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Abstract: A micropolar model for blood flow through a horizontally non-
symmetreic artery with a mild stenosis is presented. To estimate the effect of
the stenosis shape, a suitable geometry has been considered such that the (x-
axis) shape of the stenosis can be changed easily just by varying a parameter
(referred to as the shape parameter). Flow parameters such as velocity, the
resistance to flow (the resistance impedance), the wall shear stress distribution
in the stenotic region and its magnitude at the maximum height of the steno-
sis (stenosis throat) have been computed for different shape parameter n, the
coupling number N and the micropolar parameter m. It is shown that the resis-
tance to flow decreases with increasing values of the parameter determining the
stenosis shape n also the resistance to flow increases with the coupling parame-
ter N and decreases with the micropolar parameter m. The magnitudes of the
resistance to flow are higher in the case of a micropolar fluid model than in the
case of a Newtonian fluid model. The wall shear stress and the shearing stress
on the wall at the maximum height of the stenosis possess an inverse variation
to the resistance to flow with respect to N and m. Finally, the effect of the
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coupling stress parameters N and m on the horizontal velocity is discussed.
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1. Introduction

One of the leading causes of the deaths in the world is due to heart diseases, and
the most commonly heard names among the same are ischemia, atherosclerosis
and angina pectoris. Ischemia is the deficiency of the oxygen in apart of the
body, usually temporary. It can due to a constriction (stenosis) or obstruction in
the blood vessel supplying that part. Atherosclerosis is a type of arteriosclerosis.
It comes from the Greek words athero (meaning gruel or paste) and sclerosis
(hardness), it involves deposits of fatty substances, cholesterol, cellular waste
products, calcium and fibrin (clothing material in the blood) in the inner lining
of an artery. The build up that results is called plaque. Plaque may partially
or totally block the blood flow through an artery.

Figure 1: Geometry of the stenosed chanal

The theory of micropolar fluid due to Eringen [3] is a subclass of microflu-
ids. The micropolar fluid, e.g., liquid crystals, suspensions and animal blood,
etc., consists of randomly oriented bar-like elements or dumbbell molecules and
each volume element has microrotation about its centroid, in addition to trans-
latory motion in an average sense. The model of micropolar fluid introduced by
Eringen [3] represents fluid consisting of rigid, randomly oriented (or spherical)
particles suspended in viscous medium where the deformation of the particles
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Figure 2: Variation of dimensional resistance of flow, λ̄, with δ∗ for
different values of N and n

Figure 3: Variation of dimensional resistance of flow, λ̄, with δ∗ for
different values of m and n

is ignored, micropolar fluids exhibit some micromotion of the fluid elements.
Further, they can sustain couple stress. The micropolar fluid is considered to
the model of the blood flow in small arteries and the calculation of theoretical
velocity profiles is observed in good agreement with experimental data.

A number of researchers have studied the flow of blood through stenosed
arteries [2-9]. In the paper, we study the blood flow through a horizontally
nonsymmetric artery with a mild stenosis, when blood is represented by a mi-
cropolar fluid, the effects of resistance to flow, the wall shear stress distribution
in the stenotic region and its magnitude at the maximum height of the stenosis
are discussed numerically and explained graphically.
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Figure 4: Variation of dimensional resistance of flow, λ̄, with δ∗ for
different values of N and L

Figure 5: Variation of dimensional resistance of flow, λ̄, with δ∗ for
different values of m and L

2. Formulation of the Problem

Consider a channel of width 2do and length L bounded by two walls. Let X

and Y axes be chosen along and perpendicular to the walls respectively; u and
v be the longitudinal and transverse velocities respectively. The geometry of
the stenosis which is assumed to be vertically symmetric can be described as

h(x) =

{

do[1 − η(bn−1(x − a) − (x − a)n)] , a ≤ x ≤ a + b ,

do , otherwise .
(1)
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Figure 6: Dimensionless wall shear, τ̄yx, distributions in the stenotic
region for different values of N and n

Figure 7: Dimensionless wall shear, τ̄yx, distributions in the stenotic
region for different values of m and n

Here h(x) and do are the width of the channel with and without stenosis,
respectively. b is the length of the stenosis, n(≥ 2) is a parameter determining
the shape of the constriction profile and referred to as the shape parameter (the
symmetric stenosis occurs for n = 2) and a indicates its location (as shown in
Figure 1). The parameter η is given by

η =
δ

dobn

nn/(n−1)

(n − 1)
, (2)

where δ denotes the maximum height of the stenosis located at x = a+ b
n1/(n−1) .

