GLOBAL EXISTENCE FOR A QUASILINEAR HYPERBOLIC EQUATION IN A NONCYLINDRICAL DOMAIN

J. Ferreira¹ ⁵, C.A. Raposo², M.L. Santos³

¹,²Departamento de Matemática
Universidade Federal de São João del-Rei
Praça Frei Orlando, 170, CEP: 36307-352
São João del-Rei, MG, BRAZIL
¹e-mail: jf@ufsj.edu.br
²e-mail: raposo@ufsj.edu.br
³Departamento de Matemática
Universidade Federal do Pará
CEP: 66075-110 Belém, PA, BRAZIL
and
IESAM-Instituto de Estudos Superiores da Amazônia
Av. Governador José Malcher
1148, Belém, PA, BRAZIL
e-mail: ls@ufpa.br

Abstract: We study the existence of a weak global solution of the mixed problem to the quasilinear hyperbolic equation

\[u_{tt} - \text{div} (|\nabla u|^{p-2} \nabla u) - \Delta u_t = f(t, x) \quad (1) \]

is a noncylindrical domain. Our proof is based on a penalty argument by J.L. Lions and Galerkin approximations.

AMS Subject Classification: 35L70
Key Words: quasilinear equation, global solution, penalty method, noncylindrical domain

1. Introduction

Let Ω be a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \). Given \(T > 0 \)
let $Q = \Omega \times (0, T)$ be a standard cylindrical domain in \mathbb{R}^{n+1} and let $\hat{Q} \subset Q$ be noncylindrical domain in \mathbb{R}^{n+1} with lateral boundary $\hat{\Sigma}$ that will be precised later. We deal with existence of weak solutions of the mixed problem to the quasilinear hyperbolic equation
\[
\begin{cases}
 u_{tt} - \text{div} \left(|\nabla u|^{p-2} \nabla u \right) - \Delta u_t = f & \text{in } \hat{Q}, \\
 u = 0 & \text{on } \hat{\Sigma}, \\
 u(x, 0) = u_0, \quad u_t(x, 0) = u_1 & \text{in } \Omega_0,
\end{cases}
\]
where div, ∇ and Δ are respectively the divergence, gradient and the Laplacian operators with respect to the variable x (in the sense of distributions), $p \geq 2$, and Ω_0 is the “basis” of \hat{Q}.

Semilinear evolution equations in noncylindrical domains have been considered by several authors. For work in this subject we refer the reader to e.g. [2], [3], [4], [5], [6], [9], [10], [11], [12] and the references therein. It should be noted that none of the above referred papers deals with quasilinear hyperbolic equations in noncylindrical domains. On the other hand, a related problem in cylindrical domains was done by D.D. Ang and A.P.N. Dinh [1]. They considered weak solutions of a wave equation with strong damping involving a quasilinear operator defined in $H^1_0(\Omega)$.

Our analysis is based upon the penalty method introduced by J.L. Lions in [7] and assume a monotonicity condition on the nondylindrical domain \hat{Q} (see condition (2.1) below). We also exploit the fact that $Au = \text{div} \left(|\nabla u|^{p-2} \nabla u \right)$ is a bounded, monotone and hemicontinuous operator from $W^{1,p}_0(\Omega)$ to $W^{-1,p'}(\Omega)$.

The precise statement of our existence theorem is given in Section 2 together with some notations. The proof is presented in Section 3.

