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1. Examples

Fix integers n > 0 and d > 0. We will first study some problems on Lagrange
and Birkhoff multivariate interpolation on the cube [0, 1]n ⊂ Rn or the cube
[0, 1]n ⊂ Rn with respect to the set An,d of all polynomials in n real variables
with total degree at most d. For all integers n > 0, d ≥ 0, let ℘n,d the set of
all real polynomials in n variables x1, . . . , xn and Γ(n, d) := {(i1, . . . , in) ∈ Z

n :
ij ≥ 0 for all j and i1 + · · ·+ in ≤ d}. Notice that ℘n,d is an

(

n+d
n

)

-dimensional

real vector space and that ♯(Γ(n, d)) =
(

n+d
n

)

.
We will first give the set-up for the Lagrange interpolation in the bivariate

case.

Example 1. Fix an integer d > 0. For all integers i, j such that 0 ≤ i ≤ d
and 0 ≤ j ≤ d − i, set P (i, j) := (i/d, j/d) ∈ [0, 1]2. Set S2,d := {P (i, j)}.
Notice that ♯(S2,d) = (d + 2)(d + 1)/2.

Claim. S2,d is a unique Lagrange interpolation set for ℘2,d.
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Proof of Claim. Since ♯(S2,d) = ♯(Γ2,d) = dimR(℘(2, n)), it is sufficient to
show that if f ∈ ℘(2, d) and f(P ) = 0 for all P ∈ S2,d, the f ≡ 0. Since the
case d = 0, is obvious, we may assume d > 0. For all c ∈ R set Dc := {x2 =
c/(d+1)}. Each Dc is an affine line of R

2. Notice that S2,d ⊂ ∪c∈{0,...,d}Dc and
that ♯(S2,d ∩ Sj) = d + 2 − j for all j ∈ {0, . . . , d}. On an affine line Dc

∼= R

every finite S ⊂ Dc, S 6= ∅ is a unique interpolation set for the ♯(S)-dimensional
R-vector space of all polynomials of degree at most ♯(S) − 1. Apply this one-
variable fact to D0. We get that f is divisible by the equation x2 = 0 of D0.
Apply this one-variable fact to to D1. We get that f/x2 is divisible by the
equation x2 − 1/(d + 1) of D1. After d − 1 similar steps using D2, . . . ,Dd we
get that f is divisible by h :=

∏d
j=0(x2 − j/(d + 1)). Since deg(h) = d + 1, we

get f ≡ 0 proving the claim.

Now we will give the general set-up for the lagrange interpolation in the
multivariate case.

Example 2. Fix integers n > 0 and d > 0. For all (i1, . . . , in) ∈ Γ(n, d),
set

P (i1, . . . , in) := (i1/d, . . . in/d) ∈ [0, 1]n.

Set Sn,d := {P (i1, . . . , in)}(i1,...,in)∈Γ(n,d). Notice that ♯(Sn,d) =
(

n+d
n

)

.
Claim. Sn,d is a unique Lagrange interpolation set for ℘n,d.

Proof of Claim. We repeat with only minor modifications the proof of Claim
in Example 1. Since ♯(Sn,d) = ♯(Γn,d) = dimR(℘(n, n)), it is sufficient to show
that if f ∈ ℘(n, d) and f(P ) = 0 for all P ∈ Sn,d, the f ≡ 0. By Example 1 the
case n = 2 is true for all d. Hence we may assume n ≥ 3 and that the result is
true for all integers n′, d′ with n′ < n. Since the case d = 0 is obvious, we may
assume d > 0. For all c ∈ R set Dc := {xn = c/(d + 1)}. Each Dc is an affine
line of R

n. Notice that Sn,d ⊂ ∪c∈{0,...,d}Dc and that ♯(Sn,d ∩ Sj) =
(

n+d−j−1
n−1

)

for all j ∈ {0, . . . , d}. Furthermore after a translation the set Sn,d ∩ Sj is just
the set Sn−1,d−j. Apply this observation and the inductive assumption to D0.
We get that f is divisible by the equation xn = 0 of D0. Apply this observation
and the inductive assumption for the integer n − 1 to D1. We get that f/xn

is divisible by the equation xn − 1/(d + 1) of D1. After d − 1 similar steps
using D2, . . . ,Dd we get that f is divisible by h :=

∏d
j=0(xn − j/(d+1)). Since

deg(h) = d + 1, we get f ≡ 0 proving the claim.

Now we will consider a few partial Hermite and Birkhoff interpolation prob-
lems, i.e. at each interpolation node we prescribe the values of some (but not
all) partial derivatives. Set ∂i := ∂/∂xi

, 1 ≤ i ≤ n. Again, we will first do the
bivariate case. Use the notations and properties of the set Sn,d introduced in
Examples 1 and 2. As in those examples Dc, c ∈ R, denote the affine hyper-
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plane {xn = c/(d+1)} of R
n. We will first consider a bivariate partial Hermite

interpolation problem.

