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Abstract: The purpose of the paper is to set up a model for the non-
isothermal transition between incompressible phases. The scheme involves an
order parameter as a phase field. Because of the incompressibility the phase
field is identified with the volume fraction occupied by one of the phases. As
a whole, the phases are regarded as a reacting mixture. The paper develops
the analysis of the thermodynamic restrictions and provides a set of relations
for the constitutive equations. The free energy is shown to play the role of a
potential which provides the entropy and enters the diffusion flux and the mass
growth of the transition. This in turn determines the evolution equation for
the phase field. As an application, Clapeyron’s equation is shown to follow for
the temperature-pressure relation at equilibrium between the phases.
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1. Introduction

Phase transition phenomena are most often described by one of two models, the
sharp interface and the diffuse interface. In a sharp interface, pure phases are
separated by a moving surface thus resulting in a moving boundary problem.
Within the phases, appropriate partial differential equations hold and they are
solved subject to boundary conditions on the interface across which certain
fields may suffer jump discontinuities.
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In a diffuse interface, the individual phases (e.g. solid and liquid) are distin-
guished by pertinent fields (e.g. mass densities) and one or more so-called phase
fields which complete the description of the body in the diffuse interface region
Ω. The phase fields are also called order parameters. Along with all other
pertinent fields, they do not jump, across any surface, but change smoothly
within Ω. Phase field models are widely applied in the literature about phase
transitions (see Boettinger et al [2], Chen [5]).

The purpose of this paper is to set up a model for the transition between
incompressible phases. This scheme is appropriate in many circumstances, in
particular for the ice-water transition. The phase field is identified with the vol-
ume fraction occupied by one of the phases and the diffuse interface is regarded
to consist of a reacting mixture of incompressible constituents. This view of
the diffuse interface is considered, e.g., by Müller [12], Morro [10]. More often
the view adopted is that of a single body with a phase field and an internal
structure described by microforces (see Gurtin [8], Frémond [7]).

The model is non-isothermal in that the temperature is allowed to vary in
time and space. The main result of the paper is the analysis of the thermody-
namic restrictions and a set of relations for the constitutive equations. The free
energy plays the role of a potential which provides the entropy and enters the
diffusion flux and the mass growth of the transition. This in turn determines the
evolution equation for the phase field. As an application, Clapeyron’s equation
is shown to follow for the temperature-pressure relation at equilibrium between
the phases.

Notation. We denote by x ∈ Ω ⊆ IR3 a position vector. Cartesian coordi-
nates x1, x2, x3 are used and ∂p denotes partial differentiation with respect to
xp, p = 1, 2, 3. Also, t ∈ IR is the time and ∂t is the partial time differentiation.
We denote by ∇ and ∇· the gradient and the divergence. Moreover, u · v is
the inner product between the vectors u,v, sym denotes the symmetric part
and Sym is the space of symmetric tensors. Also tr is the trace whereas a
superposed ◦ denotes the traceless part of a tensor.

2. Mixtures of Incompressible Phases

The region Ω is occupied by a mixture of n phases. Denote by the subscripts
α, β = 1, 2, ..., n the quantities pertaining to the phases. Hence ρα is the mass
density and vα is the velocity of the α-th phase. For any function φα(x, t), on
Ω× IR, a backward prime denotes the total time derivative associated with the



A MODEL FOR THE TRANSITION... 461

motion of phase α, namely

φ̀α := ∂tφα + vα · ∇φα.

As with any reacting mixture, the mass density ρα satisfies the continuity
equation

ρ̀α = −ρα∇ · vα + τα, α = 1, ..., n,

where τα is the mass growth that is the mass production per unit volume and
unit time. Equivalently, we can write

∂tρα + ∇ · (ραvα) = τα, α = 1, ..., n. (1)

The mass conservation implies that

∑
α

τα = 0. (2)

The mass density ρ and the velocity v of the mixture, regarded as a single
body, are defined by

ρ =
∑
α

ρα, v =
1

ρ

∑
α

ραvα.

Accordingly, summation of (1) over α and account of (2) give

∂tρ+ ∇ · (ρv) = 0. (3)

Let
cα :=

ρα

ρ
, uα := vα − v.