\section{2. Notations and Statement of the Main Result}

Let us fix some notations on the function spaces that will be considered. We denote by $\langle \cdot, \cdot \rangle$ and $| \cdot |$ the inner-product and the norm of $L^2(\Omega)$ respectively and by $\langle \cdot, \cdot \rangle$, the duality pairing between $W^{1,p}_0(\Omega)$ and $W^{-1,p'}(\Omega)$. When $p = 2$ we use the notation $H^1_0(\Omega) = W^{1,2}_0(\Omega)$. If $T > 0$ is given and X is Banach space with norm $\| \cdot \|_X$, we denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$, the Banach space of the measurable X–valued functions $u : (0, T) \to X$ with $\|u(t)\|_X \in L^p(0, T)$. In this space we consider the norm
\[
\|u\|_{L^p(0, T; X)} = \left(\int_0^T \|u(t)\|^p_X \, dt \right)^{\frac{1}{p}}.
\]
if \(1 \leq p < \infty \) and for \(p = \infty \) then we assume

\[
\|u\|_{L^\infty(0,T;X)} = \text{ess sup}_{0 < t < T} \|u(t)\|_X.
\] (2.1)

Besides, as usual, we write \(u' \) for the derivative of \(u \) with respect to \(t \) and sometimes we write \(u(t) \) instead \(u(\cdot, t) \).

Next we precise the notations and the hypotheses on the noncylindrical domain \(\hat{Q} \subset Q = \Omega \times (0,T) \). Let us set \(\Omega_s = \hat{Q} \cap (\mathbb{R}^n \times \{s\}) \), where \(0 < s < T \), \(\Omega_0 = \text{int}(\hat{Q} \cap (\mathbb{R}^n \times \{0\})) \) that is assumed to be non empty, \(\Omega_T = \text{int}(\hat{Q} \cap (\mathbb{R}^n \times \{T\})) \), \(\Gamma_s = \partial \Omega_s \), \(\Sigma = \bigcup_{0 < t < T} \Gamma_t \) the lateral boundary.

We assume that \(\hat{Q} \) is increasing in time, that is,

\[
\Omega_t^* \subset \Omega_s^* \quad \text{if} \quad t < s,
\] (2.2)

where \(\Omega_t^* \) is the projection of \(\Omega_t \) on \(\Omega \). Moreover, we assume the following regularity property:

\[
\text{if} \quad u \in W^{1,p}_0(\Omega) \quad \text{and} \quad u|_{\Omega \setminus \Omega_t^*} = 0 \quad \text{then} \quad u|_{\Omega_t^*} \in H^{1/2}_{0}(\Omega_t^*).
\] (2.3)

Some function spaces are in order. We consider

\[
L^q(0,T;L^p(\Omega_t)) = \{ u \in L^q(0,T;L^p(\Omega)) : u|_Q \setminus \hat{Q} = 0 \},
\]
i \leq p, q \leq \infty, with the norm defined by

\[
\|u\|_{L^q(0,T;L^p(\Omega_t))} = \left(\int_0^T \|u(t)\|_{L^p(\Omega_t^*)}^q \, dt \right)^{\frac{1}{q}}
\]

if \(1 \leq q < \infty \) and

\[
\|u\|_{L^\infty(0,T;L^p(\Omega_t))} = \text{ess sup}_{0 < t < T} \|u(t)\|_{L^p(\Omega_t^*)}.
\]

We also consider the space \(L^q(0,T;W^{1,p}_0(\Omega_t)) \) with an obvious meaning. Then as a consequence of the regularity property (2.3), we have that \(L^q(0,T;L^p(\Omega_t)) \) and \(L^q(0,T;W^{1,p}_0(\Omega_t)) \) are closed subspaces of \(L^q(0,T;L^p(\Omega)) \) and \(L^q(0,T;W^{1,p}_0(\Omega)) \) respectively.

Now we are in a position to state our existence result.

Theorem 2.1. Assume that (2.2)-(2.3) hold. Then given \(u_0 \in W^{1,p}_0(\Omega_0) \), \(u_1 \in L^2(\Omega_0) \) and \(f \in L^2(0,T;L^2(\Omega_t)) \), there exists a function \(u : Q \to \mathbb{R} \) such that

\[
u \in L^\infty(0,T;W^{1,p}_0(\Omega_t)),
\] (2.4)
\[u' \in L^\infty(0, T; L^2(\Omega_t)) \cap L^2(0, T; H^1_0(\Omega_t)) \] (2.5)
\[u(0) = u_0 \quad \text{and} \quad u'(0) = u_1 \quad \text{a.e. in} \quad \Omega_0^+, \] (2.6)
\[u'' - \text{div}(|\nabla u|^{p-2}\nabla u) - \Delta u' = f \quad \text{in} \quad L^2(0, T; W^{-1,p'}(\Omega_t)). \] (2.7)

We observe that initial conditions (2.6) make sense since (2.4), (2.5) and (2.7) imply that \(u' \) is weakly continuous from \([0, T]\) to \(W^{-1,p'}(\Omega_0^+) \).

