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Abstract: We show that the Friedmann-Lemâıtre-Robertson-Walker equa-
tions with scalar field and perfect fluid matter source are equivalent to a suitable
non-linear Schrödinger type equation. This provides for an alternate method
of obtaining exact solutions of the Einstein field equations for a homogeneous,
isotropic universe.
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1. Introduction

Recently, there have been interesting reformulations of Einstein field equations
for scalar field cosmologies (both for isotropic and anisotropic models) in terms
of generalized types of Ermakov-Milne-Pinney (EMP) equations; see [1], [3],
[4], [8], for example. Such equations occur in a variety of physical contexts
and in particular have served to provide a link between gravitational and non-
gravitational systems, see [5]. We present in this paper an alternate (non-
EMP) formulation of homogeneous, isotropic scalar field cosmology. Namely,
we provide a formulation in terms of a non-linear Schrödinger type equation.
Some applications to exact field solutions are presented, including some string-
inspired cosmological solutions.
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One can set up a direct correspondence between EMP solutions and Schrödinger
solutions which suggests, for example, that possible connections between this
work and that in [5] can be pursued. The Schrödinger equation here also seems
to be of some independent interest.

2. Einstein Equations

The Einstein equations for a Friedmann-Lemâıtre-Robertson-Walker (FLRW)
homogeneous, isotropic universe with scalar field φ, potential V , and perfect
fluid matter source assume the familiar form (for a vanishing cosmological con-
stant)

H2 +
k

a2

(i)
=

8πG

3
ρT ,

ä

a

(ii)
=
−4πG

3
(ρT + 3pT ) , (2.1)

where the total energy density ρT and pressure pT with matter contributions
ρm, pm are given by

ρT = ρφ + ρm , pT = pφ + pm , (2.2)

for

ρφ =
φ̇2

2
+ V ◦ φ , pφ =

φ̇2

2
− V ◦ φ , (2.3)

ρm =
D

an
, pm =

(n− 3)D

3an
, (2.4)

with D, n = constants ≥ 0, n 6= 0, H
def.
= ȧ

a
= the Hubble parameter for the

scale factor a = a(t), and k = 0, 1, or −1 = the curvature parameter. G is
Newton’s constant and units are selected so that the speed of light is unity;
cf. [7]. Equations (i), (ii) imply the fluid conservation equation

ρ̇T + 3H(ρT + pT ) = 0, (2.5)

which by definitions (2.3), (2.4) reduces to the Klein-Gordon equation of motion

φ̈+ 3Hφ̇+ V ′ ◦ φ = 0 (2.6)

of the scalar field φ. Note that for γm
def.
= n

3 one has the equation of state
pm = (γm − 1)ρm (by (2.4)). For γm = 1 (i.e. n = 3), for example, pm = 0,
which is the case of a dust universe.
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There is also an equation of state pφ = (γφ − 1)ρφ which follows by setting

γφ = 2φ̇2
[

φ̇2 + 2(V ◦ φ)
]−1

. γφ however, unlike γm, is a non-constant function

of time t.
In this paper we set up a correspondence (a, φ, V )←→ u between solutions

(a, φ, V ) of the field equations (i), (ii) in (2.1) and solutions u of the following
time-independent Schrödinger type equation

u′′(x) + [E − P (x)] u(x) = −nk
2
u(x)

4−n
n (2.7)

with constant energy E and potential P (x). For a flat universe (k = 0), or for
the special values n = 2 or 4 one notes that equation (2.7) is actually a linear

Schrödinger equation. The correspondence provides an alternate method, for
example, of solving the equations in (2.1). In some cases it is convenient to
specify the scale factor a(t) a priori and then find the scalar field φ and potential
V such that (a, φ, V ) is a solution in (2.1). This can be done, in particular, in
our approach as a(t) is sufficient to determine u(x) in (2.7), which by the
correspondence determines the desired φ and V .

3. Description of the Correspondence (a, φ, V )←→ u

With the above notation in place, and where we setK2 def.
= 8πG for convenience,

we can state the main theorem.

