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1. Introduction

The Schroder equation
o(f(x)) = Ap(z), (1)

one of the fundamental equations of linearization, plays an important role in
many branches of mathematics, among others in the theory of dynamical sys-
tems. We consider equation (1) in which A is a given bounded linear operator.
If A is a hyperbolic operator, then Grobman [2] and Hartman [3]-[6] proved
that (1) has exactly one local homeomorphic solution (see also [8; Theorem
2.2]). In this paper we establish conditions, different from that of Grobman
and Hartman, under which there exists a homeomorphism ¢ which solves the
Schroder equation. Regarding local smooth solutions see [9; Corollary 1.1] (cf.
also [1; Theorem 8.2] and [7; Theorem 8.2.2] in finite dimensional case).
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2. Preliminaries

Let (X, |-]|) be a Banach space, which is a direct sum of closed linear subspaces
X1,...,Xn and let K C X. We will denote by F; the projection of X onto the
space X;, i.e. Pi(x) = x; for x = (x1,...,xn), where z; € X;, j=1,...,N.
To simplify notations we write ¢; instead of P; o ¢ for any function ¢ with
values in X. Let B(X) be the set of all bounded linear operators from X to X.
By P(K) we denote the set of all continuous functions ¢: K — X such that
Id — ¢ is bounded and by P;(K) we denote the set of all continuous functions
¢: K — X, such that Pj|x — ¢ is bounded. Note that the space P;(K) with
the metric d; given by

di(p, ¥) := sup [p(z) — ()|

zeK

is complete for ¢ = 1,..., V.
We assume that the following conditions hold:
(H1) A € B(X) is a bijection such that A(K) = K and

A(XZ) = Xz for i = 1, ...,N; (2)

1A |x, || <1 or |A|x, 71“ <1 for i=1,..,N;

(H2) f is a homeomorphism from K onto K and f — A is bounded.
The condition (H1) is in fact (under suitable change of a norm) equivalent
to hyperbolicity of operator A. It follows from (2) that

(P,oA)x; = (P,oA)x = Azx; for x = (21,..,2ny) € X, i=1,..,N. (3)

First we prove that equation (1) has a unique solution in the class P(K).

Theorem 1. Under the assumptions (H1) and (H2) equation (1) has a
unique solution ¢ € P(K). This solution ¢ is given by

N
o=2 i
=1

where
() = limy, oo A"Pi(f7"(2)), if [|[Alx, [ <1,
PR T limpns ATMB(f (@), i AR <1

forx € K.
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Proof. Fix i € {1,..., N} and consider the operator ®; : P;(K) — P;(K)
defined by
- Aogoof_l, if HA‘Xz H<17
ilp) := { Atogpof, if |[A|x, Y <1
It is easy to check that Lip (®;) < 1. By the Banach Fixed-Point Theorem
the operator ®; has exactly one fixed point ¢; € P;(K), i.e.

piof =Aogy;.

Then the function ¢ given by the formula ¢ = Zf\i 1 i is a solution of (1) and
belongs to P(K).

Passing to the proof of uniqueness, fix a solution ¢ € P(K) of (1). For
i = 1,...,N the function 1; is a solution of (1) in the class P;(K). By the
uniqueness in P;(K) already proved, we obtain v; = ¢; for i = 1,...; N and
then 1 = . U

Now we are interested in solving the equation

fle(x)) = ¢(g(x))- (4)

Let p be a norm in RY which is increasing on [0, 00)"V with respect to each
variable and such that

p(z) > |z| for i=1,...N, == (x1,..,2n5) € RV, (5)

Put
zlle == p(|z1]], ., [zn )

for x = (x1,...,xN) and assume that ¢ > 0 is a constant such that
lz|| < c||z]le for z € X. (6)
The space P(K) with the metric o given by
o(e,¥) = p(di(p1,¥1), -, dn (on, ¥N))
is complete. Moreover, the following inequalities hold:
di(pi, i) < o(p,9) (7)
for ¢, v € P(K),i=1,...,N and

d(@v 1/}) < 00(907 ¢) (8)
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for ¢, ¥ € P(K), where

d(p, ) = sup (@) — ().

