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Abstract: D-optimal regression designs under random block effects in het-
eroscedastic models are considered. After taking the homeomorphism transfor-
mation to the trace function, we give the condition to check the D-optimality
of the design and the equation system of the positions and the powers of the
design points. Finally, we give the numerical results and the efficiency analysis.
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1. Introduction

D-optimal regression design is an important part of the experiment designs.
The D-optimal regression designs in homogeneous models have been studied
extensively. There have been lots of important achievements in this field. The
Equivalence Theory of Kiefer and Wolfowitz [6] provides major impetus to the
research of optimal designs. Most of literature on homogeneous models can
be found in Pukelsheim [7]. Khuri [5] discussed the response surface models
with random block effects, but did not consider the design aspect expect for
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orthogonal blocking. Cheng [3], Atkins and Cheng [1] studied the experiment
described by Chasalow [2], and gave the explicit solution of the positions and the
powers of the design points in homogeneous models. The heteroscedastic models
are common in practice, which include homogeneous models. The traditional
method is to use the homogeneous models to approach the heteroscedastic ones
by taking logarithm to the latter. The shortcoming of the method is that the
errors are large when the efficiency is near 1. Wong [8], Guo [4] derived some
results on optimal regression designs for heteroscedastic models. In this article,
we study the D-optimal designs with random block effects in heteroscedastic
models directly and give the explicit construction of D-optimal design with
blocks of size two for quadratic regression on [−1, 1], and present an analytic
proof of the D-optimality. In next section, we give the heteroscedastic regression
model with blocks.

2. The Heteroscedastic Regression Model

Consider the optimization problem minx∈æ ‖ν(x)‖2 based on the statistical
model

y(x) = fT(x)β + ν(x), (1)

where x ∈ ω ⊂ Rn, the design region ω is a compact set in Rn, vector
f(x) = (f1(x), f2(x), · · · , ft(x))T ∈ Rt, and β = (β1, β2, · · · , βt) ∈ Rt is an
unknown parameters vector, y(x) is the response at the x-level of the indepen-
dent variables. The errors ν(x) are independent by means zero and variances
proportional to 1/λ(x), where λ(x) is called the efficiency function (Pazman,
1986). We consider the heteroscedastic model, i.e., λ(x) is not constant on ω.

We assume that there are N observations. Let Y = (y1, y2, · · · , yN )T be
the vector of observations at x1, x2, · · · , xN (not necessarily all distinct). Then
the former model can be expressed as

E(Y) = Aβ = (amn)N×tβ, (2)

cov(Y) = diagm = 1, 2, · · · , N (
σ2

λ(xm)
), (3)

where amn = fn(xm), m = 1, 2, · · · , N ; n = 1, 2, · · · , t . Assume that λj(x),
λe(x) are known, and λ(x) is constructed by λe(x) and λj(x). The variances
of random errors are proportional to 1

λe(x) , while the random block errors are

proportional to 1
λj(x) . Let the [i + (j − 1)k]-th entries of y(x) is the i-th obser-

vation in the j-th block, where the block size is k. Then (3) can be expressed
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as following

cov(Y) = cov(ν(x)) + Ib ⊗ cov(θj), (4)

where cov(ν(x)) = σ2
ediagm=1,··· ,N ( 1

λe(xm)), cov(θj) = σ2
bdiagi=1,··· ,k;j=1,··· ,b ( 1

λj(xi+(j−1)k)).

Assume that σ2
b = aσ2

e , where a ∈ R+. Then one has

cov(Y) = B(x)σ2
e = [

1

λe(xi+(j−1)k)
+

a

λj(xi+(j−1)k)
]σ2

e .

Equation (4) covers the model Y = Aβ + θ + ν(x), where θ = (θ1, · · · , θb)
T ∈

Rb,1 is a vector of random block effects, ν(x) ∈ Rbk,1 is a vector of random errors,
and E(θ) = 0,E(ν(x)) = 0, cov(θ, ν(x)) = 0. The problem of determining
optimal designs (selecting N points x1, · · · , xN and grouping them into b blocks
of size k) for estimating the unknown parameters β1, · · · , βt will be considered.
The covariance matrix of their generalized least square estimators β̂1, · · · , β̂t

is equal to σ2
e [A

TB−1(x)A]−1. A design is called D-optimal if it minimizes
the determinant of [ATB−1(x)A]−1. The inverse of ATB−1(x)A is called the
information matrix of the design. It is possible to study the efficiencies of such
designs only if the optimal designs were determined.

