ON A COMPOSITION OF GALOIS EXTENSIONS

George Szeto1, Lianyong Xue2 §

1,2Department of Mathematics
Bradley University
1501 West Bradley Avenue, Peoria, Illinois, 61625, USA
1e-mail: szeto@bradley.edu
2e-mail: lxue@bradley.edu

Abstract: Let B be a Galois extension of B^G with Galois group G such that B^G is a separable C^G-algebra, where C is the center of B. Then an equivalent condition is given for B as a composition of a Hirata Galois extension B of $B^G C$ with Galois group K and a DeMeyer-Kanzaki Galois extension $B^G C$ of B^G with Galois group G/K, where $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$. Properties of separable subextensions are also given.

AMS Subject Classification: 16S35, 16W20

Key Words: separable extensions, Galois extensions, Hirata separable extensions, Hirata Galois extensions, DeMeyer-Kanzaki Galois extensions

1. Introduction

Let B be an indecomposable Galois algebra over a commutative ring R with Galois group G, C the center of B, and $K = \{ g \in G \mid g(c) = c \text{ for all } c \in C \}$. In [2], it was shown that B is a central Galois algebra over C with Galois group K, and C is a commutative Galois extension of C^G with Galois group G/K (see [2], Theorem 1). This fact was generalized to an indecomposable Galois extension B of B^G with Galois group G such that B^G is separable over C^G (see [10], Theorem 3.2). By noting that this fact fails for decomposable Galois extensions, the purpose of the present paper is to give an equivalent condition for a Galois extension B (not necessarily indecomposable) of B^G
which is separable over C^G such that B is a Hirata Galois extension of $B^G C$ with Galois group K, and $B^G C$ is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G/K. Let $J_g = \{b \in B \mid bx = g(x)b \text{ for each } x \in B\}$ for a $g \in G$. We shall show that B is a composition of the above two Galois extensions $B \supset B^G C \supset B^G$ with Galois group K and G/K respectively if and only if $J_g = \{0\}$ for each $g \not\in K$ and the order of K is a unit in B. Moreover, let B be a Galois extension satisfying the above conditions. We shall give two one-to-one correspondences, one between the set of separable extensions of $B^G C$ in B and the set of separable C-subalgebras of $\bigoplus_{g \in K} J_g$, and the other one between the set of separable extensions of B^G in $B^G C$ and the set of separable subalgebras of Z over Z^G, where Z is the center of $B^G C$.

2. Basic Definitions and Notations

Let B be a ring with 1, G a finite automorphism group of B, C the center of B, B^G the set of elements in B fixed under each element in G, and A a subring of B with the same identity 1. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum a_i b_i = 1$, and $\sum b a_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B, where \otimes is over A. An Azumaya algebra is a separable extension of its center. We call B a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. Such a set $\{a_i, b_i\}$ is called a G-Galois system for B. A ring B is called a Galois algebra over R if B is a Galois extension of R which is contained in C, and B is called a central Galois algebra if B is a Galois extension of C (see [9], [10]). A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule, and B is called a Hirata Galois extension of B^G if it is a Galois and a Hirata separable extension of B^G (see [6]). B is called a center Galois extension of B^G if C is a Galois algebra over C^G with Galois group $G|_C \cong G$. A Galois extension B is called a DeMeyer-Kanzaki Galois extension with Galois group G if B is an Azumaya C-algebra and a center Galois extension with Galois group G. A ring B is called decomposable if it contains more than two central idempotents and indecomposable if it contains no central idempotents but 0 and 1.

Throughout this paper, we assume that B is a Galois extension of B^G with Galois group G, C the center of B, $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$, $J_g = \{b \in B \mid bx = g(x)b \text{ for each } x \in B\}$ for a $g \in G$, and for a subring A of B, $V_B(A)$ denotes the commutator subring of A in B.
3. Equivalent Conditions

In this section, we shall give an equivalent condition for a Galois extension B of a separable algebra B^G over C^G such that B is a Hirata Galois extension of $B^G C$ with Galois group K, and $B^G C$ is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G/K. We shall employ the following two useful results of a Hirata separable extension as given in [5] and [6].