Hence cα and vα are the concentration and the relative (or diffusion) velocity
of phase α. Let a superposed dot denote the time derivative following the mean
motion, with velocity v, namely

φ̇ = ∂tφ+ v · ∇φ.

Equation (1), in the form

∂t(ρcα) + ∇ · [ρα(v + uα)] = τα, (4)

and the observation that

ρ∂tcα + ρ(v · ∇)cα = ρċα
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provide
ρċα = −∇ · jα + τα, α = 1, ..., n, (5)

where
jα := ραuα (6)

is the diffusion flux of phase α. It follows from the definition (6) that

∑
α

jα = 0. (7)

Moreover, it follows from (3) that

ρ̇ = −ρ∇ · v. (8)

Also, by (1) we have

ρ̇α + ρα∇ · v = −∇ · jα + τα,

whence, by (8),
ρ̇α − cαρ̇ = −∇ · jα + τα. (9)

So far everything is true for any mixture of compressible phases (or con-
stituents). Henceforth we let the phases be incompressible. This means that
any phase α has a constant true density, say ρ̄α, that is the mass, per unit
volume, in a region occupied by phase α only. Denote by ϕα, on Ω × IR, the
volume fraction occupied by phase α (see Bowen [3]),

∑
α

ϕα = 1. (10)

Hence
ρα = ρ̄αϕα, α = 1, ..., n,

and
ρ =

∑
β

ρ̄βϕβ .

Substitution in (9) yields

ρ̄αϕ̇α − cα
∑
β

ρ̄βϕ̇β = −∇ · jα + τα, α = 1, ..., n, (11)

the concentration cα being determined by the volume fractions {ϕβ} through
the relation

cα =
ρ̄αϕα∑
β ρ̄βϕβ

. (12)



A MODEL FOR THE TRANSITION... 463

Henceforth we identify the phase fields with the volume fractions {ϕα}.
Once the functions {jα}, {τα} are specified by constitutive relations, equations
(28) may be viewed as a system of first-order differential equations which govern
the evolution of {ϕα}. This is the main advantage of the present approach in
that the evolution equations are provided directly by the continuity equations
of the phases. Moreover, the phase fields have a direct physical meaning and
determine directly the corresponding mass densities. This scheme, however, is
crucially related to the assumption that the phases are incompressible.

If the phases are compressible then the concentrations {cα} look more con-
venient (see Morro [11]). In such a case the evolution equations are given by
the system (5).

3. Binary Mixture

For the sake of formal simplicity, henceforth we restrict attention to binary
mixtures, n = 2. Such is the case for solid-liquid and liquid-vapour transitions.
The incompressibility assumption is particularly realistic for the ice-water tran-
sition. By (2), (7) and (10) the values of τ2, j2, ϕ2 are determined by τ1, j1, ϕ1.
To simplify the notation let τ, j, ϕ stand for τ1, j1, ϕ1. Moreover, let ρi stand
for ρ̄1 and ρw for ρ̄2. Hence we have

ρ1 = ϕρi, ρ2 = (1 − ϕ)ρw, c1 =
ρiϕ

ρ(ϕ)
,

where ρ(ϕ) is the mass density of the mixture and is given by

ρ(ϕ) = ϕρi + (1 − ϕ)ρw. (13)

Upon substitution we find that the system of equations (28) reduces to

ρwρi

ρ(ϕ)
ϕ̇ = −∇ · j + τ. (14)

Irrespective of the value of ρi and ρw, the coefficient of ϕ̇ is then a positive-
valued function of ϕ. Moreover, by (13) we find that

ρ̇ = (ρi − ρw)ϕ̇. (15)

Hence (8) implies that

∇ · v =
ρw − ρi

ρ
ϕ̇. (16)

For the ice-water transformation, ϕ is the ice volume fraction and ρi < ρw.
As the ice fraction increases, ϕ̇ > 0 and, by (15), ρ̇ < 0.
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3.1. Balance Equations

Following the theory of mixtures, the balance equations for the single phases
can be written, as is performed e.g. by Müller [12]. To obtain a simpler model,
we are content with the balance of linear momentum and energy for the mixture
as a single body. The balance equations are then written as

ρv̇ = ∇ ·T + ρb, (17)

ρė = T · L −∇ · q + ρr, (18)

where T is the Cauchy stress tensor, b the body force, e the internal energy
density, L the velocity gradient, q the heat flux, r the heat supply. The balance
of angular momentum results in the symmetry of T.

