the family.

Definition 2. Let M be a multiplication R-module. A submodule N of M is said to be coprimely packed by prime submodules of M if whenever N is coprime to each element of a family of prime submodules of M, N is not
contained in the union of prime submodules of the family. We say that M is coprimely packed if every submodule of M is coprimely packed.

Proposition 1. Let M be a multiplication R-module. If M is a compactly packed module, then M is coprimely packed module.

Proof. Let M be a compactly packed module and suppose that M is not coprimely packed. Then there is a non-zero submodule N of M and a non-empty subset X of Spec(M) such that $N + P = M$ for all $P \in X$ and $N \subseteq \bigcup_{P \in X} P$.

Since M is compactly packed, $N \subseteq \bigcup_{P \in X} P$ implies that $N \subseteq P$ for some $P \in X$. This is a contradiction. Therefore, M is coprimely packed.

By a chain of prime submodules of an R-module M we mean a finite strictly increasing sequence $N_0 \subset N_1 \subset \cdots \subset N_n$; the dimension of this chain is n. We define the dimension of M to be the supremum of the lengths of all chains of prime submodules in M. Recall that M is a torsion-free module; if for any $r \in R$, and $m \in M$, $rm = 0$, implies $r = 0$ or $m = 0$.

Proposition 2. Let M be a multiplication R-module. Let M be a torsion-free module of dimension 1. Then M is compactly packed if and only if it is coprimely packed.

Proof. It remains to show that if M is coprimely packed then it is compactly packed. Let N be a non-zero submodule of M and X a non-empty subset of Spec(M). Suppose that $N \subseteq \bigcup_{P \in X} P$. Since M is coprimely packed, $N + P \neq M$, for some $P \in X$. Hence there is a maximal submodule T of M such that $N + P \subseteq T$ (now in the subset X of Spec(M), we may as well assume that $0 \notin X$, which does not affect the assumption that $N \subseteq \bigcup_{P \in X} P$). But M is a torsion-free module (and so, 0_M is a prime submodule of M) of dimension 1. Therefore it follows that $P = T$ and $N \subseteq P$. Hence M is compactly packed module.

Theorem 3. Let M be a multiplication R-module such that contains only finitely many maximal submodules. Then M is coprimely packed.

Proof. Let N be any non-zero submodule of M. Suppose that $N + P = M$ for all $P \in X$, where X is any non-empty subset of Spec(M). We want to show that $N \nsubseteq \bigcup_{P \in X} P$. We know that M contains only finitely many maximal submodules. We may pick a subset $\{M_1, M_2, \ldots, M_n\}$ of MaxSpec(M) in such a way that for each M_i in $\{M_1, M_2, \ldots, M_n\}$ there exists an element P in X such that $P \subseteq M_i$ and for each $P \in X$ there exists an element M_i in $\{M_1, M_2, \ldots, M_n\}$ such that $P \subseteq M_i$. Since $N + P = M$ for all $P \in X$, it follows that $N + M_i = M$.

for all $i = 1, 2, \ldots, n$. Hence $N \not\subseteq \bigcup_{i=1}^{n} M_i$ by Theorem 2. But $\bigcup_{P \in X} P \subseteq \bigcup_{i=1}^{n} M_i$. Therefore $N \not\subseteq \bigcup_{P \in X} P$. Therefore, it follows that M is coprimely packed.

Theorem 4. Let M be a multiplication R-module. Then the following are equivalent:

(i) M is coprimely packed.

(ii) Let N be any submodule in M, and let S be any set of maximal submodules in M with $N \subseteq \bigcup \{T \in S\}$. Then $N \subseteq T$ for some $T \in S$.

Proof. (i)\Rightarrow(ii). If S is a set of maximal submodules and if N is a submodule with $N \subseteq \bigcup \{T \in S\}$, then by (i), for some $T \in S$ we have $N + T \neq M$. Therefore $N \subseteq T$.

(ii)\Rightarrow(i). Let S be a set of prime submodules, and let N be a submodule with $N \subseteq \bigcup \{Q \in S\}$. For each $Q \in S$, let M_Q be a maximal submodule containing Q. Surely $N \subseteq \bigcup \{M_Q : Q \in S\}$ and so by (ii), $N \subseteq M_Q$ for some $Q \in S$. As also $Q \subseteq M_Q$, we have $N + Q \subseteq M_Q \neq R$. Thus (i) holds.

References