Inequality (7) follows immediately from the definition of ¢ and from (5). To
prove (8) fix ¢, 1» € P(K). Taking into account (6) and the monotonicity of p
we have

lp(z) = (@)l < cllp(z) —y@)le
= pllpa(z) = a(@)]; s llon () = Y (@)]])

< ep(di(1,91), .., dn (0N, ¥UN)) = co(p, 1))

for x € K, whence we get (8).
We pass to solutions of (4) in P(K). To obtain the next result we assume:
(H3) A € B(X) is bijection such that A(K) = K and A satisfies (2);
(H4) constants [, ...,y given by

p . [ cLip(Piof), if i€,
LA Lk T+ cLip(Pio (f - A)),  if i€ Ty

fori=1,..,N, where Iy N[ =0 and I U Iy = {1,..., N}, satisfy

p(ly,..nln) < 1;
(H5) g is a homeomorphism from K onto K and g — A is bounded.

Theorem 2. Under the assumptions (H2)-(H5) equation (4) has a unique
solution ¢ € P(K).
Proof. Let F := f — A and define ®;: P(K) — P;(K) by
1

N ) ficpogT, itieh,
@z(@)-—{Allopio(spog_Fogp), if i€l

7

for i = 1,..., N. We consider the operator ®: P(X) — P(X) given by

N
D) =Y D)
i=1

and claim that the function ¢ € P(X) is a fixed point of ® if and only if ¢ is a
solution of equation (1). Indeed, if ¢ is a fixed point of @, then

vi = P(p); for i=1,...,N.
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If i € I, then
ficp=y;og. (9)

In the second case we have

floPZ-o(goog—Fogo),

7

p; = A

and then
Ajopi+F,op=p;og.

According to (3) the function ¢ is also a solution of (9). Adding (9) for ¢ =
1,..., N we see that ¢ satisfies (4).

We will prove that & satisfies Lipschitz condition with the constant less
than one. Fix i € I. Using (8) we have

d(®(p)i, @(¥)i) = d(Pi(p), Pi(¥))
= Sup,cx || fiopo g (x) = fiopog l(a)]
< Lip (fs) supzex [lo(z) — ¢ (2)||

= Lip (fi)d(p, ) < lio(p, )

for v, € P(K). If i € I3 then, by (7) and (8), we obtain the same conclusion
as follows

d(®(p)i, ©(1)i)
<A lx; “MIsupsex I(wiog = Fiow) = (iog—Fioy)|
<A lx; MIsupsex(l(piog —viogl + [|Fiop — E o))
= |4 [x; ~'I(di(i, ¥) + Lip (F)d(, %))

< (4 x; M1+ cLip (F))o (e, ) = lio(p,v)
for ¢ and ¢ € P(X). Finally
a(®(¢), 2(¥)) < p(ly, .., In)o (e, 1)

for p,1 € P(K). By Banach’s Theorem the operator ® has exactly one fixed
point. ]
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3. Main Result

The following result may be proved in the same way as [8, Theorem 2.1].

Theorem 3. Under the assumptions (H1), (H2) and (H4) with I, = {i :
A |x, || <1} and I = {i = ||A |x, ~!|| < 1}, equation (1) has a unique
solution ¢ € P(K). Moreover, ¢ is a homeomorphism.

Proof. The first part follows from Theorem 1. Let ¢ € P(K) be a solution
of (1). Applying Theorem 2, let 1) € P(K) be a solution of equation (4) with
g==A4,ie.

foy =1oA.

Then o1 and Yoy belong to the class P(K). In particular they are continuous.
Moreover,

(porp)oA=Ao(por),
and

(Yop)of=fo(poy),

i.e. ¢ o1 is a solution of
aoA=Aoc«

and 1) o ¢ solves
aof=foo.

On the other hand the identity is a solution of each of these equations. Hence
and from the uniqueness part of Theorem 1 and Theorem 2 we get

poy =1oyp=id,

which shows that ¢ is a homeomorphism. U
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