Theorem 1. Let u(x) be a solution of equation (2.7), given E, P (x). Then
a solution (a, φ, V ) of the Einstein equations (i), (ii) in (2.1) can be constructed
as follows, where D in (2.4) (which specifies ρT , pT ) is chosen to be −12E

n2K2 : First
choose functions σ(t), ψ(x) such that

σ̇(t) = u(σ(t)) , ψ′(x)2 =
4

nK2
P (x). (3.1)

Then one can take

a(t) = u(σ(t))−
2
n , φ(t) = ψ(σ(t)), (3.2)

V =

[

12

K2n2
(u′)2 − 2u2P

K2n
+

12u2E

K2n2
+

3ku
4
n

K2

]

◦ ψ−1. (3.3)

Here, in fact, (a, φ, V ) will also satisfy the equations

φ̇(t)2 =
−2

K2

[

Ḣ(t)− k

a(t)2

]

− nD

3a(t)n
, (3.4)
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V (φ(t)) =
3

K2

[

H(t)2 +
Ḣ(t)

3
+

2k

3a(t)2

]

+
(n− 6)D

6a(t)n
, (3.5)

again D
def.
= −12E

n2K2 . Conversely, let (a, φ, V ) be a solution of equations (i), (ii)
in (2.1), with some D given in (2.4) that specifies ρT , pT in (2.2). Similar to
(3.1), choose some solution σ(t) of the equation

σ̇(t) = a(t)−
n
2 . (3.6)

Then equation (2.7) is satisfied for

E
def.
= −K

2n2

12
D , (3.7)

P (x)
def.
=

nK2

4
a(σ−1(x))n

[

φ̇(σ−1(x))
]2
, (3.8)

u(x)
def.
= a(σ−1(x))−

n
2 . (3.9)

Theorem 1 therefore provides for a concrete correspondence (a, φ, V ) ↔
u between solutions (a, φ, V ) of the gravitational field equations (i), (ii) in
(2.1) and solutions u of the non-linear Schrödinger type equation (2.7). The
solutions (a, φ, V ) also correspond to solutions Y of the generalized Ermakov-
Milne-Pinney equation

Y ′′ +QY =
λ

Y 3
+

nk

2Y
(n+4)

4

, (3.10)

as discussed in [8]; also see [1], [4]. In turn, one can set up a correspondence
Y ↔ u between solutions Y of (3.10) and solutions u of (2.7), and thus obtain
the correspondence (a, φ, V ) ↔ u – and the proof of Theorem 1. However, we
prefer to give a direct proof of Theorem 1 – one that does not rely on the results
in [8], nor on the correspondence Y ↔ u – although the latter route served
as the motivation for the formulation of equation (2.7), and consequently of
Theorem 1. It is implicitly assumed in definition (3.3) that the inverse function
ψ−1 of ψ exists, which would not be the case if P (x) = 0. Therefore we first
assume that P (x) is not the zero function. The case P (x) = 0 will be discussed
later.

For the proof of Theorem 1 we first establish the salient formulas (3.4), (3.5),

given E, P (x), u(x) in (2.7). By (3.2), u ◦ σ def.
= a−

n
2 which differentiated in

conjunction with (3.1) gives (u′ ◦σ)(u ◦σ) = −n
2a

−n
2
−1ȧ

def.
= −n

2 (u ◦σ)H. That
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is, u′ ◦ σ = −n
2H which we also differentiate to obtain (u′′ ◦ σ)(u ◦ σ) = −n

2 Ḣ
(again by (3.1)); i.e.,

u ◦ σ = a−
n
2 , u′ ◦ σ = −n

2
H , (u′′ ◦ σ)(u ◦ σ) = −n

2
Ḣ. (3.11)

From equation (2.7), Pu2 = u′′u+Eu2 + nk
2 u

4
n so that by (3.11)

(Pu2) ◦ σ = −n
2
Ḣ + Ea−n +

nk

2
a−2. (3.12)

Using (3.11), (3.12) we now obtain by definitions (3.2), (3.3),

V ◦ φ =
12

K2n2

(

−n
2
H
)2
− 2

K2n

(

−n
2
Ḣ + Ea−n +

nk

2
a−2

)

+
12E

K2n2
a−n +

3k

K2
a−2

=
3H2

K2
+

Ḣ

K2
+
D

an

(n

6
− 1
)

+
2k

K2
a−2 (sinceD

def.
= − 12E

n2K2
),

which is equation (3.5) as desired. Again by (3.1), (3.2), φ̇ = (ψ′ ◦ σ)(u ◦
σ)⇒ φ̇2 def.