3. Proof of Theorem 2.1

The proof of Theorem 2.1 will be done by using the Faedo-Galerkin method. First we find a solution of a penalized problem on the cylinder \(Q \) and then we show that its restriction to the noncylindrical domain \(\hat{Q} \) is in fact a weak solution of the original problem.

To this end, let \(\tilde{u}_0 \in W^{1,p}_0(\Omega) \), \(\tilde{u}_1 \in L^2(\Omega) \) and \(\tilde{f} \in L^2(Q) \) be the extensions, by zero outside of \(\Omega_0 \), of \(u_0 \), \(u_1 \) and \(f \) respectively. Let \(M : Q \to \mathbb{R} \) be the “penalty” function defined by

\[M(x, t) = \begin{cases} 0, & \text{if} \quad (x, t) \in \hat{Q} \cup \Omega_0, \\ 1 & \text{otherwise}. \end{cases} \]

Accordingly, we first prove the following theorem.

Theorem 3.1. Suppose the hypotheses of Theorem 2.1 hold. Then for each \(\epsilon > 0 \) there exists a function \(u_\epsilon : Q = \Omega \times (0, T) \to \mathbb{R} \) such that

\[u_\epsilon \in L^\infty(0, T; W^{1,p}_0(\Omega)), \] (3.8)
\[u_\epsilon' \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1_0(\Omega)), \] (3.9)
\[u_\epsilon(0) = \tilde{u}_0 \quad \text{and} \quad u_\epsilon'(0) \quad \text{a.e. in} \quad \Omega, \] (3.10)
\[u_\epsilon'' - \text{div}(|\nabla u_\epsilon|^{p-2}\nabla u_\epsilon) - \Delta u_\epsilon' + \frac{1}{\epsilon} M u_\epsilon' = \tilde{f} \quad \text{in} \quad L^2(0, T; W^{-1,p'}(\Omega)). \] (3.11)

The proof of Theorem 3.1 will be done in several steps. We begin with the:

Step 1: Penalized Approximated Problem. Let us fix an integer \(r \) greater than \(1 + \frac{n}{2} - \frac{n}{p} \) so that \(H^r_0(\Omega) \hookrightarrow W^{1,p}_0(\Omega) \) continuously. Let \(\{w_1, w_2, w_3, \cdots\} \) be an orthonormal “Galerkin” basis of \(H^r_0(\Omega) \) and for each \(m \in \mathbb{N} \) let \(V_m \) be the subspace spanned by \(\{w_1, w_2, \cdots, w_m\} \). For a given \(\epsilon > 0 \) we consider function

\[u_m(t) = \sum_{j=1}^{m} g_{mj}(t)w_j, \]
where \(g_{em_j}(t) \) are the solutions of the ODE system
\[
\begin{align*}
(u''_{em}(t), w_j) &+ \langle Au_{em}(t), w_l \rangle + \langle \nabla u'_{em}(t), \nabla w_j \rangle \\
+ \frac{1}{\epsilon} (M(t)u'_{em}(t), w_j)(\tilde{f}(t), w_j), \\
&u_{em}(0) = u_{0m} \quad \text{and} \quad u'_{em}(0) = u'_{1m},
\end{align*}
\]
(3.12)
with \(u_{0m} \to \tilde{u}_0 \) strongly in \(W^{1,p}_0(\Omega) \) and \(u_{1m} \to \tilde{u}_1 \) strongly in \(L^2(\Omega) \). As it is well-known, the system (3.12)-(3.13) has a local solution \(u_{em}(t) \) defined in some interval \([0, t_{em}) \), \(0 < t_{em} < T \) (see e.g. [8]).

