ON THE NUMBER OF k-INDEPENDENT SETS
IN SOME PRODUCTS OF GRAPHS

Andrzej W/loch¹, Iwona W/loch² §

¹²Faculty of Mathematics and Applied Physics
Technical University of Rzeszów
Ul. W. Pola 2, Rzeszów, 35-959, POLAND
¹e-mail: awloch@prz.edu.pl
²e-mail: iwloch@prz.edu.pl

Abstract: A subset $S \subseteq V(G)$ is k-independent if for each two distinct vertices from S the distance between them is at least k. In this paper we determine the number of all k-independent sets in some product of graphs.

AMS Subject Classification: 05C20
Key Words: k-independent set, counting, graph products

1. Introduction

In general we use the standard terminology and notation of graph theory, see Berge [1] and Diestel [3]. Only simple, undirected, connected graphs are considered. $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. The length of the shortest path joining vertices x and y in G will be denoted by $d_G(x,y)$. By P_n, $n \geq 2$ we mean the graph with the vertex set $V(P_n) = \{t_1, \ldots, t_n\}$ and the edge set $E(P_n) = \{\{t_i, t_{i+1}\}; \; i = 1, \ldots, n-1\}$, $n \geq 1$. Moreover P_1 is a graph with $V(P_1) = \{t_1\}$ and P_0 is a graph with $V(P_0) = \emptyset$. By K_n we will denote the complete graph on n vertices, $n \geq 1$. Let G be a graph on $V(G) = \{t_1, \ldots, t_n\}$, $n \geq 1$ and H be a graph on $V(H) = \{y_1, \ldots, y_m\}$, $m \geq 1$. By Cartesian product of two graphs G and H we mean a graph $G \times H$ such that $V(G \times H) = V(G) \times V(H)$ and $E(G \times H) = \{(t_i, y_p), (t_j, y_q)\}; \; t_i = t_j$ and $\{y_p, y_q\} \in E(H)$ or $\{t_i, t_j\} \in E(G)$ and $y_p = y_q$. Let G be a graph on $V(G) = \{t_1, \ldots, t_n\}$, $n \geq 2$ and $h_n = (H_i)_{i \in \{1, \ldots, n\}}$ be a sequence of vertex

Received: April 17, 2007 © 2007, Academic Publications Ltd.

§Correspondence author
disjoint graphs on \(V(H_i) = V = \{y_1, \ldots, y_x\}, \ x \geq 1 \). By generalized lexicographic product of \(G \) and \(h_n = (H_i)_{i \in \{1, \ldots, n\}} \) we mean a graph \(G[h_n] \) such that \(V(G[h_n]) = V(G) \times V \) and \(E(G[h_n]) = \{(t_i, y_p), (t_j, y_q)\}; \ t_i = t_j \) and \((y_p, y_q) \in E(H_i) \) or \(\{t_i, t_j\} \in E(G) \). If \(H_i = H, \ i = 1, \ldots, n \), then \(G[h_n] = G[H] \), where \(G[H] \) is a lexicographic product of two graphs.

A subset \(S \subseteq V(G) \) is said to be \(k \)-independent of \(G \) if for each two distinct vertices \(x, y \in S, d_G(x, y) \geq k \). In addition the empty set and a subset containing only one vertex also are meant as a \(k \)-independent sets of \(G \). Note that for \(k = 2 \) the definition reduces to the definition of an independent set of the graph \(G \). The \(k \)-independent sets and the total number of \(k \)-independent sets of graph were studied in [4]-[10]. Prodinger et al [7] initiated the study of the number of independent sets in a graph. The problem of counting the number of independent sets in graph is NP-complete (see for instance Roth [8]). However for certain types of graphs the problem of determining their numbers of independent sets is polynomial. The literature includes many papers dealing with the theory of counting of \(k \)-independent sets in graphs, see [2, 5, 6, 9].

The total number of independent sets of graph \(G \) was named by Prodinger et al [7] as Fibonacci number of a graph \(G \). They denote it by \(F(G) \). Let \(|V(G)| = n \). If \(f_G(n, p) \) denotes the number of all \(p \)-elements independent sets of \(G \), then \(F(G) = \sum f_G(n, p) \). It is interesting to know that \(F(P_n) = F_n = \sum_{p \geq 0} \binom{n - p + 1}{p} \), so it is equal to the Fibonacci numbers, see Berge [1]. The Fibonacci numbers has also the recurrence form \(F_n = F_{n-1} + F_{n-2} \) with the initial conditions \(F_0 = 1, \ F_1 = 2 \). Kwaśnik et al [5] defined more general concept, namely generalized Fibonacci number of a graph \(G \). This number was defined as the total number of \(k \)-independent sets of a graph \(G \) and it was denoted by \(F_k(G) \). If \(f_G(k, n, p) \) denotes the number of all \(p \)-elements \(k \)-independent sets of \(G \), then \(F_k(G) = \sum_{p \geq 0} f_G(k, n, p) \). It was proved:

Theorem 1. (see [5]) Let \(k \geq 2, \ n \geq 0, \ 0 \leq p \leq n \) be integers. Then

\[
F_k(P_n) = \sum_{p \geq 0} f_{P_n}(k, n, p) = \sum_{p \geq 0} \binom{n - p - (p - 1)(k - 2) + 1}{p}.
\]

The \(F_k(P_n) \) generalize the Fibonacci numbers \(F_n \) and we put notation \(F_k(P_n) = F(k, n) \). Evidently \(F(2, n) = F_n \). The numbers \(F(k, n) \) has also the recurrence form:

Theorem 2. (see [5]) Let \(k \geq 2, \ n \geq 0 \) be integers. Then numbers \(F(k, n) \)
satisfy the following recurrence: $F(k, n) = F(k, n-1) + F(k, n-k)$ for $n \geq k$ with the initial conditions $F(k, n) = n+1$ for $n = 0, 1, \ldots, k-1$.

For others classes of graphs the total number of k-independent sets were determined, see [4]-[10].

Theorem 3. (see [4]) Let $n \geq 0$, $p \geq 0$, $x \geq 1$ be integers. Then for an arbitrary graph G on n vertices $F(G[K_x]) = \sum_{p \geq 0} f_G(n, p)x^p$.

Theorem 4. (see [10]) Let $k \geq 3$, $x \geq 1$, $p \geq 0$ be integers. Then for an arbitrary graph G on $n, n \geq 2$, vertices and for an arbitrary sequence of vertex disjoint graphs $h_n = (H_i)_{i \in \{1, \ldots, n\}}$ such that $|V(H_i)| = x$ for $i = 1, \ldots, n$, $F_k(G[h_n]) = \sum_{p \geq 0} f_G(k, n, p)x^p$.

2. Main Results

Now we consider the graph $P_n \times K_m, n \geq 0$, $m \geq 1$ and we present numbers $F((P_n \times K_m)[K_x])$ and $F_k((P_n \times K_m)[h_n])$, where $h_n = (H_i)_{i \in \{1, \ldots, n\}}$ is an arbitrary sequence of graphs. Firstly we calculate the numbers $f_{P_n \times K_m}(k, mn, p)$. In this paper for convenience we denote these numbers by $f(k, n, p)$.

Theorem 5. Let $k \geq 2, p \geq 2$ be integers. If $n < (p-1)\tau + 1$, then $f(k, n, p) = 0$, where $\tau = \begin{cases} k-1 & \text{if } m > 1, \\ k & \text{if } m = 1. \end{cases}$

Proof. Let $n < (p-1)\tau + 1$. We shall prove that $f(k, n, p) = 0$. Assume on the contrary that $f(k, n, p) > 0$. This means that there exists a p-element k-independent set of $P_n \times K_m$. If $m = 1$, then it is clear that graph $P_n \times K_1$ is isomorphic to P_n and to construct a k-independent set S of P_n having p-elements, $p \geq 2$, we need at least $(p-1)k+1$ vertices, hence $S = \{t_1, t_{k+1}, \ldots, t_{(p-1)k+1}\}$, contradiction the assumption. If $m > 1$, then from the definition of graph $P_n \times K_m$ and by fact that K_m is a complete graph on m vertices we deduce that to construct a k-independent set S' of $P_n \times K_m$ we need at least $(p-1)(k-1) + 1$ vertices. Then S' has the following form $S' = \{(t_1, y_i), (t_k, y_j), \ldots, (t_{(p-1)(k-1)+1}, y_q)\}$, where if $(t_r, y_i), (t_s, y_j) \in S'$ and $s = r + k - 1$, then $i \neq j$. Hence $n \geq (p-1)(k-1) + 1$, contradiction. Consequently from the above cases if $n < (p-1)\tau + 1$, then $f(k, n, p) = 0$, where $\tau = \begin{cases} k-1 & \text{if } m > 1, \\ k & \text{if } m = 1. \end{cases}$ Thus the theorem is proved.
Theorem 6. Let $k \geq 2, n \geq 0, m \geq 1, p \geq 0$ be integers. Then the numbers $f(k, n, p)$ satisfy the following recurrence relations: $f(k, n, 0) = 1$, $f(k, n, 1) = mn$, for $p \geq 2$ $f(k, n, p) = 0$ if $n < (p - 1)\tau + 1$ and for $n \geq (p - 1)\tau + 1$ we have $f(k, n, p) = f(k, n - 1, p) + mB^n_1$ and $B^n_1 = f(k, n - k, p - 1) + (m - 1)B^{p-1}_{n-(k-1)}$, where $B^n_1 = 1$ and $\tau = \begin{cases} k - 1 & \text{if } m > 1, \\ k & \text{if } m = 1. \end{cases}