The second law, or balance of entropy, is taken in a general form which
does not force the entropy flux to be equal to the heat flux over the absolute
temperature θ. Hence we write the second-law inequality as

ρη̇ ≥ −∇ · (
q

θ
+ k) +

ρr

θ
, (19)

where η is the entropy density and k is the extra entropy flux. As the statement
of the second law, we assume that the inequality (19) hold for every set of
functions on Ω × IR compatible with the balance equations. This means that
(17) and (18), as well as (14) and (16) are constraints on v, e, ρ, ϕ.

Substitution for ρr −∇ · q from (18) and use of the free energy density

ψ = e− θη

give

ρ(ψ̇ + ηθ̇) − T · L − θ∇ · k +
1

θ
q · ∇θ ≤ 0. (20)

The extra entropy flux k has to be determined so that the inequality (20) holds.

3.2. Constitutive Equations

Denote by s the displacement field and let H = ∇s. The dependence on the
motion is described by the infinitesimal strain tensor, E = symH, and the
velocity gradient L. Since ρ is a function of ϕ, there is no loss in generality
in embodying the dependence on ρ and ∇ρ within the dependence on ϕ and
∇ϕ. The effects of the temperature are described by a dependence on θ and
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∇θ. Higher-order gradients are allowed to occur and hence the dependence on
∇∇θ, ...,∇L,∇∇∇θ, ...,∇∇L. Accordingly we let

Γ = (θ, ϕ,∇θ,∇ϕ,E,L,∇∇θ, ...,∇∇L)

be the set of independent variables. We express the constitutive equations by
saying that ψ, η, T,k,q, j, τ are functions of Γ. Moreover, ψ,k, j are continu-
ously differentiable whereas the remaining functions are continuous. To avoid
inessential formal difficulties we assume that ψ be independent of the higher-
order gradients and hence let

ψ = ψ(θ, ϕ,∇θ,∇ϕ,E,L).

4. Restrictions on the Constitutive Equations

The analysis of (20) is now performed by accounting for the constraints on the
functions v, e, ρ, ϕ. In this regard it is convenient to observe that any second-

order tensor A can be split into the trace, trA, and the traceless part,
◦

A, in
the form

A =
1

3
(tr A)1+

◦

A, tr
◦

A= 0.

Moreover, for any pair of tensors A,B we have

◦

A ·B =
◦

A ·
◦

B .

This allows us to write L and D = symL as

L =
1

3
(∇ · v)1+

◦

L, D =
1

3
(∇ · v)1+

◦

D .

Likewise, we write the stress tensor T as

T = −p1+
◦

T,

where p = −trT/3. In inviscid fluids p coincides with the pressure.
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4.1. Identities

Three identities are derived.
For any C2 function φ on Ω×IR, the derivative ∇̇φ, of ∇φ, and the gradient

∇φ̇ are related by

∇̇φ = ∇φ̇− LT∇φ. (21)

The result follows by applying the total time derivative and rearranging the
terms so that

∇̇φ = (∂t + v · ∇)∇φ = ∇∂tφ+ ∇(v · ∇φ) − (∇v)∇φ = ∇φ̇− LT∇φ.

The derivative Ė of the strain and the velocity gradient L are related by

Ė = D− sym(LT∇s). (22)

In components, application of the total time derivative and exchange of the
order of differentiation yield

2Ėhk = (∂t + v · ∇)(∂ksh + ∂hsk)

= ∂k∂tsh + ∂h∂tsk + vj(∂k∂jsh + ∂h∂jsk)

= ∂k∂tsh + ∂h∂tsk + ∂kvj∂jsh + ∂hvj∂jsk − (∂jsh)∂kvj + (∂jsk)∂hvj

= ∂kṡh + ∂hṡk − (Ljk∂jsh + Ljhsk,j).