Proposition 3.1. (see [6], Proposition 4.3) Let B be a Hirata Galois extension of B^G with Galois group G. Then B^G is a direct summand of B as an B^G-bimodule if and only if the order of G is a unit in B.

Proposition 3.2. (see [4], Theorem 1) Let A be an Azumaya C-algebra. If D is a subalgebra of A such that A is projective as a left D-module, then A is a Hirata separable extension of D.

Now we show the necessity of the main theorem.

Theorem 3.3. Let B be a Galois extension of B^G with Galois group G such that B^G is separable over C^G. If B is a Hirata Galois extension of $B^G C$ with Galois group K, then the order of K is a unit in B and $J_g = \{0\}$ for each $g \not\in K$.

Proof. Since B is a Galois extension of B^G such that B^G is separable over C^G, B is a separable extension of B^G; and so B is a separable C^G-algebra by the transitivity property of separable extensions. Hence B is an Azumaya C-algebra and C is a separable C^G-algebra (see [3], Theorem 3.8, p. 55). Thus the homomorphic image of B^G and C, $B^G C$ is also a separable C^G-algebra, and so $B^G C$ is a separable subalgebra of the Azumaya C-algebra B. But then $B^G C$ is a direct summand of B as an $B^G C$-bimodule. By hypothesis, B is a Hirata Galois extension of $B^G C$ with Galois group K. Hence the order of K is a unit in B by Proposition 3.1. Next, we show that $J_g = \{0\}$ for each $g \not\in K$. In fact, since B is a Galois extension of $B^G C$ with Galois group K, $V_B(B^G C) = \bigoplus_{g \in K} J_g = V_B(B^K)$ (see [5], Proposition 1). On the other hand, since $V_B(B^G C) = V_B(B^G) = \oplus \sum_{g \in G} J_g$, $\oplus \sum_{g \in K} J_g = \oplus \sum_{g \in G} J_g$. Thus $J_g = \{0\}$ for each $g \not\in K$. This completes the proof.

Next is the converse of Theorem 3.3.

Theorem 3.4. Let B be a Galois extension of B^G with Galois group G such that B^G is separable over C^G. If the order of K is a unit in B and $J_g = \{0\}$ for each $g \not\in K$, then B is a Hirata Galois extension of $B^G C$ with Galois group K and $B^G C$ is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G/K.

Proof. Let $\{a_i, b_i \in B, i = 1, 2, ..., m\}$ for some integer m be a G-Galois system for B and r the order of K. Since r is a unit in B by hypothesis,
we can check that \(\{ \text{Tr}_{K}(a_i), \frac{1}{r} \text{Tr}_{K}(b_i) \mid i = 1, 2, ..., m \} \) is a \(G/K \)-Galois system for \(B^K \) where \(\text{Tr}_{K}() = \sum_{g \in K} g() \). Hence \(B^K \) is a Galois extension of \(B^G \) with Galois group \(G/K \). But \(B^G \) is separable over \(C^G \) by hypothesis, so \(B^K \) is a separable \(C^G \)-algebra by the transitivity property of separable extensions. Noting that \(C \subset B^K \), we have that \(B^K \) is a separable subalgebra of the Azumaya \(C \)-algebra \(B \). Next, since \(J_g = \{0\} \) for each \(g \notin K \), \(V_B(B^G C) = V_B(B^G) = \oplus \sum_{g \in G} J_g = \oplus \sum_{g \in K} J_g = V_B(B^K) \). Since \(B^G C \) and \(B^K \) are separable subalgebras of the Azumaya \(C \)-algebra \(B \), we have that \(B^G C = V_B(V_B(B^G C)) = V_B(V_B(B^K)) = B^K \) by the double centralizer property for Azumaya algebras (see [3], Theorem 4.3, p. 57). This implies that \(B \) is a Galois extension of \(B^G C (= B^K) \) with Galois group \(K \) and \(B^G C \) is a Galois extension of \(B^G \) with Galois group \(G/K \). Moreover, we claim that \(B \) is a Hirata Galois extension of \(B^G C \) with Galois group \(K \) and \(B^G C \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G/K \). In fact, since \(B \) is a left finitely generated projective \(B^G C \)-module, \(B \) is a Hirata separable extension of \(B^G C \) by Proposition 3.2. Thus \(B \) is a Hirata Galois extension of \(B^G C \) with Galois group \(K \). Also, let \(Z \) be the center of \(B^G C \). Then clearly, \(C \subset Z \) implies that \(B^G C \) is an Azumaya \(Z \)-algebra (for \(B^G C \) is a separable \(C \)-algebra). Noting that \(B^G C = B^G Z \) which is a Galois extension of \(B^G \) with Galois group \(G/K \), we have that \(B^G Z \) is a center Galois extension of \(B^G \) with Galois group \(G/K \) (see [8], Theorem 3.2). Therefore \(B^G C \) is a DeMeyer-Kanzaki Galois extension of \(B^G \) with Galois group \(G/K \).

