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Abstract: In this article, we are interested in a network of the type “best
effort” where the band-width available is distributed in the equitable way be-
tween the users, by considering a policy known as “min” which is in fact an
approximation of the traditional policy of “Equite Max-Min”. A simple exam-
ple of such a model is a star distribution system which we give necessary and
sufficient conditions of ergodicity by using Lyapunov functions.
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1. Introduction

In this work, we are interrested on a network managing the floods of data for
several users, in which no guarantee of service is offered. The most reasonable
model of the service in this context is the service known as “best effort”, which
allocates the band-width in an equitable way between the active users (see [2]).
In fact, there are several concepts of equity in this kind of problems, most
traditional being equity Max-Min. Even if one starts with well understanding
the way in which the band-width is distributed by the various mechanisms of
control of congestion. Relatively, little works allow to account for the impact of
the random nature of the traffic, in particular on the quality of service perceived.
One of the studies in this direction is that of Roberts and Massoulié [7] which
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analyze a linear network topology.

Our intention is to study more complex topologies under differents angles.
It is about a Markovian model of a network “best effort”, it is intended to
account for the impact of topology, like the parameters of traffic and the policy
of division of band-width on the performance. General information on the Lya-
punov functions and stability of the stochastic networks will be given in Section
2. The ergodicity conditions of the star distribution system are considered in
Section 3.

2. Lyapunov Fonctions, Drift

A manner at the same time natural and effective to study the stability of
Markov chains is by means of Lyapunov functions. The latter is a mapping
f+ E — R,. The drift associated with fis defined by

Vie B, Afi) =E(fX(n+1)) - (X(n)) - X(n) = i) ,

where FE is the space of states ( here discrete ) of the chain.

In a heuristic way, f represents a potential energy, and Af the tendency of
Markov chain “to converge” towards an area of finished energy, or “to diverge”
towards an area from infinite energy, according to the sign of the drift outside
a unit finished. More formally, there are the following criteria of stability.

Theorem 2.1. (Foster Criterion) Let x be an irreductible Markov chain.

A sufficient condition so that y is positive, is that there exist a finite set A

and a Lyapunov function f, such that sup Af(i) < oo and for certain constant
€A

e >0,
Vig A, Af(i) < —e.

Proof. Let 74 be the time of return towards A. We have for all n > 1,

E(f(Xn+1)'H{TA>n+1}/X( )7 X(O))
E(f(X(n+1))Lir 50y /X(0), ..., X(0))
E(f(X(n+1))/X(n)) Lz, 5ny < (f(X(n)) =€) Lizy>ny-

Let ¢ € E. For all n > 1, we have

0 < Bl (X (n+ D)grysmpy] < Bilf (X () Lprysm] — € Pilra > ).
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By iteration of this inequality, one obtains

n

0 < Ef(X(1) Iirysny) — £ Y Pi(ra > k).
k=1

While making tighten n towards the infinity, and by noticing that

Eil f(X (1)) Iz, >3] S Bl f(X(1))] = f(2) + AF(5),

(e}
it gets e. ZPZ‘(TA > k) < f(i) + Af(0).
k=1
Finally,

Vi€ E, Ei(ta) <1+ ' (f(i) + Af(3)).
That is to say in particular, Vi € A, E;(74) < co. Thus, there is a positive unit

finished A, which implies the positivity of the chain. U
For all functions m : E — N, we define

Vie B, A" f(i) = E(f(X(n+m(i))) - f(X(n))/X(n) =i).

A natural generalisation of Foster’s criterion is given by the following result.

Corollary 2.1. (Generalized Foster Criterion) Let x be an irreductible
Markov chain. A sufficient condition so that y is positive is that exist a finite
set A, a Lyapunov function f, a function m defined on E and taking nonnull
integer values, such that

sup A" f(i) < 400
i€A

and for a certain constant € > 0,

Vig A, ATf(5) < —em(i).

3. Star Networks
3.1. Description of the Model

We consider a network including £ bonds. Several sources establish connections
along a roads which borrow these bonds. We are interested to the way of band-
width dividing offered by each bond between active connections, like with the
effect of allowance policy on the dynamic of the network.
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In the star distribution systems, all the roads are length 2, which represents
rather well a large switch with many roads. Each branch of star comprises two
bonds then (entering and outgoing) and each road is isomorphous with a couple
of branches.

That is to say R the set of network’s roads. Connections are created on a
road according to a process of Poisson of intensity A,,r € R. Each connection
is maintained until to have transmitted through the network the data, whose
volume follows an exponential law of average o.. A bond [ € £ has a band-width
C; and the intensity of arrival to this bond is noted

Z)\ oy

Summation being carried out on all the roads using the bond [. Each road r
has at every moment a ¢, fraction of the band-width available.
The state of the system at the moment ¢t € R is defined by the number of
active connections on each road, it is noted X (t) = (x,,r € R) and the quantity
t) = Z x,(t) represents the number of connections on the bond [ € £. The

ler
vector X (t) is a Markov process from which the possible transitions are:

— Arrival of a connection on a road r, with intensity A.