For this flow let the velocity vector is given by V = {u, v, 0} and the micro-
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Figure 8: Variation of dimensionless resistance to flow, λ̄, with N for
different values of ∆∗

Figure 9: Variation of dimensionless resistance to flow, λ̄, with m for
different values of ∆∗

rotation vector w = {0, 0, ν}. The governing equations of steady laminar flow
of an incompressible micropolar fluid can be written as:

∂u

∂x
+

∂v

∂y
= 0, (3)

ρ(u
∂u

∂x
+ v

∂u

∂y
) = −

∂p

∂x
+ (µ + κ)(

∂2u

∂x2
+

∂2u

∂y2
) + κ

∂ν

∂y
, (4)

ρ(u
∂v

∂x
+ v

∂v

∂y
) = −

∂p

∂y
+ (µ + κ)(

∂2v

∂x2
+

∂2v

∂y2
) − κ

∂ν

∂x
, (5)
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Figure 10: Variation of velocity u with y for different values of N

Figure 11: Variation of velocity u with y for different values of m

ρj(u
∂ν

∂x
+ v

∂ν

∂y
) = −2κν − κ(

∂v

∂x
−

∂u

∂y
) + γ(

∂2ν

∂x2
+

∂2ν

∂y2
). (6)

The boundary conditions are

u = 0, ν = 0 at y = ±h(x), (7)

where the material constants µ, κ and γ satisfy the following inequalities (see
[9])

2µ + κ ≥ 0, κ ≥ 0, γ > 0. (8)



400 Kh.S. Mekheimer, M.A. El Kot

Figure 12:

Introducing the following nondimensional variables

x′ =
x

b
, r′ =

r

d0
, u′ =

u

u0
, v′ =

bv

u0δ
,

h′ =
h

d0
, p′ =

d2
0p

u0bµ
, j′ =

j

d2
0

, ν =
d0ν

u0
,

(9)

into equations (3)-(6) and dropping the dashes. The appropriate equations
describing the steady flow of a micropolar fluid in the case of a mild stenosis
( δ

d0
≪ 1), subject to the additional conditions [10], [8], [7], [11]

(i) Re
δn

1
n−1

b
≪ 1 , (10)

(ii)
d0n

1
n−1

b
∼ O(1) , (11)

may be written as

∂p

∂x
=

1

1 − N
{
∂2u

∂y2
+ N

∂ν

∂y
}, (12)

∂p

∂y
= 0, (13)

2ν = −
∂u

∂y
+

2 − N

m2

∂2ν

∂y2
, (14)
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where u0 is the velocity averaged over the section of the channel of width
d0, Re = ρuodo

µ is the Reynolds number, N = k
(µ+k) is the coupling number

(0 ≤ N ≺ 1) [9] and m2 =
d2
0k(2µ+k)
γ(µ+k) is the micropolar parameter.

The corresponding boundary conditions are

u = 0, ν = 0 at y = ±h(x),

where

h(x) = 1 − η ∗ ((x − φ) − (x − φ)n), φ ≤ x ≤ φ + 1 (15)

and

η∗ =
δ∗nn/(n−1)

(n − 1)
, δ∗ =

δ

d0
, φ =

a

b
. (16)

Noting the fact p is a function of x only from equation (13), equation (12) is
rewritten in the form

∂

∂y
{
∂u

∂y
+ Nν} = (1 − N)

∂p

∂x
, (17)

hence, we get
∂u

∂y
= (1 − N)

∂p

∂x
y + A − Nν. (18)

Using equation (18) in equation (14), we get

∂2ν

∂y2
− m2ν =

(1 − N)m2

(2 − N)
{
r

2

∂p

∂x
y +

A

(1 − N)
}, (19)

and its general solution is

ν(x, y) = B cosh(my) + C sinh(my) −
(1 − N)

(2 − N)
{
r

2

∂p

∂x
y +

A

(1 − N)
}. (20)

Substituting equation (20) into equation (18) and integrating we obtain

u(x, y) = (
1 − N

2 − N
)
∂p

∂x
y2 + (

2A

2 − N
)y −

N

m
(B sinh(my) + c cosh(my)) + D, (21)

where A(x), B(x), C(x) and D(x) are the constants of integration, by using the
boundary conditions, we get

u(x, y) = (
1 − N

2 − N
)(
−∂p

∂x
){h2 − y2
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+
Nh

m sinh(mh)
(cosh(my) − cosh(mh))}, (22)

ν(x, y) = (
1 − N

2 − N
)(

∂p

∂x
){

h sinh(my)

sinh(mh)
− y}. (23)

We can find the volume rate Q(x) by

Q(x) =

∫ h

0
u(x, y)dy =

−1

3

∂p

∂x

1

F (x)
, (24)

where

F (x) =

(2 − N)m2 sinh(mh)

2m2(1 − N)h3 sinh(mh) − 3N(1 − N)h(hm cosh(mh) − sinh(mh))
. (25)