Proof. Let k, n, p, m be as in the statement of the theorem. If $p = 0$, then the empty set is the unique k-independent set of the graph $P_n \times K_m$. So $f(k, n, 0) = 1$. If $p = 1$, then every vertex of the graph $P_n \times K_m$ is a k-independent set of the graph $P_n \times K_m$. Consequently $f(k, n, 1) = m \cdot n$. Let now $p \geq 2$. If $n < (p - 1)\tau + 1$, where $\tau = \begin{cases} k - 1 & \text{if } m > 1, \\ k & \text{if } m = 1, \end{cases}$ then by Theorem 5 we have that $f(k, n, p) = 0$. Assume that $n \geq (p - 1)\tau + 1$. Let S_1 be a family of all p-element k-independent sets $S \subseteq V(P_n \times K_m)$ such that $(t_n, y_m) \notin S$ and let S_2 be a family of all p-elements k-independent sets $S \subseteq V(P_n \times K_m)$ such that $(t_n, y_m) \in S$. By the general rule for counting k-independent sets $f(k, n, p) = |S_1| + |S_2|$. Assume that the number of all p-element k-independent sets of $P_n \times K_m$ containing a vertex (t_n, y_i), where i is one from $1, \ldots, m$ is equal to B^n_{p,y_i}. Moreover by the definition of the Cartesian product and by fact that K_m is a complete graph we deduce that for every $1 \leq i, j \leq m, B^n_{p,y_i} = B^n_{p,y_j}$. Consequently we put notation $B^n_{p,y_i} = B^n_{p,y_j}$. Of course $B^n_1 = 1$. Let $S \in S_1$. If $(t_n, y_i) \notin S, i = 1, \ldots, m - 1$, then $S = S^*$, where S^* is an arbitrary p-element k-independent set of the graph $P_{n-1} \times K_m$. Hence we have $f(k, n - 1, p)$ k-independent sets S having p-elements. If there exists $1 \leq i \leq m - 1$ such that $(t_n, y_i) \in S$ by our assumption we have B^n_i such subsets. By the fact that we can choose the vertex (t_n, y_i) belonging to S on $(m - 1)$ ways we obtain that there are $(m - 1)B^n_i$ k-independent sets S with p-elements. So $|S_1| = f(k, n - 1, p) + (m - 1)B^n_i$ in this case. Now we calculate the number $|S_2|$. By previous considerations $|S_2| = B^n_i$, so we have to determine the number B^n_i. Since $(t_n, y_m) \in S$, then $(t_n, y_i) \notin S, i = 1, \ldots, m - 1, (t_n, y_{j}) \notin S$, where $r = n - 1, \ldots, n - (k - 2), j = 1, \ldots, m$ and $(t_{n-(k-1)}, y_m) \notin S$. If $(t_{n-(k-1)}, y_i) \notin S, i = 1, \ldots, m - 1$, then $S = S' \cup \{(t_n, y_m)\}$, where S' is an arbitrary $(p - 1)$-element k-independent set of the graph $P_{n-k} \times K_m$, so we have $f(k, n - k, p - 1)$ such sets S. If there exists $1 \leq i \leq m - 1$ such that $(t_{n-(k-1)}, y_i) \in S$, then by our assumption we have $B^{p-1}_{n-(k-1)}$ such subsets. By fact that we can choose the vertex $(t_{n-(k-1)}, y_i)$ on $(m - 1)$ ways we obtain $(m - 1)B^{p-1}_{n-(k-1)}$ p-element k-independent sets S. Consequently $B^n_i = f(k, n - k, p - 1) + (m - 1)B^{p-1}_{n-(k-1)}$. Finally from the above cases for $p \geq 2$ we have that
Theorem 7. Let \(k \geq 2, n \geq 0, m \geq 1 \). Then for \(n \geq k \) numbers \(F_k(P_n \times K_m) \) satisfy the following recurrence relations: \(F_k(P_n \times K_m) = F_k(P_{n-1} \times K_m) + mB_{n-1} + B_m \) and \(B_n = F_k(P_{n-k} \times K_m) + (m-1)B_{n-(k-1)} \), with the initial conditions:

\[
F_k(P_n \times K_m) = mn + 1, \text{ for } n = 0, 1, \ldots, k-1; \quad B_n = 1, \quad n = 1, \ldots, k-1.
\]

Thus the theorem is proved. □

Corollary 1. Let \(n \geq 0, p \geq 0, k \geq 2 \) be integers. If \(m = 1 \), then \(\sum_{p \geq 0} f(k, n, p) = F(k, n) \).