Example 3. Let ǫ : S2,d → {0, . . . , d} be any function such that
∑

P∈S2,d∩Dj
ǫ(P ) =

d + 1 − j for all j ∈ {0, . . . , d}. We will say that ǫ is an admissible function
for S2,d. Set S(2, d, ǫ) := {P ∈ S2,d : ǫ(P ) 6= 0}. The set S(2, d, ǫ) will be
the set of all nodes for the folowing partial bivariate Hermite interpolation on
the set of all polynomials of degree at most d in two real variables. For every
P ∈ S(2, d, ǫ) prescribe the value and all partial derivatives with respect to the
variable x1 up to order ǫ(P ) − 1. Since each line Dj, j ∈ {0, . . . , d}, support
exactly d + 1 − j condition for a one-variable Hermite interpolation problem
for polynomials of degree at most d− j, the proof of Claim in Example 1 gives
that these data give a uniquely solvable partial Hermite bivariate interpolation
problem.

Now we will do the general multivariate case.

Example 4. We use the set-up of Example 2. Let ǫ : Sn,d → {0, . . . , d} be
any function such that for every line D parallel to the x1-axis and containing at
least one point of Sn,d we have

∑

P∈Sn,d∩D ǫ(P ) = ♯(Sn,d ∩D). Set S(n, d, ǫ) :=

{P ∈ Sn,d : ǫ(P ) 6= 0}. At each point P ∈ S(n, d, ǫ) we prescribe the value and
all partial derivatives (∂1)

a with a ≤ ǫ(P ) − 1. Then we repeat the inductive
proof of Example 2 to check that in this way we get a uniquely solvable partial
Hermite multivariate interpolation problem.

Now we may describe a uniquely solvable Birkhoff bivariate problem.

Example 5. Fix an integer d > 0 and an admissible function ǫ : S2,d →
{0, . . . , d}. Recall that D0 := {x2 = 0}. Let η denote a degree d real univariate
Birkhoff problem with associated incidence matrix E satisfying the Pólya con-
dition and with no odd degree supported sequence (see [2], p. 6). Equivalently,
η is order-regular (see [1] or [2], Theorem 2.2.3). We distribute η among the
d + 1 points D0 ∩ S2,d = {(j/d, 0)}0≤j≤d in this order. At the other d(d + 1)/2
points of S2,d\S2,d ∩D0 we impose the Hermite data given by ǫ. We claim that
the Birkhoff bivariate problem on S2,d is uniquely solvable. Indeed, its restric-
tion to D0 is a uniquely solvable Birkhoff problem, because E is order-regular.
Then apply the proofs of Examples 1 and 2 to control the remaining conditions:
roughly speaking on S2,d\S2,d∩D0 we have a partial Hermite bivariate problem
for polynomial of degree at most d−1 and the proofs of Examples 1 and 3 show
that this partial Hermite bivariate problem is uniquely solvable.

Now by induction on n we may do the case n > 2 of Example 5.
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Example 6. Fix integers d > 0, n > 2 and take ǫ as in Example 4. Set
D := {x2 = · · · = xn = 0}. Let η denote a degree d real univariate Birkhoff
problem with associated incidence matrix E satisfying the Pólya condition and
with no odd degree supported sequence ([2], p. 6). We distribute η among
the d + 1 points D ∩ Sn,d = {(j/d, 0, . . . , 0)}0≤j≤d in this order. At the other
(

n+d
n

)

− d − 1 points of S2,d\S2,d ∩ D0 we impose the Hermite data given by ǫ.
We claim that the Birkhoff multivariate problem on Sn,d is uniquely solvable.
Indeed, the case n = 2 is proved in Example 5, while in the inductive step
needed to copy the proof of Example 2 and 4 to conclude by induction on n we
only use a partial Hermite multivariate problem (not a general partial Birkhoff
problem) and this partial Hermite multivariate problem is uniquely solvable by
Example 4.

In the next two examples we will consider bivariant interpolation in which
the nodes are contained in [−1, 1]2. We will simultaneously consider Lagrange,
Hermite and Birkhoff interpolation.

Example 7. Fix an even integer d ≥ 2. For every j ∈ {0, . . . , d} let
Lj ⊂ R

2 denote the half-line {t(cos(2πj/(d + 1))), t(sin(2πj/(d + 1)))}t>0. For
1 ≤ i ≤ d+1− j set Pj,i := ((i/(d+1)(cos(2πj/(d+1)), ((i/(d+1) sin(2πj)(d+
1))) ∈ Lj ∩ [−1, 1]2. We use the nodes Pj,i for the Lagrange interpolation. To
see that the corresponding interpolation problem is uniquely solvable we use
the lines associared to the half-lines L0, . . . , Ld (in this order) and the inductive
proof of Example 1. For the Hermite interpolation we fix the function ǫ. If
P ∈ Lj and ǫ(P ) ≥ 2, then we prescribe the values at P of the first ǫ(P ) − 1
partial derivatives in the direction of the line associated to Lj. For Birkhoff
interpolation we use the function η on the half-line L0. Here we use that d is
even and hence that for all i 6= j the lines associated to the half-lines Li and
Lj are different.

Example 8. Fix the even integer d and the half-lines Lj as in Example
7. Now we use as nodes the points Qj,i := ((i/(d + 1 − j)(cos(2πj/(d + 1 −
j)), ((i/(d + 1 − j) sin(2πj)(d + 1 − j))) ∈ Lj ∩ [−1, 1]2.