The pressure drop ∆p (= p at x = 0, −p at x = L) across the stenosis between
the sections x = 0 and x = L is obtained from equation (24) as

∆p =

∫ L

0
(
−dp

dx
)dx = 3Q

∫ L

0
F (x)dx. (26)

3. The Resistance Impedance

The resistance to flow (resistance impedance) is obtained from equation (26) as

λ =
∆p

Q
= 3{

∫ a

0
F (x)|h=1dx +

∫ a+b

a
F (x)dx +

∫ L

a+b
F (x)|h=1dx} . (27)

4. The Expression for the Wall Shear Stress

The nonzero shear stress in our problem are given by

τxy = µ
∂u

∂y
− kν, τyx = (µ + κ)

∂u

∂y
+ κν . (28)

By using the equation (9) and let τ ′ = doτ
µuo

we can find the dimensionalless
nonzero shear stresses by

τxy =
∂u

∂y
− (

N

1 − N
)ν, (29)
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τyx =
1

1 − N
(
∂u

∂y
+ Nν). (30)

From equation (30) we can find the expression for the wall shear stress by

τyx =
1

(1 − N)

∂u

∂y
|y=h, (31)

where ν = 0 at y = h, by using equation (21) we can find

τyx = −3Qh(x)F (x). (32)

We can note that the shearing stress at the stenosis throat (i.e the wall shear
at the maximum height of the stenosis located at x = a

b + 1
n1/(n−1) , i.e. τs =

τyx|h=1−δ∗)

τs = −3Q(1 − δ∗)F (x)|h=(1−δ∗). (33)

We can find the final expressions for the dimensionless resistance to λ̄, the wall
shear stress τ̄yx and the shearing stress at the throat τ̄s by

λ̄ = (1 −
b

L
)I +

1

L

∫ a+b

a
F (x)dx, (34)

τ̄yx = −h(x)F (x), (35)

τ̄s = −(1 − δ∗)F (x)|h=(1−δ∗), (36)

where

λ̄ =
λ

λ0
, τ̄rx =

τrx

τ0
, τ̄s =

τs

τ0
, λ0 = 3L, τ0 = 3Q, (37)

and λ0, τ0 are the resistance to flow and the wall shear stress for a flow in a
normal artery (no stenosis).

5. Discussion of the Results

To observe the quantitative effects of the spin-parameter m, particle fluid size
N and the stenosis shape n, computer codes are developed for the numerical
evaluations of the analytic results obtained for λ̄, τ̄yx and τ̄s (equations (34)-
(36)) for parameters values φ = 0; b = 1;L = 1, 2, 10; m = 0.001, 10, 100;
N = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8; n = 2, 6, 11, see [9].

In Figure 2 - Figure 5 we observe that the resistance to flow, λ̄ , increases
with the coupling number N , and the stenosis size δ∗, while it decreases with
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the micropolar parameter m, stenosis length, L, and the shape parameter n

and attains its maximal in the symmetric stenosis case, i.e. n = 2.

In Figure 6 - Figure 7 we notice that the wall shear stress distribution τ̄yx

increases in the converging zone as the shape parameter, n, increases while it
decreases in the diverging zone in a similar situation. For any given stenosis
shape, the wall shear stress, τ̄yx, steeply decreases in the upstream from its
approached value (i.e, at x = 0) to the peak value at the throat (τ̄yx=τ̄s),
then increases in the downstream of the throat and assumes its approached
magnitude at the end point of the constriction profile (i.e, at x = 1). The rate
of decreases (with respect to the axial distance) of τ̄yx in the upstream of the
throat decreases with the increasing values of n, whereas the rate of increases
of the same in the downstream of the throat increases with n.

The wall shear stress distribution τ̄yx and its value at the throat, τ̄s, possess
an inverse variations to the flow resistance, λ̄, with respect to the coupling
parameter N and the micropolar parameter m. τ̄s is independent of the shape
and thus assumes the same magnitude for any value of n, see Figure 6 - Figure
8.

In Figure 9 - Figure 10 we study the variation of resistance to flow, λ̄, with
the coupling parameter N and the micropolar parameter m. In Figure 9 We
observe that resistance to flow, λ̄, increases with increasing the stenosis size,
δ∗, and the coupling parameter, N , for any value of the micropolar parameter
m. Form Figure 10 we can see that, the resistance to flow, λ̄, decreases rapidly
for small values of m and then take a constant value as m increases.

Finally, Figure 11 - Figure 12 show the effect of N and m on the velocity
profile of the fluid u where as, N , increases (the particle size increases) the
horizontal velocity u decreases and as m increases (micropolar spin parameter
increases) the horizontal velocity u increases.
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