IJPAM: Volume 28, No. 2 (2006)

ON THE MINIMAL FREE RESOLUTION OF
GENERAL UNIONS OF FAT POINTS IN ${\bf {P}}^2$

E. Ballico
Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it


Abstract.Here we prove the following result. Fix integers $s>0$, $m_1 > \cdots > m_s>0$, $a_i>0$, $1 \le i \le s$. Take $\sum _{i=1}^{s} a_i$ general points $P_{i,j}\in {\bf {P}}^2$, $1 \le i \le s$, $1 \le j \le a_i$ and set $Z:= \cup _{i=1}^{s} \cup _{j=1}^{a_i} m_iP_{i,j}
\subset {\bf {P}}^2$ and $\delta:= \sum _{i=1}^{s} a_i\binom{m_i}{2}$. Let $k$ be the minimal integer such that $\delta \le \binom{k+2}{2}$. Assume $m_s = 1$ and either $a_s \ge km(m_1+2)(m_1+1)/2
+m_1k$ or $m_{s-1} = 2$, $m_s \ge k$ and $2a_{s-1}+a_s \ge km(m_1+2)(m_1+1)/2
+m_1k$ or $\mbox{char}(\mathbb {K}) \ne 2$, $m_{s-1} = 2$, $2a_{s-1}+a_s \ge km(m_1+2)(m_1+1)/2
+m_1k$ and $m_s\ge 2$. Then $h^0({\bf {P}}^2,\mathcal {I}_Z(t)) = 0$ for all $t<k$, $h^1({\bf {P}}^2,\mathcal {I}_Z(t)) = 0$ for all $t \ge k$ and the homogeneous ideal of $Z$ is minimally generated by $\binom{k+2}{2} - \delta$ forms of degree $k$ and by $\max \{0,2\delta -k(k+2)\}$ forms of degree $k+1$.

Received: April 11, 2006

AMS Subject Classification: 14N05

Key Words and Phrases: minimal free resolution, homogeneous ideal, zero-dimensional scheme, postulation, fat point, projective plane

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2006
Volume: 28
Issue: 2