Proof. If \(0 \leq n \leq k \), then \(\sum_{p \geq 0} f(k, n, p) = f(k, n, 0) + f(k, n, 1) = n + 1 = F(k, n) \) in this case. If \(n \geq k + 1 \), then

\[
\sum_{p \geq 0} f(k, n, p) = f(k, n, 0) + f(k, n, 1) + \sum_{p \geq 2} f(k, n, p)
= 1 + n + \sum_{p \geq 2} (f(k, n-1, p) + f(k, n-2, p-1))
= 1 + n + \sum_{p \geq 2} f(k, n-1, p) + \sum_{p \geq 2} f(k, n-2, p-1)
= (n-1) + 1 + \sum_{p \geq 2} f(k, n-1, p) + 1 + \sum_{r=p-1 \geq 1} f(k, n-k, r)
= f(k, n-1, 0) + f(k, n-1, 1) + \sum_{p \geq 2} f(k, n-1, p) + f(k, n-k, 0)
+ \sum_{r \geq 1} f(k, n-k, r) = \sum_{p \geq 0} f(k, n-1, p) + \sum_{r \geq 0} f(k, n-k, r)
= F(k, n-1) + F(k, n-k) = F(k, n),
\]

which ends the proof. □

Corollary 2. Let \(n \geq 1, m \geq 1, x \geq 1 \) be integers. Then \(F((P_n \times K_m)[K_x]) = \sum_{p \geq 0} f(2, n, p)x^p \).

Corollary 3. Let \(k \geq 3, n \geq 2, m \geq 1, x \geq 1 \) be integers. Then for an arbitrary sequence of vertex disjoint graphs \(h_n = (H_i)_{i \in \{1, \ldots, n\}} \) such that \(|V(H_i)| = x \), for \(i = 1, \ldots, n \) we have \(F_k((P_n \times K_m)[h_n]) = \sum_{p \geq 0} f(k, n, p)x^p \).
Proof. If $n = 0$, then also $p = 0$ and this implies $F_k(P_n \times K_m) = f(k, 0, 0) = 1$, by the definition of $F_k(P_n \times K_m)$.

If $n = 1, \ldots, k - 1$, then $p = 0$ or $p = 1$ so $F_k(P_n \times K_m) = f(k, n, 0) + f(k, n, 1)$ and using Theorem 6 we have $F_k(P_n \times K_m) = 1 + mn$.

Let $n \geq k$. Then using Theorem 6, $F_k(P_n \times K_m) = \sum_{p \geq 0} f(k, n, p) = \sum_{p \geq 0} (f(k, n - 1, p) + mB_n^p) = \sum_{p \geq 0} f(k, n - 1, p) + m \sum_{p \geq 0} B_n^p = F_k(P_{n-1} \times K_m) + m \sum_{p \geq 0} B_n^p$.

Let $\sum_{p \geq 0} B_n^p = B_n$. Evidently if $n = 1, \ldots, k-1$, then $p = 1$ and $B_n = B_n^1 = 1$.

In our case $n \geq k$ we obtain $F_k(P_n \times K_m) = F_k(P_{n-1} \times K_m) + mB_n$. Moreover by Theorem 6, $B_n = \sum_{p \geq 0} B_n^p = \sum_{p \geq 0} (f(k, n - k, p - 1) + (m - 1)B_n^{p-1}_{n-(k-1)}) = \sum_{p \geq 0} f(k, n - k, p - 1) + (m - 1) \sum_{p \geq 0} B_n^{p-1}_{n-(k-1)}$. Because for $p = 0$ the numbers $f(k, n - k, p - 1)$ and $B_n^{p-1}_{n-(k-1)}$ there no exist we can put $B_n = \sum_{r = p-1 \geq 0} f(k, n - k, r) + (m - 1) \sum_{r = p-1 \geq 0} B_n^{r}_{n-(k-1)} = F_k(P_{n-k} \times K_m) + (m - 1)B_n^{0}_{n-(k-1)}$, which ends the proof.

References