= 4
nK2 (P ◦ σ)(u ◦ σ)2 = (by (3.12)) 4

nK2

(

−n
2 Ḣ +Ea−n + nk

2 a
−2
)

=

− 2
K2 Ḣ − nD

3 a
−n + 2k

K2a
−2, which is equation (3.4).

With equations (3.4), (3.5) now established, we can compute ρT , pT in (2.2),
using (2.3):

ρφ = −(Ḣ − ka−2)K−2 − nD

6
a−n + 3(H2 +

Ḣ

3
+

2k

3
a−2)K−2

+
(n− 6)

6
Da−n (by (2.3), (3.4), (3.5))

= (3ka−2 + 3H2)K−2 −Da−n

def.
= (3ka−2 + 3H2)K−2 − ρm (by (2.4))

⇒ ρT
def.
= ρφ + ρm

(i)′
= 3(ka−2 +H2)K−2,

which is exactly equation (i) in (2.1). Similarly, by (2.3), (3.4), (3.5),

pφ = −(Ḣ − ka−2)K−2 − n

6
Da−n − 3(H2 +

Ḣ

3
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+
2k

3
a−2)K−2 − (n − 6)

6
Da−n

= −2ḢK−2 − ka−2K−2 − 3H2K−2 +
(3− n)

3
Da−n

def.
= − (2Ḣ + ka−2 + 3H2)K−2 − pm (by (2.4))

⇒ pT
def.
= pφ + pm = −(2Ḣ + ka−2 + 3H2)K−2,

which with (i)′ gives ρT +3pT = 3(ka−2 +H2)K−2−3(2Ḣ+ka−2+3H2)K−2 =
−6(H2 +Ḣ)K−2 = −6 ä

a
K−2, which is exactly equation (ii) in (2.1). The arrow

u −→ (a, φ, V ) has therefore been established in one direction.
For the other direction (a, φ, V ) −→ u, with (a, φ, V ) a solution of the

equations in (2.1), we must show that u(x) defined in (3.9) solves equation
(2.7), for the data E, P (x) defined in (3.7), (3.8), with σ(t) defined by (3.6).
For convenience let g(x) = σ−1(x) denote the inverse function of σ(t): σ(g(x)) =
x⇒ σ̇(g(x))g′(x) = 1. That is,

u(x)g′(x) = 1 (3.13)

since by (3.6), (3.9) this product is a(g(x))−
n
2 g′(x) = σ̇(g(x))g′(x). Then

u′(x) = −n
2
a(g(x))−

n
2
−1ȧ(g(x))g′(x)

def.
= −n

2
u(x)H(g(x))g′(x)

= −n
2
H(g(x))

⇒ u′′(x) = −n
2
Ḣ(g(x))g′(x)

= −n
2

[

ä(g(x))

a(g(x))
−H(g(x))2

]

g′(x),

where by (2.1) the bracket here is

−K
2

6
[ρT (g(x)) + 3pT (g(x))] +

k

a(g(x))2
− K2

3
ρT (g(x))

= −K
2

2
[ρT (g(x)) + pT (g(x))] + ku(x)

4
n (i.e. u(x)

−2
n

def.
= a(g(x)))

= −K
2

2

[

φ̇(g(x))2 +
nD

3a(g(x))n

]

+ ku(x)
4
n (by(2.2), (2.3), (2.4))

= −K
2

2

[

4P (x)

nK2
u(x)2 +

nD

3
u(x)2

]

+ ku(x)
4
n , by(3.8), (3.9).
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That is, we see that

u′′(x) = −n
2
g′(x)

{

−K
2

2

[

4P (x)

nK2
u(x) +

nD

3
u(x)

]

u(x) + ku(x)
4
n
−1u(x)

}

= P (x)u(x) +
n2K2

12
Du(x)− n

2
ku(x)

4
n
−1

(by (3.13)), which by (3.7) is exactly equation (2.7). The proof of Theorem 1
is therefore complete, where we have assumed the existence of ψ−1 in (3.3).