Corollary 3.5. Let \(B \) be a Galois algebra over a commutative ring \(R \) with Galois group \(G \). Then \(B \) is a central Galois algebra over \(C \) with Galois group \(K \) and \(C \) is a commutative Galois extension of \(B^G \) with Galois group \(G/K \) if and only if the order of \(K \) is a unit in \(B \) and \(J_g = \{0\} \) for each \(g \notin K \).

4. Separable Subrings

Let \(B \) be a Galois extension of \(B^G \) with Galois group \(G \) such that \(B^G \) is separable over \(C^G \) as given in Theorem 3.4. By Theorem 3.4, \(B \) is a composition of a Hirata Galois extension \(B \) of \(B^G C \) with Galois group \(K \) and a DeMeyer-Kanzaki Galois extension \(B^G C \) of \(B^G \) with Galois group \(G/K \). In this section, we shall give some properties of the class of the separable subalgebras comparable with \(B^G C \).

Theorem 4.1. Let \(B \) be given in Theorem 3.4, \(S = \{ A \subset B \mid A \) is a separable extension of \(B^G C \} \), and \(T = \{ D \subset \oplus \sum_{g \in K} J_g \mid D \) is a separable \(C \)-algebra \} \). Then \(\alpha : A \to V_B(A) \) is a one-to-one correspondence between \(S \).
and T.

Proof. By Theorem 3.4, B is a Hirata Galois extension of $B^G C$ with Galois group K, so B is a Hirata separable extension and a left finitely generated and projective module over $B^G C$. Hence $\alpha : A \rightarrow V_B(A)$ is a one-to-one correspondence between the set of separable extensions A of $B^G C$ such that A is a direct summand of B as an A-bimodule and the set of C-separable subalgebras of $V_B(B^G C)$ (see [7], Theorem 1). But for any separable extension A of $B^G C$ in B, A is a separable subalgebra of the Azumaya C-algebra B, so A is a direct summand of B as an A-bimodule. Thus, noting that $V_B(B^G C) = V_B(B^K) = \bigoplus_{g \in K} J_g$, we conclude that $\alpha : A \rightarrow V_B(A)$ is a one-to-one correspondence between S and T.

Let B be given in Theorem 3.4. By Theorem 3.4, $B^G C$ is a DeMeyer-Kanzaki Galois extension of B^G with Galois group G/K, that is, $B^G C$ is an Azumaya algebra over its center Z and Z is a commutative Galois algebra over Z^G with Galois group G/K. Let $P = \{ A \subset B^G C | A$ is a separable extension of $B^G \}$ and $Q = \{ D | D$ is a separable subalgebra of Z over $Z^G \}$. Then $\beta : A \rightarrow A \cap Z$ is a one-to-one correspondence between P and Q.

Next we give a new proof of the expression of a separable algebra $A \in P$ as given in [1].

Lemma 4.2. By keeping the above notations, for any $A \in P$, $A = B^G \cdot (A \cap Z)$.

Proof. Since $A \in P$, $B^G \subset A$. Hence A is a two sided module over B^G. But $B^G C = B^G Z$ has center Z, so the center of B^G is Z^G. Noting that B^G is separable over Z^G, we have that $B^G C$ is an Azumaya algebra over Z^G. Thus $A \cong B^G \otimes_{Z^G} V_A(B^G) = B^G \otimes_{Z^G} (A \cap V_{B^G C}(B^G)) = B^G \otimes_{Z^G} (A \cap Z)$ by the multiplication map (see [3], Corollary 3.6, p. 54). Therefore $A = B^G \cdot (A \cap Z)$.