3. D-optimal Designs with Random Block-Effects

When we use regression model to approach the response surface, the higher the
order of the model is, the better the result is. In general, it is sufficient to use
quadric model to approach response surface. To quadric model (t = 2), suppose
there are relations x0 = −z0 and y0 = 0 in the three D-optimal regression design
points x0, y0, z0, then we can obtain their value. The D-optimal designs with
blocks of size two for quadric regression on [−1, 1] in homogeneous models are
presented by Cheng [3], Atkins and Cheng [1]. In their papers, the blocks of
D-optimal design ξ∗ are (x0, k), (z0,−k), (z0, x0), the powers of blocks are ε,
ε and 1 − 2ε, respectively. Similar to it, we do the design of heteroscedastic
model. So the design is denoted by ξ∗, too.

To unify the formulations of the optimal design points of different errors
distribution combinations, we take homeomorphism transformation to the trace
function g(u, v;x0, y0, z0), and give the mapping T : (x0, y0, z0) 7→ (1, 0,−1),
keeping the properties of the functions fixed. This leads into the operation of
right scalar multiplication (fλ)(x). For any convex function f : Rn → R1 and
λ ∈ [0,∞), we have

(fλ)(x) = λf(λ−1x). (1)
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If the trace function g(u, v) is convex, by (1) one has

(gλ)(u, v;x0, y0, z0) = λg(λ−1u, λ−1v;λ−1x0, λ
−1y0, λ

−1z0).

Let λ−1x0 = 1, λ−1y0 = 0, λ−1z0 = −1. Since x0 = −z0 and y0 = 0, we have
λ = |x0|. Thus the mapping is

(g|x0|)(u, v;x0, y0, z0) = |x0|g(|x0|
−1u, |x0|

−1v; 1, 0,−1). (2)

Theorem 1. Suppose t = 2. For any efficiency function λ(x), if µ(x) =
1/λ(x) is even function on [−1, 1], λ(x) is convex and µ

′

(x) is negative on [0, 1],
there exists a k satisfying






(3ε2 − 4ε + 1)µ(k) + (2ε − 3ε2)k2µ(1) = 0, (A)
2k[2(1 − ε)µ(k) + (3k2 − 1)εµ(1)]µ(k)

−(k2 − 1)[(1 − ε)µ(k) + 2k2εµ(1)]µ
′

(k) = 0. (B)

Set D = (1−k2)2[(2ε− ε2)k2µ(1)+(1− ε2)µ(k)]−2[(1− ε)µ(k)+ εk2µ(1)][(1−
ε)µ(k) + εk4µ(1)]/µ(0). If 1

3 < ε < 1
2 and D > 0, there exists a D-optimal

design ξ∗ with weight ε, ε, 1 − 2ε on the points (−1, k), (−k, 1)(k > 0) and
(−1, 1), respectively; otherwise, the design ξB with weight 1

3 on each of the
points (−1, 0), (0, 1) and (−1, 1) is D-optimal.

Proof. The inverse matrix of M(ξ∗) is proportional to




R 0 T
0 S 0
T 0 U



 . (3)

Let µ(x) = 1/λ(x), then we have

R = [(1 − ε)µ(k) + εk2µ(1)][(1 − ε)µ(k) + εk4µ(1)]/(µ(1)2µ(k)2),
T = −[(1 − ε)µ(k) + εk2µ(1)]2/(µ(1)2µ(k)2),
S = ε(1 − ε)(1 − k2)2µ(1)µ(k)/(µ(1)2µ(k)2),
U = [(1 − ε)µ(k) + εk2µ(1)][(1 − ε)µ(k) + εµ(1)]/(µ(1)2µ(k)2).