Since ṡ = v, the identity (22) follows.
For any tensor A,

A · sym(LT∇s) = (∇sA) · L. (23)

Without any loss of generality we let A be symmetric. Hence

A · sym(LT∇s) = Akh

1

2
(Ljk∂jsh + Ljh∂jsk) = Ljk(∂jsh)Ahk = L · (∇sA).

4.2. Thermodynamic Restrictions

Upon substitution in (20), since
◦

T ·L =
◦

T ·
◦

L we have

ρ(ψ̇ + ηθ̇) + p∇ · v−
◦

T ·
◦

L −θ∇ · k +
1

θ
q · ∇θ ≤ 0. (24)

Evaluation of ψ̇ and use of the identities (21), (22) yield

ρ(ψθ + η)θ̇ + ρψϕϕ̇+ ρψ∇θ · ∇̇θ + ρψ∇ϕ · (∇ϕ̇− LT∇ϕ)
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+ρψE · [D − sym(LT∇s)] + ρψL · L̇ + p∇ · v−
◦

T ·
◦

D

−∇ · (θk) + k · ∇θ +
1

θ
q · ∇θ ≤ 0 . (25)

The values of θ̇, ∇̇θ, L̇ occur linearly and can be taken arbitrarily. This implies
that (25) holds only if

η = −ψθ, ψ∇θ = 0, ψL = 0. (26)

The skew part of L can be chosen arbitrarily and independently of D. Hence
by (23), (25) implies that

∇ϕ⊗ ψ∇ϕ + ∇sψE ∈ Sym.

Let
δE := ψE −∇sψE.

The remaining inequality can be written in the form

∇ · (ρψ∇ϕϕ̇− θk) + k · ∇θ +
1

θ
q · ∇θ + Φϕ̇− T ·

◦

D≤ 0, (27)

where

Φ = ρψϕ −∇ · (ρψ∇ϕ) + (ρw − ρi)[
1

3
∇ϕ · ψ∇ϕ +

1

3
tr δEψ +

p

ρ
],

T =
◦

T + ρ(∇ϕ⊗ ψ∇ϕ − δEψ) .

Of course,
◦

T = T .
The inequality (27) involves ϕ̇ which, by (14) is related to τ and j by

ϕ̇ = α(ϕ)(τ −∇ · j), (28)

where

α(ϕ) =
ρ(ϕ)

ρwρi
.

We might replace ϕ̇ in (27) and proceed accordingly but the evaluation of ∇· j,
∇(∇ · j) and ∇ · k leads to a cumbersome relation. It is more convenient to
account for the constraint (28) as follows.

Let λ be any function of Γ and insert the zero quantity

−∇ · (λθj) + θj · ∇λ+ θλ∇ · j + λj · ∇θ
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in the left-hand side of (27) to obtain

∇ · [ρψ∇ϕϕ̇− θ(k + λj)] + (k + λj) · ∇θ + θj · ∇λ+
1

θ
q · ∇θ

+Φϕ̇+ θλ∇ · j − T ·
◦

D≤ 0. (29)

Let
w = ρψ∇ϕϕ̇− θ(k + λj)

and

Φ̃ = θ[
ρ

θ
ψϕ −∇ · (

ρ

θ
ψ∇ϕ)] + (ρw − ρi)[

1

3
∇ϕ · ψ∇ϕ +

1

3
tr δEψ +

p

ρ
].

Sufficient conditions for the validity of (29) are given as follows.
Proposition. The inequality (29) holds if

k =
ρ

θ
ψ∇ϕϕ̇−

α

θ
Φ̃j, (30)

αΦ̃τ + θj · ∇(
α

θ
Φ̃) +

1

θ
q · ∇θ−

◦

T ·
◦

D≤ 0. (31)

Proof. Let w = 0 whence

k =
ρ

θ
ψ∇ϕϕ̇− λj.