— Departure of a connection on a road r, with intensity 5T( &XW)

Distribution policy of the band-width considered in our Work is the policy
known as of -MIN- proposed by the authors L. Massoulié and J. Roberts in [7],
where a connection on a road r is seen allotting a flow

PRX() = pin e

3.2. Ergodicity Conditions

It proves that the stationary regime exists under the usual conditions, which
ensure that flow entering in each bond [ is lower than ;.

Theorem 3.2.1. 1. IfI}l&LX p1 < 1, so the network is ergodic.
€

2. If max py > 1, so the network is transient.
€

Proof. We consider a Markov chain with discrete time (X(n),n € N),
which describe the sequence of states visited by the process at continuous time
(X (t))ter. On basis of a fixed state X = (x,,r € R), the transitions are defined
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by:
Ar
Plz,(n+1) —x,(n) =1/X(n) = X] = D
1 Ty . Cl
Plz,(n+1) —z.(n) = —-1/X(n) = X] = D J_rrl%r X
where
C 1
D= (\+ —mln—) < |R|.(max A, + max —.max ().
oy ler X reR reR o, leL

reR

Let us note

1
D' = |R]|.(max \, + max —. max C)).
reR reR oy lel

The ergodicity of the process (X;)ier is implied by that of (X,,n € N)
(since the borrowing rates of a state X are undervalued uniformly by a positive
constant).

i) Let us show that if max py < 1, then the process (X;):cr is ergodic.
€

We suppose that pps = max py < 1. We introduce Lyapunov function
€
Z Z k
= ’Y’I" b
reR 1<k<z,

where ~, > 1 will be clarified further.
In order to express the rates of transition according to x, and p;, we write:

Iy
X = Zxr Z)\ oy < piCy max

ler ler Ir

and we introduce quantities

_ Ty
= T m
Thus, Vr € R,
Bl(zs(n 4 1) — ap(n) = —1)/X(n) = X] > 27 Ir
— T lN) = — n) = .
i " ~ D.py Ty

Then, we can write

E[(f(X(n+1)) = f(X(n)))/X(n) = X]
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— Z{rywr“ (xr(n+1) —2.(n) =1)/X(n) = X]

reR

Bl (n 1) =arn) = ~1)/X(n) = X]} £ 3 25 = 2]
reR

1
For a fixed 6 and under condition py; < € < 1, one poses v, = y3ror , where
v is selected such as

1
oMY = pu YT <B<1, reR.

It resultes that v and 6 satisfy the preceding constraints

E[(f(X(n+1) = f(Xa))/ X (n <ZpMD ]

x
reR M

Let a be a real such that 6§ < a < 1. The following quantities will be evaluated
separately

AryEr T
21 — Z LD[H S r ]’
T >Q.T ) p pM'f M
ApyEr Ty
Yo = 60— .
2 Z pM.D[ i‘M]

rxr<a.X )

We raise the sum X, of which all the terms are negatives, by only one term
corresponding to rg for which z,, = Z:

5 )\To.fny 9 ,YJJM 9 )
<0 (- < — o). mi 0.
L= py-D ( Oé) o pM.D( a) 5%17131 r<

Similarly, for 39, one has
)\ QT nr TN
YA g 57D 2y [R].G max A,
rER

by
? pm-D PM-

IN

rI,<a.Tpr
Finally, if C' > 0 and € > 0 are selected in order to carry out the inequality

(0 — @) min A, + 7@ D-C|R|.Hmax )\, < —¢,
reR reR

we obtain Va € {zp; > C},

E[(f(X(n+1)) = f(X(n))/X(n) = X] = %1 + Xy
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—e.ytM < —enC

- < 0.
pm-D— py.D

Since the set {zjs < C'} is compact, one can apply the theorem of Foster, and
to deduce that the chain is ergodic.
ii) Let us suppose now that I?Eacx pr > 1, i.e. that there exists [y such that
pi, > 1.
While posing
9(X) =) 0,7,
lo€r

Thus, one has

E[(9(X(n+ 1) - g(X(n)))/X(n) = X] =

loEr

~Pl( (0 + 1) — 2 (n) = ~1/X(n) = X]} > = [Cloopt, — Ca] > 0.

According to Foster’s criterion for the transience, and as the jumps are
limited, the system is thus transient. O

4. Conclusion

— The configuration which was studied (star network) is a configuration that
corresponds to a telecommunications network, such as the switching networks
of packages or the switching networks of cells (ATM).

— The study of ergodicity aims to lay down the processing capacity of com-
munications’s machines, to know the operating cost of a node, then to result in
changing the support of transmission (the band-width) and the nodes (machines
of communications).

— A future work will be as to seek the conditions of ergodicity for a switching
network in other types, and with another policy of the band-width allowance.
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