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*

Fix integers s > 0 and n > r1 > · · · > rs > 0. Let Fl(n, r1, . . . , rs) denote
the flag variety of all linear subspaces Vs ⊂ · · · ⊂ V1 ⊂ K

n, K an algebraically
closed feld with char(K) = 0, such that dim(Vi) = n − ri for all i. Hence on
Fl(n, r1, . . . , rs) there are s+1 universal bundles Qi and r surjective morphisms
hi : Qi−1 → Qi, 1 ≤ i ≤ s, such that Q0 = O⊕

F l(n,r1,...,rs)
and rank(Qi) = ri for

1 ≤ i ≤ s. For the main definition of coherent systems and holomorphic triples,
see respectively [2], [3] and references therein.

Theorem 1. Let C be an elliptic curve. Fix integers s > 0, n > r1 > · · · >
rs > 0 and d1, . . . , dr such that d1 > n and di/ri < di+1/ri+1 for all 1 ≤ i ≤ s−1.
Fix αi ∈ R, 0 ≤ i ≤ s − 1, such that α0 > 0 and di+1/ri+1 − di/ri < αi <
(1 + (ri + ri+1)/(ri+1 − ri))(di+1/ri+1 − di/ri) for all 1 ≤ i ≤ s − 1. Fix s
polystable vector bundles Ei on C such that deg(Ei) = di, rank(Ei) = ri,
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the indecomposable factors of each Ei are pairwise non-isomorphic and E1 is

general. Then h0(C,E1) = d1. Let V ⊂ H0(C,E1) be a general linear subspace.

The induced evaluation map f0 : V ⊗OC → E1 is surjective. Let fi : Ei → Ei+1,

1 ≤ i ≤ s−1, be a general morphism. Each fi is surjective. These data induces

an embedding φ : C → Fl(n, r1, . . . , rs) such that Ei
∼= φ∗(Qi) for 1 ≤ i ≤ s,

and fi = φ∗(hi) for 0 ≤ i ≤ s − 1. The coherent system (E1, V ) is α0-stable

and each holomorphic triple (Ei+1, Ei, fi), 1 ≤ i ≤ s− 1 is αi-stable.

For nice embeddings of smooth curves of genus g ≥ 2 into Fl(n, r1, . . . , rs),
see [1].

We work over an algebraically closed feld K with char(K) = 0.

Proof of Theorem 1. The existence of the pair (E1, V ) is [2], Theorem
5.4. Since E1 is semistable and d1 > 0, h1(C,E1) = 0. Hence h0(C,E1) = d1

(Riemann-Roch) For the existence of Ei, 2 ≤ i ≤ s such that for all 1 ≤ i ≤
s − 1 the triple (Ei+1, Ei, fi) is αi-stable, see the dual of [3], Theorem 5.4.
Since d1 > r1 and E1 is semistable, h0(C,E1(−P )) = h0(C,E1) − r1 for all
P ∈ C (i.e. E1 is spanned) and h0(C,E1(−2P )) < h0(C,E1(−P )). These two
properties implies that the map ψ : C → Fl(d1, r1) (a Grassmannian) induced
by H0(C,E1) is an embedding. Since dim(C) = 1, dim(V ) > rank(E1) and V
is general, even the map β : C → Fl(n, r1) is an embedding. Hence the map φ
is an embedding.

Taking duals and applying again [3], Theorem 5.4, to all maps ji, 1 ≤ i ≤
s− 1, we easily get the following result.

Theorem 2. Let C be an elliptic curve. Fix integers s > 0, n > r1 > · · · >
rs > 0 and d1, . . . , dr such that d1 > n and di/ri < di+1/ri+1 for all 1 ≤ i ≤ s−1.
Fix αi ∈ R, 0 ≤ i ≤ s − 1, such that α0 > 0 and di+1/ri+1 − di/ri < αi <
(1 + (ri + ri+1)/(ri+1 − ri))(di+1/ri+1 − di/ri) for all 1 ≤ i ≤ s − 1. Fix s
polystable vector bundles Ei on C such that deg(Ei) = di, rank(Ei) = ri, the

indecomposable factors of each Ei are pairwise non-isomorphic, E1 and Es are

general. Then h0(C,E1) = d1. Let V ⊂ H0(C,E1) be a general linear subspace.

The induced evaluation map f0 : V ⊗OC → E1 is surjective. Let fi : Ei → Ei+1,

1 ≤ i ≤ s−1, be a general morphism. Each fi is surjective. These data induces

an embedding φ : C → Fl(n, r1, . . . , rs) such that Ei
∼= φ∗(Qi) for 1 ≤ i ≤ s,

and fi = φ∗(hi) for 0 ≤ i ≤ s − 1. The coherent system (E1, V ) is α0-stable

and each holomorphic triple (Ei+1, Ei, fi), 1 ≤ i ≤ s − 1 is αi-stable. Set

ui := fi ◦ · · · ◦ f0, 0 ≤ i ≤ s− 1, and Fi := Ker(ui). Hence rank(Fi) = n− ri+1

and deg(Fi) = −di+1. Dualizing each fi, 1 ≤ i ≤ s − 1, we get injective

morphisms ji : Fi → Fi−1. Dualizing us−1 we get an injection with locally free

cokernel Fs → O⊕n
C ) whose dual is a coherent system (F ∗

1 , V ) which is α0-stable.
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Each triple (Fi−1, Fi, ji), 1 ≤ i ≤ s− 1, is αi-stable.

Notice that in the statement of Theorem 2 we only required that each E1,
Es is general among the polystable vector bundles on C with its degree and
rank, not that the pair (E1, Es) is general among the pairs of polystable vector
bundles with fixed ranks and degrees.
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