IJPAM: Volume 39, No. 1 (2007)
AN IMPROVEMENT OF MORI'S CONSTANT IN
THE THEORY OF SPACE QUASICONFORMAL MAPPINGS
THE THEORY OF SPACE QUASICONFORMAL MAPPINGS
Weiming Gong
, Fangli Xia
, Yuming Chu
Department of Mathematics
Hunan City University
Yiyang, 413000, P.R. CHINA
Department of Mathematics
Huzhou Teachers College
Huzhou, 313000, P.R. CHINA
e-mail: chuyuming@hutc.zj.cn




Hunan City University
Yiyang, 413000, P.R. CHINA

Huzhou Teachers College
Huzhou, 313000, P.R. CHINA
e-mail: chuyuming@hutc.zj.cn
Abstract.Let {
is a
-quasiconformal mapping
which maps unit ball
onto
with
}, and

In this paper, the authors prove that

![$m=\frac{1+\{1+[1+(\frac32)^\beta\lambda_n^{1+\beta}]^2\}^{\frac12}}2$](img12.png)

![$\lambda_n\in[4,2e^{n-1}]$](img14.png)

Received: April 24, 2007
AMS Subject Classification: 30C65
Key Words and Phrases: Grötzsch ring, Teichmüller ring, quasiconformal mapping, Mori's constant
Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2007
Volume: 39
Issue: 1