Since
k + λj =

ρ

θ
ψ∇ϕϕ̇

then (29) becomes

ρ

θ
ψ∇ϕϕ̇ · ∇θ + Φϕ̇+ θλ∇ · j + θj · ∇λ+

1

θ
q · ∇θ−

◦

T ·
◦

D≤ 0.

Hence, by means of the identity

ρ

θ
ψ∇ϕ · ∇θ −∇ · (ρψ∇ϕ) = −θ∇ · (

ρ

θ
ψ∇ϕ),

we can write

Φ̃ϕ̇+ θλ∇ · j + θj · ∇λ+
1

θ
q · ∇θ−

◦

T ·
◦

D≤ 0.

We now make use of (28) to replace ϕ̇ so that

(−Φ̃α+ θλ)∇ · j + Φ̃ατ + θj · ∇λ+
1

θ
q · ∇θ−

◦

T ·
◦

D≤ 0.
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Taking advantage of the freedom for λ we let the coefficient of ∇ · j be zero by
choosing

λ =
α

θ
Φ̃.

Upon substitution of λ, the remaining inequality takes the form (31). �

In addition to the classical term q · ∇θ/θ, the inequality (31) shows two
effects of the incompressibility of the phases. First, the dissipative power of the

stress is given by T ·
◦

D. The tensor T equals the (deviatoric part of the) stress T

deprived of the elastic stress ρδEψ and the stress ρ(∇ϕ⊗ψ∇ϕ). The term ∇sψE

disappears in linear theories whereas ∇ϕ⊗ψ∇ϕ accounts for the inhomogeneity
of the order parameter (see Gurtin et al [9], Morro [10]). Secondly, the scalar-
valued function Φ̃, which enters both the dissipation inequality (31) and the
extra entropy flux (30) consists of two parts. One of them,

(ρw − ρi)[
1

3
∇ϕ · ψ∇ϕ +

1

3
tr δEψ +

p

ρ
],

arises because of the incompressibility. The other,

θ[
ρ

θ
ψϕ −∇ · (

ρ

θ
ψ∇ϕ)],

can be viewed as the integrand of the variational derivative, with respect to ϕ,
of the rescaled free energy

Ψ̃ =

∫
Ω

ρ

θ
ψ(θ, ϕ,E,∇ϕ)dv.

The rescaling through the factor 1/θ occurs also in other models (see Alt et al
[1]) and is introduced by an assumption by Brokate et al [4].

5. Evolution Equation

The validity of (26), (30) and (31) is sufficient for the compatibility of the func-
tions ψ, η,k,q,T, j, τ with the second law of thermodynamics. For definiteness
we now look at a simple case which is sufficient for the validity of (31). Let
each term in (31) satisfy, per se, the inequality namely

Φ̃τ ≤ 0, j · (
α

θ
Φ̃) ≤ 0, (32)

q · ∇θ ≤ 0, T ·
◦

D≥ 0. (33)
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The inequalities (33) are the classical ones for heat conduction and mechanical
dissipation, though for the trace-free stress T only. The Fourier-type law q =
−k∇θ satisfies the heat conduction inequality provided k is any positive-valued

function of Γ. The dependence of T on
◦

D, satisfying (33) is

◦

T = µ
◦

D, µ > 0,

µ being any positive-valued function of Γ. Hence

◦

T= ρ
◦

(δEψ −∇ϕ⊗ ψ∇ϕ) +µ
◦

D .

The traceless stress
◦

T consists of three terms: (the traceless part of) the elastic
part ρδEψ, the viscous part µD, and −ρ(∇ϕ⊗ψ∇ϕ), due to the inhomogeneity
of the phase field in a deformable body (see Gurtin et al [9], Morro [4]).

The inequalities (32) are satisfied by

τ = −βΦ̃, j = −γ∇(
α

θ
Φ̃),

β, γ being positive-valued functions of Γ. This means that the growth τ is
governed by Φ̃ whereas αΦ̃/θ governs the diffusion flux j.

By (28), the evolution of the order parameter ϕ is given by

ϕ̇ = −α[βΦ̃ −∇ · (
γα

θ
Φ̃)].

The evolution is then characterized by the two functions β, γ which, in the
simplest model, are regarded as constants.