The trace function is

g(u, v)
.
= tr




(

1 u u2

1 v v2

)
M−1(ξ∗)




1 1
u v
u2 v2




(

λ(u) 0
0 λ(v)

)

 . (4)

Let v = βu. Since µ(x) is even function, we have
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g(u, βu) = R{
1

µ(u)
+

1

µ(βu)
} + (2T + S){

1

µ(u)
+

β2

µ(βu)
}u2

+ U{
1

µ(u)
+

β4

µ(βu)
}u4. (5)

g(u, βu) is convex since U > 0, λ(u), u4 and u2 are all convex functions on
u ∈ [−1, 0]. Thus the maximum of g(u, βu), β ∈ [0, 1] occurs either at a point
of the form (−1,−β) or at (0, 0). By the definition of trace function g(u, v),
one has that

[g(−1,−k) − g(0, 0)]µ2(1)µ2(k)

= (1 − k2)2[(2ε − ε2)k2µ(1) + (1 − ε2)µ(k)] − 2[(1 − ε)µ(k) + εk2µ(1)]

[(1 − ε)µ(k) + εk4µ(1)]/µ(0). (6)

Set D = (1−k2)2[(2ε− ε2)k2µ(1)+(1− ε2)µ(k)]−2[(1− ε)µ(k)+ εk2µ(1)][(1−
ε)µ(k) + εk4µ(1)]/µ(0). If D > 0, we have g(−1,−k) > g(0, 0), then the
maximum of g(u, βu) is attained at u = −1; otherwise, the maximum is attained
at u = 0. The maximum of g(−1,−β) over β ∈ [0, 1] is obtained at β =
k(k > 0). If µ(x) is even function and µ

′

(1) is negative, it can be proved that
µ

′

(−1) > 0 and µ
′

(0) = 0.
Then we have

{
∂g(−1,v)

∂v
|v=−1 < 0,

∂g(−1,v)
∂v

|v=0 = µ(0) − µ
′

(0)R = µ(0) > 0.
(7)

There must be a point k ∈ (0, 1) at which ∂g(−1,v)
∂(v) |v=−k= 0, i.e., g(−1,−β)

reaches its maximum at β = k. By symmetry theory, we have that g(−1,−k) =
g(k, 1). It suffices to show that the maximum is obtained at (−1, 1) according
to the multivariate version of equivalence theory. Our aim is to choose k which
satisfy {

∂
∂v

g(−1, v) |v=−k= 0,
g(−1, 1) = g(−1,−k).

(8)

Since

[g(−1, 1) − g(−1,−k)]µ(1)2µ(k)2 = (1 − k2)2[(−3ε2 + 4ε − 1)µ(k)

+ (3ε2 − 2ε)k2µ(1)],

by the second formulation of (8), we have that

(3ε2 − 4ε + 1)µ(k) + (2ε − 3ε2)k2µ(1) = 0. (9)
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We can obtain that (3ε− 2)(3ε− 1) < 0 by combining (9) with λ(x) > 0. Since
ε < 1

2 , we have that ε ∈ (1
3 , 1

2). On the other hand, one has

∂g(−1, v)

∂v
|v=−k=

1

µ2(k)
{−[2(2T + S)k + 4Uk3]µ(k)

+ µ
′

(k)[R + (2T + S)k2 + Uk4]}. (10)

By the first formulation of (8), we have following equation

2k[2(1 − ε)µ(k) + (3k2 − 1)εµ(1)]µ(k)

+ (1 − k2)[(1 − ε)µ(k) + 2k2εµ(1)]µ
′

(k) = 0. (11)

(9), (11) respectively are (A), (B). �

4. Numerical Experiments

We take an example in the following to illustrate the Theorem 1. If λj(x) = 1,
λe(x) = exp{cx2}(c > 0), µ(x) = a + exp{−cx2}, then we have

a 0.3 0.5 0.7 0.9 1.1 1.3

k ±0.4864 ±0.4030 ±0.3310 ±0.2613 ±0.1851 ±0.0725

ε 0.3519 0.3473 0.3405 0.3397 0.3367 0.3338

D −3.5755 −2.4576 −1.6579 −1.0422 −0.5259 −0.0809

eff 0.8593 0.9318 0.9691 0.9881 0.9971 1

Table 1: The corresponding ε, k, D to different a and c = 4

In Table 1, eff = |M(ξB)|
|M(ξ∗)| , stand for the efficiency. The solutions that k = 0,

ε = 0.3333 to every a are omitted. When a = 0.9, D < 0 and ǫ ∈ (1
3 , 1

2), so the
D-optimal design ξ∗ is the design with wight 0.3397, 0.3397, 0.3206 on each of
the blocks (−1,−0.2613), (0.2613, 1) and (−1, 1), respectively. When a = 0.3,
comparing to the design ξB , the design ξ∗ improve the efficiency 16.5/100, the
design ξ∗ is very efficient and necessary.
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