When n > 2 for Lagrange and partial Hermite interpolation we may mix
Examples 7 and 8 with all other examples (plus the clasical case on the real
line) and get the following result.

Example 9. Fix an even integer d ≥ 2 and an integer n > 23. For every
j ∈ {0, . . . , d} let Lj ⊂ R

2 denote the half-line {t(cos(2πj/(d+1))), t(sin(2πj/(d+
1)))}t>0 and Dj the associated line. See R

2 as the 2-dimensional linear subspace
{x3 = · · · = xn = 0} of R

n. Set Hj = Dj × R
n−2. Set n′ := n − 2. Use the
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set up of Examples 1 and 3 (resp. Examples 2 and 4) for the integer n′ when
n′ = 2 (resp. (n′ > 2)). Use the clasical set-up on the real line if n′ = 1. Taking
the product on the factor R

2 with either the Example 7 or the Example 8 we
get other Lagrange or partial Hermite uniquely solvable interpolation problem
for polynomials of degree at most d in n real variables.

Now we describe a less elementary uniquely solvable bivariate partial Her-
mitian problem.

Example 10. For any P ∈ R
2 and for all integers m ≥ b ≥ 1, let (m, b)P

and [m, b]P denote the following partial bivariate Hermitian data. For (m, b)P
we prescribe the evaluation at P of all partial derivatives of order at most
m− 1 in which δ2 appears only up to power b− 1. Notice that (m, b)P imposes
(m + 1)m/2− (m− b + 1)(m− b)/2 independent linear conditions to the set of
all polynomial of degree at most m − 1 on 2 variable. For [m, b]P we prescribe
the evaluation at P of all derivatives (δ1)

u(δ1)
v with u ≤ m − 1 and v ≤ b − 1.

Notice that [m, b]P imposes mb independent linear conditions to the set of all
polynomial of degree at most m + b − 1 on 2 variable Fix integers d ≥ 1 and
s > 0. Fix s distinct lines Di, 1 ≤ i ≤ s, parallel to the x1-axis. Fix integers
bi > 0, 1 ≤ i ≤ s, such that b1 + · · · + bs = d + 1. On each Di fix some distinct
points, say Pi,j, 1 ≤ j ≤ ci, and integers mi,j ≥ bi, 1 ≤ j ≤ ci, such that
∑ci

j=1 mi = d + 1−
∑i−1

l=1 bi. We use as interpolation data the union of all data
(mi,1, bi)Pi,1, 1 ≤ i ≤ s, and all data [(mi,j, bi]Pi,j, 1 ≤ i ≤ s, 2 ≤ j ≤ ci. To
see that the associated interpolation problem is uniquely solvable we use the
so-called Horace Lemma first b1 times with respect to D1, then b2 times with
respect to D2, and so on.

Example 11. We use the notations (m, b)P and [m, b]P introduced in
Example 10. Fix integers d ≥ 1 and s > 0. Fix s distinct lines Di, 1 ≤
i ≤ s, parallel to the x1-axis. Fix integers bi > 0, 1 ≤ i ≤ s, such that
b1 + · · · + bs = d + 1. On each Di fix some distinct points, say Pi,j, 1 ≤ j ≤ ci,
and integers mi,j ≥ bi, 1 ≤ j ≤ ci. We also fix integers ǫi, 1 ≤ i ≤ s, such
that 1 ≤ ǫi ≤ min{s, ci}. On each Di we add ǫi interpolation data of type
(mi,j, bi)Pi,j and ci − ǫi data of type [mi,j, bi]Pi,j . We first apply the Horace
Lemma with respect to D1. If ǫ1 = 1, we apply again Horace Lemma with
respect to D1 (b1 − 1) times and then we reduce to a case with c′ := c − 1. If
ǫ1 ≥ 2, we apply the Horace Lemma with respect to D2. In this case we need
to have

∑c2
j=1 m2,j = d. And so on. We need to assume that the total number

of conditions on all D1, . . . ,Ds is (d + 2)(d + 1)/2. We give all possibilities in
the case s = 2. The case covered by Example 10 is the case ǫ1 = 1, which
forces ǫ2 = 1. In all the other cases we have ǫ1 = ǫ2 = 2 and we need to assume
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∑c1
j=1 m1,j = d + 1 and

∑c2
j=1 m2,j = d.

When n > 2 Examples 10 and 11 give by induction on n the following
partial Hermite problem in which only derivatives with respect to x1 and to x2

appear.

Example 12. First asssume n = 3. Take d + 1 distinct hyperplanes
Hj, 0 ≤ j ≤ d, of the form x3 = αj . On each hyperplane Hj prescribe the
data of Examples 10 or 11 with respect to the integer d − j. Again applying
the proof of Example 2 first to H0, then to H1, and so on, we see that this
interpolation problem is uniquely solvable. If n > 3 take again d+1 hyperplanes
Mj , 0 ≤ j ≤ d, and apply the case n′ := n − 1 with respect to the integer
d′ := d − j.
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