BIRKHOFF INTERPOLATION OVER A FINITE FIELD

E. Ballico
Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Fix integers \(n \geq m - 1 \geq 0 \), a Birkhoff interpolation problem \(\mathcal{B} \) (interpolation of a polynomial and certain of its derivatives of order \(\leq n \) at \(m \) points of a field) induced by a matrix \(E = [e_{i,k}], 1 \leq i \leq m, 0 \leq k \leq n, e_{i,k} \in \{0,1\} \), a prime \(p > n \) and a \(p \)-power \(q \). Here we prove the regularity of \(\mathcal{B} \) at \((t_1, \ldots, t_m) \in \mathbb{F}_q^m\) if it is regular at \((t_1^{q/p}, \ldots, t_m^{q/p}) \in \mathbb{F}_p^m\). The regularity over \(\mathbb{F}_p \) was recently studied by T. Tassa to solve a cryptographic model (hierarchical threshold secret sharing).

AMS Subject Classification: 14N05
Key Words: Hermite interpolation, Birkhoff interpolation, finite field

*Fix integers \(n \geq m - 1 \geq 0 \). An interpolation matrix for a Birkhoff problem with parameters \((n,m)\) is a matrix \(E = [e_{i,k}], 1 \leq i \leq m, 0 \leq k \leq n, e_{i,k} \in \{0,1\} \) for all \(i, k \) and \(E \) has exactly \(n + 1 \) non-zero entries (see [1], Chapter IV, Section 9, 10, or [4]). Fix a field \(K \) such that either \(\text{char}(K) = 0 \) or \(\text{char}(K) > n \). For the case \(0 < \text{char}(K) \leq n \), see Remark 1. The matrix \(E \) is the abstract datum for the following classical interpolation problem due to Birkhoff. Fix \(t_1, \ldots, t_m \in K \) such that \(t_i \neq t_j \) for all \(i \neq j \). Let \(V_K[E; t_1, \ldots, t_m] \) denote the \(K \)-vector space of all polynomials \(f \) in one variable over \(K \) such that \(f^{(k)}(t_i) = 0 \) for all \(i, k \) such that \(0 \leq i \leq n, 1 \leq k \leq m \) and \(e_{i,k} = 1 \); here \(f^{(k)} \) denotes the order \(k \) derivative of \(f \). The Birkhoff problem associated to \(E \) is regular at \(t_1, \ldots, t_m \) if \(V[E; t_1, \ldots, t_m] = \{0\} \). The Birkhoff problem associated
to E is called regular if it is regular at all m-ples of distinct elements of K.
The condition that E has exactly $n + 1$ non-zero entries is equivalent to the
hope of existence and uniqueness of the solutions. In the homogeneous case, the
good behaviour of the interpolation problem means that the zero-solution is the
only solution. The notion of regularity strongly depend from the choice of K
(for an \mathbb{R}-regular, but not \mathbb{C}-regular problem, see [1], Example (c) at p. 125).
Indeed, very few Birkhoff matrices are regular in this sense over an algebraically
closed field. Our interest is the case K finite and we want to study existence
of good m-ples for as much Birkhoff matrices as possible. Our interest comes
from cryptography and it was aroused from [5]. T. Tassa used a very particular
Birkhoff matrix E to make a model for the problem of threshold secret sharing.

Theorem 1. Fix a Birkhoff matrix E of type (n, m), a prime $p > n$, a p-power $q = p^e$, $e \geq 2$, and $t_1, \ldots, t_m \in \mathbb{F}_q$ such that $t_i^{q/p} \neq t_j^{q/p}$ for all $i \neq j$
and that E is regular at the m-ple $(t_1^{q/p}, \ldots, t_m^{q/p}) \in \mathbb{F}_p^m$ (as a Birkhoff problem
over \mathbb{F}_p). Then E is regular at (t_1, \ldots, t_m) (as a Birkhoff problem over \mathbb{F}_q).

Obviously, Theorem 1 has the following corollary.

Corollary 1. Fix integers $n \geq m - 1$, a prime $p > n$, a p-power q and
t_1, \ldots, t_m \in \mathbb{F}_q$ such that $t_i^{q/p} \neq t_j^{q/p}$ for all $i \neq j$. Let E be a Birkhoff matrix
of type (n, m) which is regular for \mathbb{F}_p. Then E is regular at (t_1, \ldots, t_m) (as a Birkhoff problem over \mathbb{F}_q).

Notice that the assumption on the m-ple $(t_1, \ldots, t_m) \in \mathbb{F}_q^m$ does not depend
from the choice of E, but only from its regularity over \mathbb{F}_p. Hence we may fix
(t_1, \ldots, t_m) before knowing E and for many different matrices E.

Proof of Theorem 1. Fix $f = \sum_{j=0}^n a_j x^k \in V_{\mathbb{F}_q}[E; t_1, \ldots, t_m]$. Hence the
$n + 1$ coefficients $a_j \in \mathbb{F}_q$ satisfy the following $n + 1$ linear equations:

$$\sum_{j \geq k} (j!/k!) a_j t_i^{j-k} = 0, \quad e_{i,k} = 1.$$ \hspace{1cm} (1)

Now we raise to the q/p power the left hand side of each of the equations (1),
obtaining the following linear system:

$$\sum_{j \geq k} (j!/k!)^{q/p} a_j^{q/p} (t_i^{q/p})^{j-k} = 0, \quad e_{i,k} = 1.$$ \hspace{1cm} (2)
Notice that \((j!/k!)^{q/p} \equiv j!/k! \pmod p\) and hence \((j!/k!)^{q/p} = j!/k!\) as elements of \(\mathbb{F}_p\). Since \(a_j^{q/p} \in \mathbb{F}_p\) for all \(j\) and \(V_{\mathbb{F}_p}[E; t_1^{q/p}, \ldots, t_m^{q/p}] = \{0\}\), we obtain \(a_j^{q/p} = 0\) for all \(j\), i.e. \(a_j = 0\) for all \(j\), concluding the proof.

Remark 1. Assume \(p := \text{char}(K) > 0\). The order \(p\) derivatives of the polynomial \(t^p\) is identically zero. Hence if \(p \leq n\), we must modify the set-up of the problem. We use the Hasse derivatives instead of the ordinary derivatives (see [2], §3, for their definition and main properties). With the use of Hasse derivatives the geometry of a rational normal curve of \(\mathbb{P}^n\) and the approach of [3] show that any Hermite problem (i.e. any Birkhoff problem with a matrix \(E\) such that \(e_{i,k} = 1\) implies \(e_{i,h} = 1\) for all \(0 \leq h \leq k\)) is regular over any field \(K\) without any restriction on \(\text{char}(K)\). However, it seems very likely to us that if \(p \leq n\) too many interesting Birkhoff problems are not regular.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