Remarks. 1. The case P (x) = 0. In equation (2.7) we generally take
a non-zero potential P (x). If P (x) = 0 then ψ(x) is a constant function by
(3.1) and therefore its inverse function ψ−1(x) in definition (3.3) does not exist,
which means that the expression for V there has no meaning. However, if
P (x) = 0 we can instead define V (x) to be a constant function and we also
define φ(t) to be a constant function, because of (3.2). First note that equation
(3.4) still holds (with the left hand side there being 0 of course) since by (3.12),

0 = −n
2 Ḣ − n2K2

12 Da−n + nk
2 a

−2 (again as D
def.
= − 12E

n2K2 ), which multiplied by
4

nK2 gives

0 = − 2

K2
Ḣ − nD

3
a−n +

2k

K2
a−2, (3.14)

as claimed. Next note that the right hand side of (3.5) indeed is a constant
function of t (for (P (x) = 0)). Namely, differentiate (3.14) to obtain

Ḧ =

(

−2k

a2
+
K2n2D

6an

)

H , (3.15)

and then compute that

d

dt

{

3

K2

[

H2 +
Ḣ

3
+

2k

3a2

]

+
(n− 6)

6an
D

}

=
3

K2

[

2HḢ +
Ḧ

3
− 4kH

3a2

]

− (n− 6)nDH

6an

=
3

K2

[

2HḢ +

(−2k

3a2
+
K2n2D

18an

)

H − 4kH

3a2

]

− (n− 6)nDH

6an
(by (3.15))

= 3

[

2Ḣ

K2
− 2k

K2a2

]

H +
n2D

6an
H − n2DH

6an
+
nDH

an

= 3

(−nD
3

)

a−nH +
nDH

an
(by (3.14))
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= 0

⇒ (as claimed) that for some constant V0 one has

3

K2

[

H(t)2 +
Ḣ(t)

3
+

2k

3a(t)2

]

+
(n− 6)D

6a(t)n
= V0. (3.16)

In summary, in case P (x) = 0 in (2.7) we define φ(t) = any constant and V (x) =
V0 in (3.16) (as definition (3.3) no longer has a meaning). Then equations (3.14),
(3.16) (the proper versions of equations (3.4), (3.5)) hold.

It follows that, again with a(t)
def.
= u(σ(t))−

2
n , where σ̇(t) = u(σ(t)), one

does arrive at a solution (a, φ, V ) of (i), (ii), in (2.1). Namely, in (2.2), (2.3),
(2.4), ρφ(t) = V0, pφ(t) = −V0,

⇒ ρT = V0 +Da−n

=
3

K2

[

H2 +
Ḣ

3
+

2k

3a2

]

+
nD

6an
(3.16))

=
3

K2

[

H2 +
K2

6

(

−nDa
−n

3
+

2k

K2
a−2

)

+
2k

3a2

]

+
nD

6an

(by (3.14))

=
3

K2

[

H2 +
k

a2

]

,

which is (i), and

pT = −V0 +
(n− 3)D

3
a−n

⇒ ρT + 3pT = −2V0 + (n− 2)Da−n

= − 6

K2

[

H2 +
Ḣ

3
+

2k

3a2

]

− (n− 6)D

3an
+ (n− 2)Da−n

(by (3.16))

= − 6

K2

[

H2 +
Ḣ

3

]

− 4k

K2a2
+

2Dn

3an

= − 6

K2

[

H2 +
Ḣ

3

]

+ 2

(

− 2

K2
Ḣ

)

(by (3.14))

= − 6

K2

[

H2 + Ḣ
]
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= − 6

K2

ä

a
,

which is (ii).

2. Equations (3.4), (3.5) imply (i), (ii). The argument following the estab-
lishment of equations (3.4), (3.5) actually shows (independently of u(x)) that if
a(t) is given a priori, and if φ(t), V (x) are functions satisfying equations (3.4),
(3.5), then automatically (a, φ, V ) solves equations (i), (ii) in (2.1).

4. Some Examples

As a simple illustration of the application of Theorem 1, choose u(x) =
(

1−A4ω2x2
)

/A2

forA,ω > 0, which solves equation (2.7) for E = 0, P (x) = 2A2
(

1−A2ω2
) (

1−A4ω2x2
)−1

=

K2B2A4
(

1−A4ω2x2
)−1

, B2 = 2(1 − A2ω2)/K2A2, n = 4, k = 1. In (3.1)

we can take σ(t) = tanh(ωt)/A2ω, ψ(x) = ψ0 ± B
ω

arcsin(A2ωx) = ψ0 ±
B
ω

arctan( A2ωx√
1−A4ω2x2

) for A2ω|x| < 1 and obtain from (3.2), (3.3), a(t) =

A cosh(ωt), φ(t) = ψ0 ± B
ω

arcsin(tanh(ωt)) = ψo ± B
ω

arctan(sinh(ωt)) = ψ′
0 ±

2B
ω

arctan(eωt), V (x) = 3ω2

K2 + B2 cos2( ω
B

(x −ψ0)), for constants ψ0, ψ
′
0, which

is the Ellis-Madsen solution in Section 4.3 of [2]. We note that the 2 in the
expression sin

(

2 ω
B

(φ− φ0)
)

in equation (42) of [2] should not appear there.
One can obtain in fact all of the solutions in [2] for a suitable choice of u(x)
and n.