Step 2: A Priori Estimates I. From the approximated equation (3.12) we get
\[
\frac{1}{2}|u'_{em}(t)|^2 + \frac{1}{p}||u_{em}(t)||_{W^{1,p}_0(\Omega)}^p + \int_0^t ||u'_{em}(s)||_{H^1_0}^2 \, ds + \frac{1}{\epsilon} \int_0^t |M(s)u'_{em}(s)|^2 \, ds \\
\leq \frac{1}{2}|u_{0m}|^2 + \frac{1}{p}||u_{1em}||_{W^{1,p}_0(\Omega)}^p + \frac{1}{2}||\tilde{f}||_{L^2(\Omega)} + \frac{1}{2} \int_0^t |u'_{em}(s)|^2 \, ds.
\]
Then by the Gronwall’s Lemma
\[
\frac{1}{2}|u'_{em}(t)|^2 + \frac{1}{p}||u_{em}(t)||_{W^{1,p}_0(\Omega)}^p \\
+ \frac{1}{\epsilon} \int_0^t |M(s)u'_{em}(s)|^2 \, ds + \int_0^t ||u'_{em}(s)||_{H^1_0}^2 \, ds \leq C,
\]
for some constant \(C > 0 \) independently of \(\epsilon, m \) and \(t \). So we can extend the approximated solutions \(u_{em}(t) \) to the whole interval \([0, T] \). Besides we get
\[
\begin{align*}
(u_{em}) & \quad \text{is bounded in} \quad L^\infty(0, T; W^{1,p}_0(\Omega)), \\
(u'_{em}) & \quad \text{is bounded in} \quad L^\infty(0, T; L^2(\Omega)), \\
(u''_{em}) & \quad \text{is bounded in} \quad L^2(0, T; H^1_0(\Omega)), \\
(\frac{1}{\sqrt{\epsilon}} Mu'_{em}) & \quad \text{is bounded in} \quad L^2(0, T; L^2(\Omega)), \\
(u_{em}(T)) & \quad \text{is bounded in} \quad W^{1,p}_0(\Omega), \\
(u'_{em}(T)) & \quad \text{is bounded in} \quad L^2(\Omega).
\end{align*}
\]
(3.14) (3.15) (3.16) (3.17) (3.18) (3.19)

Further \(Au = -\text{div}(|\nabla u|^{p-2}\nabla u) \) is a bounded operator from \(W^{1,p}_0(\Omega) \) to \(W^{-1,p'}(\Omega) \), it follows from (3.14) that
\[
\begin{align*}
(Au_{em}) & \quad \text{is bounded in} \quad L^\infty(0, T; W^{-1,p'}(\Omega)).
\end{align*}
\]
(3.20)
Step 3: A Priori Estimates II. Now we are going to obtain an estimate for u''_{em}. This will be done with a standard projection argument. Let us define the projection operator $P_m : H^1_0(\Omega) \rightarrow V_m$ by

$$P_m[h] = \sum_{j=1}^m ((h, w_j))w_j, \quad h \in H^1_0(\Omega),$$

where $((\cdot, \cdot))$ denotes the inner-product in $H^1_0(\Omega)$. Let $P_{m}^* \in L(H^{-r}(\Omega), H^{-r}(\Omega))$ be the self-adjoint extension of P_m. Then since $P_{m}^*[h] = P_m[h] = h$ for all $h \in V_m$, we conclude from the approximated equation that

$$(u''(t), v) = (P_{m}^*[\tilde{f}(t)], v) - (P_{m}^*[Au_{em}(t)], v) + (P_{m}^*[\triangle u_{em}(t)], v)$$

$$- \frac{1}{\epsilon}(P_{m}^*[M(t)u_{em}(t)], v)$$

for all $v \in V_m$. So by a density argument we have from (3.16), (3.17) and (3.20) that

$$(u''_{em}) \text{ is bounded in } L^2(0,T; H^{-r}(\Omega)).$$ (3.21)