6. Free Energy and Clapeyron’s Equation

The solid and liquid phases are taken to be described by the free energy densities
ψs(θ,E) and ψl(θ). By analogy, e.g., with Wang et al [13], we take ψ in the
form

ψ(θ, ϕ,∇ϕ,E) = ψl(θ) + h(ϕ)[ψs(θ,E) − ψl(θ)] +G(ϕ) + α|∇ϕ|2, (34)

where α > 0 and h is a monotone-increasing, differentiable function such that

h(0) = 0, h(1) = 1.
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For definiteness and simplicity we let h(ϕ) = ϕ. The function G is a double-well
potential with two equal minima at ϕ = 0, 1; to fix ideas, let

G(0) = G(1) = 0.

We have

ψ(θ, 0,E) = ψl(θ), ψ(θ, 1,E) = ψs(θ,E).

The entropy density is given by

η = −ψθ = (ϕ − 1)ηl(θ) − ϕηs(θ,E) ,

where

ηl(θ) = −
∂ψl(θ)

∂θ
, ηs(θ,E) = −

∂ψs(θ,E)

∂θ
.

The latent heat L is defined by the entropy η(θ, ϕ,E) as

L = θc[η(θc, 0,E) − η(θc, 1,E)],

where θc is the value of θ at which the transition occurs. Hence

L = θc[η
l(θc) − ηs(θ,E)]. (35)

The different value of the entropy in the two phases provides the non-zero value
of the latent heat. Replacing G(ϕ) → f(θ)G(ϕ), for any function f , changes
the entropy function but not the latent heat.

6.1. Clapeyron’s Equation

It is usually derived and applied for the equilibrium between liquid and vapour.
By the same token, it is said to characterize the equilibrium between the liquid
and solid phases (see Fermi [6], p. 68). Consistent with standard thermody-
namic approaches, the deformation of the solid (E) is disregarded.

Equilibrium between the two phases is characterized by requiring that ϕ be
constant and hence that the mass growth τ be zero. This amounts to

ρψϕ + (ρl − ρs)
p

ρ
= 0, (36)

where ρ = ρ(ϕ) and p = p(θ, ϕ). By (34) we have

ψϕ(θ, ϕ) = ψs(θ, ϕ) − ψl(θ, ϕ) +G′(ϕ)
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and hence (36) becomes

ρ2(ϕ)[ψs(θ, ϕ) − ψl(θ, ϕ) +G′(ϕ)] + (ρl − ρs)p(θ, ϕ) = 0.

Along any phase equilibrium line ϕ is constant. The point (or state) on the
equilibrium line varies by changing the temperature θ and then the pressure p
accordingly. Differentiation with respect to θ (at constant ϕ) gives

∂p

∂θ
=

ρ2

ρs − ρl

∂

∂θ
[ψs(θ) − ψl(θ)],

the dependence on ϕ being understood. By (35) we can write

∂p

∂θ
=

ρ2

ρs − ρl

L

θ
.

Now,

ρ2

ρs − ρl
=

ρsρl

ρs − ρl

ρ2

ρsρl
=

1

1/ρl − 1/ρs
[ϕ+ (1 − ϕ)

ρl

ρs
][ϕ

ρs

ρl
+ 1 − ϕ].

This shows that dp/dθ changes as the fraction ϕ varies namely in passing from
the solid to the liquid phase.

If ρl/ρs ≃ 1 then

[ϕ+ (1 − ϕ)
ρl

ρs
][ϕ

ρs

ρl
+ 1 − ϕ] ≃ 1.

With such an approximation we have

∂p

∂θ
=

L

θ(1/ρl − 1/ρs)
. (37)

Equation (37) is the standard form of Clapeyron’s equation. For the ice-water
transition we have ρl > ρs and hence we obtain the well-known condition

∂p

∂θ
< 0

for the ice-water equilibrium.
Incidentally, letting G(ϕ) → f(θ)G(ϕ) in (34) would provide the change

L→ L+θf ′(θ)G′(ϕ) in (37), which does not seem to be motivated on a physical
ground.
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