Özer and Taha have considered in [6] two string-motivated solutions (aj , φj , Vj),
j = 1, 2, for k = 1, Dj = 0, where the potentials Vj were specified a priori. One

can also take the point of view of specifying the scale factors a1(t) = (a2
0 + t2)

1
2 ,

a2(t) = a0+t2/2a0, for a0 6= 0, and then applying Remark 2 to find (φj , Vj). For
a2(t), for example, H2(t) = 2t/(2a2

o + t2), Ḣ2(t) = 2(2a2
0 − t2)/(2a2

0 + t2)2, and

one obtains by (3.2) φ̇2(t)
2 = 4t2/K2(2a2

0+t2)2 ⇒ φ2(t) = φ0+ 1
K

log
(

1 + t2

2a2
0

)

,

where we choose the positive square root. Also, H2(t)
2+Ḣ2(t)

2/3+2/3a2(t)
2 =

(10t2 + 12a2
0)/3(2a

2
0 + t2)2 ⇒ V2(φ2(t)) = (10t2 + 12a2

0)/K
2(2a2

0 + t2)2, by

(3.5). For x > φ0, we can take φ−1
2 (x) =

√
2|a0|

[

eK(x−φ0) − 1
]

1
2 and com-

pute that V2(x) = V2(φ2(φ
−1
2 (x))) =

[

5e−K(x−φ0) − 2e−2K(x−φ0)
]

/K2a2
0. Sim-

ilarly, for the above scale factor a1(t) one can obtain via (3.4), (3.5) φ1(t) =

φ′0 + 1
K

log
(

1 + t2

a2
0

)

, V (x) =
[

4e−K(x−φ′
0) − e−2K(x−φ′

0)
]

/K2a2
0, say for x > φ′0.

These solutions (aj , φj , Vj) can also be obtained by taking uj(x) = aj(σ
−1(x))−

nj

2

(which is motivated by (3.2)) for the convenient choices n1 = 4, n2 = 2, and
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using the corresponding solutions σ1(t) = a−1
0 arctan(a−1

0 t), ψ1(x) = ψ0 −
2
K

log(cos(a0x)), σ2(t) =
√

2 arctan((
√

2a0)
−1t), ψ2(x) = ψ0 − 2

K
log(cos( x√

2
))

of the equations in (3.1) for P1(x) = 4a2
0 tan2(a0x), P2(x) = tan2( x√

2
); E1 =

E2 = 0. One can go beyond the assumption D1 = D2 = 0 (in [6]) and obtain
solutions φj , Vj ◦ φj via (3.4), (3.5). For example, for D1 6= 0 one can check,
using Mathematica for example, that

φ1(t) = φ′0 +
2√
3K

{

−
√

3a2
0 +DK2

a0
arctanh

(

√

3a2
0 +DK2t

a0

√
−DK2 + 3t2

)

(4.1)

+
√

3 log
(

3t+
√
−3DK2 + 9t2

)}

(4.2)

and that

V1(φ1(t)) =
3(4t2 + 3a2

0)−DK2

3K2(a2
0 + t2)2

. (4.3)

As a fourth example, and final one, for a parameter λ ∈ R \ {0}, let u(x) =

−3
4

√
3· tanh

(
√

27
8 λx

)

. Then u(x) solves equation (2.7) for E = A + 27
4 λ

2,

A > 0, P (x) = A, n = 1, k = −8λ2. By an application of Theorem 1, one
obtains the solutions (a, φ±, V ) given by

a(t) =
16

27

[

1 + e
27λ

4
√

2
(t−c)

]

,

φ±(t) = ±4

3

√

2

3

√
A

λK
arcsinh

[

e
− 27λ

8
√

2
(t−c)

]

, (4.4)

V (x) =
37λ2

25K2
+

135A

8K2
tanh2

[

3

4

√

3

2

λK√
A

(x− φ0)

]

,

for integration constants c, φ0.
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