Step 4: Passage to the Limit. We now pass limit (for $m \rightarrow \infty$) on the penalized approximated problem. First we observe that from (3.14) and (3.16), going to a subsequence if necessary, there exists a function u_{ϵ} such that

$$u_{em} \rightharpoonup u_{\epsilon} \text{ weakly star in } L^\infty(0,T; W^{1,p}_0(\Omega)),$$ (3.22)

$$u'_{em} \rightharpoonup u'_{\epsilon} \text{ weakly in } L^2(0,T; H^1_0(\Omega)),$$ (3.23)

and from (3.20) there exists $\chi_{\epsilon} \in W^{-1,p'}(\Omega)$ such that

$$Au_{em} \rightharpoonup \chi_{\epsilon} \text{ weakly star in } L^\infty(0,T; W^{-1,p'}_0(\Omega)).$$ (3.24)

Moreover, (3.18), (3.19) and (3.21) imply that

$$u_{em}(T) \rightharpoonup u_{\epsilon}(T) \text{ weakly in } W^{1,p}_0(\Omega),$$ (3.25)

$$u'_{em}(T) \rightharpoonup u'_{\epsilon}(T) \text{ weakly in } L^2(\Omega).$$ (3.26)

Next, by applying the Aubin-Lions Compactness Lemma (see e. g. [8]), we infer from (3.14)-(3.15) an (3.16)-(3.21), that

$$u_{em} \rightarrow u_{\epsilon} \text{ strongly in } L^2(0,T; L^2(\Omega))$$ (3.27)

and

$$u'_{em} \rightarrow u'_{\epsilon} \text{ strongly in } L^2(0,T; L^2(\Omega)).$$ (3.28)
respectively. Then since $M \in L^\infty(0,T;L^\infty(\Omega))$, we also get
\[\frac{1}{\epsilon} M u_{\epsilon m}' \to \frac{1}{\epsilon} M u'_\epsilon \text{ strongly in } L^2(0,T;L^2(\Omega)). \] (3.29)

The above convergences allow us easily to pass the limit in the approximated equation (3.12). Therefore we obtain
\[\frac{d}{dt} (u'_\epsilon(t),v) + \langle \chi_\epsilon(t), v \rangle + (\nabla u'_\epsilon(t), \nabla v) + \frac{1}{\epsilon} (M(t)u'_\epsilon(t), v) = (\tilde{f}(t), v), \] (3.30)
for all $v \in W^{1,p}_0(\Omega)$ in the sense of distributions. Moreover, from a standard argument it follows that (3.10) holds.

Step 5: The Monotonicity Argument. To complete the proof of Theorem 3.1 we must show that $\chi_\epsilon = Au_\epsilon$. To this end we do an analysis on the monotonicity property of $A : W^{1,p}_0(\Omega) \to W^{-1,p}(\Omega)$. It suffices to show that
\[\int_0^T \langle \chi_\epsilon(t) - Av, u_\epsilon - v \rangle \, dt \geq 0 \] (3.31)
for all $v \in W^{1,p}_0(\Omega)$, since from hemicontinuity of A we obtain
\[\chi_\epsilon = Au_\epsilon. \]

To show (3.31) we begin by noting that $\int_0^T \langle Au_{\epsilon m}(t) - Av, u_{\epsilon m} - v \rangle \, dt \geq 0$, for all $v \in W^{1,p}_0(\Omega)$. Then using the convergences (3.22) and (3.24) we get
\[\limsup_{m \to \infty} \int_0^T \langle Au_{\epsilon m}(t), u_{\epsilon m}(t) \rangle \, dt - \int_0^T \langle \chi_\epsilon(t), v \rangle \, dt - \int_0^T \langle Av, u_{\epsilon m}(t) - v \rangle dt \geq 0. \] (3.32)