Theorem 4.3. By keeping the above notations, $\beta : A \rightarrow A \cap Z$ is a one-to-one correspondence between P and Q.

Proof. Since β is the restriction map of the equivalent functor from the category of the bimodules over the Azumaya algebra B^G and the category of the modules over the center Z^G of B^G, $\beta : A \rightarrow A \cap Z$ is a one-to-one correspondence.

We conclude the present paper with three examples to demonstrate the main results in Section 3. Examples 1 and 2 show the existence of decomposable Galois algebras and extensions which are composition of two Galois extensions as given in Theorem 3.3 and 3.4, and Example 3 is a decomposable Galois extension which is not a composition of two Galois extensions as given in Theorem 3.3 and 3.4.
Example 1. Let $A = R[i,j,k]$ be the quaternion algebra over the real field R, $B = A \times A$, and $G = \{1, g_i, g_j, g_k, g, gg_i, gg_j, gg_k\}$, where $g_i(x, y) = (ixi^{-1}, iyi^{-1})$, $g_j(x, y) = (jxj^{-1}, jyj^{-1})$, $g_k(x, y) = (kxk^{-1}, kyk^{-1})$, and $g(x, y) = (y, x)$ for all (x, y) in B. Then:

1. B is a Galois extension with a G-Galois system: \(\{a_1 = (1, 0), a_2 = (i, 0), a_3 = (j, 0), a_4 = (k, 0), a_5 = (0, 1), a_6 = (0, i), a_7 = (0, j), a_8 = (0, k)\}$; \(b_1 = \frac{1}{2}(1, 0), b_2 = -\frac{1}{2}(i, 0), b_3 = -\frac{1}{2}(j, 0), b_4 = -\frac{1}{2}(k, 0), b_5 = \frac{1}{2}(0, 1), b_6 = -\frac{1}{2}(0, i), b_7 = -\frac{1}{2}(0, j), b_8 = -\frac{1}{2}(0, k)\);

2. $B^G = \{(r, r) \mid r \in R\} \cong R$;

3. by (1) and (2), B is a Galois algebra over R with Galois group G;

4. $C = R \times R$;

5. $K = \{1, g_i, g_j, g_k\}$;

6. $B^K = B^G C = R \times R$; and

7. by (6), B is a composition of a central Galois algebra B over C with Galois group K and C is a commutative Galois extension of C^G with Galois group G/K.

Example 2. Let $B = A \times A$ and $L = \{1, g_i, g_j, g_k\} \subset G$ as given in Example 1. Then:

1. L is a subgroup of G;

2. B is a Galois extension of B^L with Galois group L;

3. $B^L = \{(x, x) \mid x \in R[i]\} \cong R[i]$ which is a separable R-algebra;

4. $K = \{1, g_i\}$;

5. $B^K = B[i] \times R[i]$;

6. $C = R \times R \subset R[i] \times R[i] = B^K = B^G C$; and

7. B is a composition of a Hirata Galois extension (not a Galois algebra) of $B^L C$ with Galois group K and a DeMeyer-Kanzaki Galois extension $B^L C$ of B^L with Galois group L/K.

Example 3. Let S be a commutative Galois algebra with Galois group G, $S \ast G$ the skew group ring (the crossed product with trivial factor set), $B = S \times (S \ast G)$, and $\overline{G} = \{(g, I_g) \mid g \in G\}$, where $I_g(x) = g x g^{-1}$ for each $x \in S \ast G$. Then:

1. B is a Galois extension of B^G with Galois group \overline{G};

2. the center C of B is $S \times S^G$;

3. $B^G = S^G \times (S \ast G)^{\overline{G}}$;

4. $B^G C = S \times (S \ast G)^{\overline{G}}$;

5. $K = \{1\}$;

6. $B^K = B \neq B^G C$; and

7. B is not a composition of $B \ni B^K$ and $B^K \ni B^G$.

Acknowledgements

This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