Now working on the approximated problem we have
\[\int_0^T \langle Au_{\epsilon m}(t), u_{\epsilon m}(t) \rangle \, dt = (u'_{\epsilon m}(0), u_{\epsilon m}(0)) - (u'_{\epsilon m}(T)) + \int_0^T |u'_{\epsilon m}(t)|^2 \, dt + \frac{1}{2} \|u_{\epsilon m}(0)\|^2_{H_0^1} - \frac{1}{2} \|u_{\epsilon m}(T)\|^2_{H_0^1} - \frac{1}{\epsilon} \int_0^T (M(t)u'_{\epsilon m}(t), u_{\epsilon m}(t)) \, dt + \int_0^T (\tilde{f}(t), u_{\epsilon m}(t)) \, dt. \]
In order to pass the limit in \(\int_0^T \langle Au_{em}(t), u_{em}(t) \rangle \, dt \), we remark that from the initial conditions (3.13) it follows that

\[
(u'_{em}(0), u_{em}(0)) \to (\bar{u}_1, \bar{u}_0) \quad \text{and} \quad \|u_{em}(0)\|_{H^1_0} \to \|\bar{u}_0\|_{H^1_0}.
\]

In addition, using (3.25) and the fact that \(p \geq 2 \), we have that \(u_{em}(T) \to u_\epsilon(T) \) weakly in \(H^1_0(\Omega) \). Thus the weak lower semicontinuity of the norm gives

\[
\|u_{em}(T)\|_{H^1_0} \leq \liminf_{m \to \infty} \|u_\epsilon(T)\|_{H^1_0}.
\]

From the compact inclusion of \(W^{1,p}_0(\Omega) \) in \(L^2(\Omega) \), we also get from (3.25) that \(u_{em}(T) \to u_\epsilon(T) \) strongly in \(L^2(\Omega) \). Hence

\[
(u'_{em}(T), u_{em}(T)) \to (u'_\epsilon(T), u_\epsilon(T)).
\]

Therefore (3.28), (3.29) and the above limits imply that

\[
\limsup_{m \to \infty} \int_0^T \langle Au_{em}(t), u_{em}(t) \rangle \, dt \leq (u'_\epsilon(0), u_\epsilon(0)) - (u'_\epsilon(T), u_\epsilon(T))
\]

\[
+ \int_0^T |u'_\epsilon(t)|^2 \, dt + \frac{1}{2} ||\bar{u}_0||_{H^1_0}^2 - \frac{1}{2} ||u_\epsilon(T)||_{H^1_0}^2 - \frac{1}{\epsilon} \int_0^T (M(t)u'_\epsilon(t), u_\epsilon(t))dt
\]

\[
+ \int_0^1 (f(t), u_\epsilon(t))dt. \quad (3.33)
\]

On the other hand, with a density argument, we conclude from the approximated problem that

\[
- \int_0^T \langle \chi_\epsilon(t), u_\epsilon(t) \rangle dt \leq (u'_\epsilon(T), u_\epsilon(T)) - (u'_\epsilon(0), u_\epsilon(0)) - \int_0^T |u'_\epsilon(t)|^2dt
\]

\[
+ \frac{1}{2} ||u_\epsilon(T)||_{H^1_0}^2 - \frac{1}{2} ||\bar{u}_0||_{H^1_0}^2 + \frac{1}{\epsilon} \int_0^T (M(t)u'_\epsilon(t), u_\epsilon(t))dt
\]

\[
- \int_0^T (f(t), u_\epsilon(t))dt. \quad (3.34)
\]

Then combining (3.32), (3.33) and (3.34) we get (3.31). The proof of Theorem 3.1 is complete.

Proof of Theorem 2.1. Now we show that as \(\epsilon \to 0 \), \(u_\epsilon \) converges to a function \(w \) whose restriction to \(\hat{Q} \) is the desired weak solution of our problem.
Let us remark that since the estimates obtained in Steps 2 and 3 do not depend on ϵ, going to a subsequence if necessary, there exists a function w such that
\[
\begin{align*}
 u_\epsilon &\to w \quad \text{weakly star in } L^\infty(0,T;W^{1,p}_0(\Omega)), \\
 u_\epsilon &\to w \quad \text{strongly in } L^2(0,T;L^2(\Omega)), \\
 u'_\epsilon &\to w' \quad \text{weakly in } L^2(0,T;H^1_0(\Omega)), \\
 u'_\epsilon &\to w' \quad \text{strongly in } L^2(0,T;L^2(\Omega)),
\end{align*}
\]
and for some function Θ
\[
\frac{1}{\epsilon} Mu'_\epsilon \to \Theta \quad \text{strongly in } L^2(0,T;L^2(\Omega)).
\]

Then, with the same argument used before, we infer that
\[
\begin{align*}
 w'' - \text{div} \left(|\nabla w|^{p-2} \nabla w \right) - \Delta w' + \Theta \tilde{f} &\in L^2(0,T;W^{-1,p'}(\Omega)), \\
 w(0) = \tilde{u}_0 \quad \text{and } w'(0) = \tilde{u}_t \quad \text{a.e. in } \Omega.
\end{align*}
\]

On the other hand, from (3.17), there exists $C > 0$ such that
\[
\int_Q M(x,t)u'_\epsilon(x,t)^2 dx dt \leq C \epsilon
\]
and hence $Mw' = 0$ a.e. in Q. Then by the definition of M, $w' = 0$ a.e. in $Q \setminus \hat{Q}$. This implies that w restricted to $Q \setminus \hat{Q}$ is a constant function with respect to t, and since $w(0) = \tilde{u}_0 = 0$ a.e. in $\Omega \setminus \Omega^*_0$, we get from the assumption (2.1) that $w = 0$ a.e. in $Q \setminus \hat{Q}$. Therefore setting $u = w|_{\hat{Q}}$ we see that u satisfies (2.3) and (2.4). Besides, noting that $M = 0$ in \hat{Q} we obtain from finally (3.35) that
\[
 u'' - \text{div} \left(|\nabla u|^{p-2} \nabla u \right) - \Delta u' = f \quad \text{in } L^2(0,T;W^{-1,p'}(\Omega_t)).
\]
The condition (2.6) follows from (3.36), and hence the proof of Theorem 2.1 is complete.

\[\square\]

4. Final Comments

The method explored in this work can be used to solve problems with the differential equations
\[
 u_{tt} - \text{div} \left(|\nabla u|^{p-2} \nabla u \right) - \Delta u_t + F(u) = f,
\]
(4.37)
where F is a continuous functions such that $sF(s) \geq 0$ for everg real s, and

$$
\begin{align*}
 u_{tt} - \text{div} \left(|\nabla u|^{p-2} \nabla u \right) - \triangle v_t &= 0, \\
 v_{tt} - \text{div} \left(|\nabla v|^{p-2} \nabla v \right) - \triangle u_t &= 0.
\end{align*}
$$

(4.38)

Now we would like to mention that the problem (1) as well as the corre-
sponding problem for the equations (4.37)-(4.38) in a bounded domain with
moving boundary related with the uniqueness of weak solutions are interesting
open problem.

Acknowledgements

This research was started while the first author was visiting the Federal Uni-
versity of Pará-UFP A (Pará-Brazil), during September 2004. He was partially
supported by CNPq-Brazil under grant No 301025/2003-7.

Finally, the authors would like to express their gratitude to Professor Dr.
Jaime E. Muñoz Rivera and Professor Dra Adélia Conceição Diniz for the fruit-
ful discussions concerning this paper. The authors are thankful to the referee
of this paper for valuable suggestions which improved this paper. Also, the
authors would like to thank Professor S. Nenov for this valuable attention to
our paper.

References

moving domain, *J. Diff. Eqs.*, 85 (1990), 1-16.

[3] J. Cooper, C.A. Bardos, Nonlinear wave equation in a time dependent

465-468.

