EXISTENCE AND UNIQUENESS RESULTS FOR
A CLASS OF NONLINEARDIFFERENTIAL SYSTEMS

Rodica Luca
Department of Mathematics
“Gh. Asachi” Technical University
11 Bd. Carol I, Iași, 700506, ROMANIA
e-mail: rluca@math.tuiasi.ro

Abstract: We study the existence and uniqueness of the strong and weak solutions to a nonlinear differential system with second-order differences, subject to some extreme conditions and initial data.

AMS Subject Classification: 34G20, 35L55, 47H05, 39A12
Key Words: differential system, extreme conditions, maximal monotone operator, Cauchy problem, strong solution, weak solution

1. Introduction

Let H be a real Hilbert space with the scalar product $\langle \cdot , \cdot \rangle$ and the associated norm $\| \cdot \|$. We consider the nonlinear differential system with second-order differences

$$
\begin{align*}
 u_j'(t) + \frac{v_{j+1}(t) - 2v_j(t) + v_{j-1}(t)}{h_j^2} + c_j A(u_j(t)) & \ni f_j(t), \\
v_j'(t) - \frac{u_{j+1}(t) - 2u_j(t) + u_{j-1}(t)}{h_j^2} + d_j B(v_j(t)) & \ni g_j(t),
\end{align*}
$$

(S)

0 < t < T, j = 1, N, in H, with the extreme conditions

$$
\begin{align*}
 \left(\begin{array}{c}
 u_1(t) - u_0(t) \\
v_1(t) + v_0(t)
\end{array} \right) & \in \alpha \left(\begin{array}{c}
v_1(t) \\
u_1(t)
\end{array} \right), \\
\left(\begin{array}{c}
-u_{N+1}(t) + u_N(t) \\
v_{N+1}(t) - v_N(t)
\end{array} \right) & \in \beta \left(\begin{array}{c}
v_N(t) \\
u_N(t)
\end{array} \right),
\end{align*}
$$

(EC)

Received: August 20, 2007 © 2007, Academic Publications Ltd.
for $0 < t < T$ and the initial data

$$u_j(0) = u_{j0}, \quad v_j(0) = v_{j0}, \quad j = 1, N; \quad (ID)$$

where $N \in \mathbb{N}, N \geq 2, T > 0, c_j, d_j, h_j, h_{ij} > 0$, for all $j = 1, N, \alpha, \beta$ and A, B are operators in H^2, respectively H, which satisfy some assumptions.

The above problem is a discrete version with respect to x (with $H = \mathbb{R}$) of the nonlinear system

$$\begin{cases}
\frac{\partial u}{\partial t}(t, x) + \frac{\partial^2 v}{\partial x^2}(t, x) + c(x)A(u(t, x)) \ni f(t, x), \\
\frac{\partial v}{\partial t}(t, x) - \frac{\partial^2 u}{\partial x^2}(t, x) + d(x)B(v(t, x)) \ni g(t, x),
\end{cases} \quad (S)_0$$

subject to boundary conditions

$$\begin{pmatrix}
\frac{\partial u}{\partial x}(t, 0) \\
\frac{\partial v}{\partial x}(t, 0)
\end{pmatrix} \in \alpha \begin{pmatrix}
u(t, 0) \\
u(t, 0)
\end{pmatrix}, \quad \begin{pmatrix}
\frac{\partial u}{\partial x}(t, 1) \\
\frac{\partial v}{\partial x}(t, 1)
\end{pmatrix} \in \beta \begin{pmatrix}
u(t, 1) \\
u(t, 1)
\end{pmatrix}, \quad (BC)_0$$

for $0 < t < T$ and the initial data

$$u(0, x) = u_0(x), \quad v(0, x) = v_0(x), \quad 0 < x < 1. \quad (IC)_0$$

This problem and some generalizations of it (with higher-order partial derivatives, time dependent coefficients in $(S)_0$ or extra functions in $(BC)_0$) have been studied in Luca [6], Luca-Tudorache [9], Moroşanu et al [10]. The conditions $(BC)_0$ are general ones. By making suitable choices of α and β we deduce many classical boundary conditions.

In this paper we investigate the existence and uniqueness of the strong and weak solutions for the problem $(S)+(EC)+(ID)$. In our proofs we use some results related to maximal monotone operators and nonlinear evolution equations in Hilbert spaces (see the monographs Barbu [2], Brezis [3], Ladde et al [4], Lakshmikantham et al [5]). For other differential and difference equations in abstract spaces we mention the papers Agarwal et al [1], Luca [7], Luca [8], Rousseau et al [11].

We present the assumptions that we use in the sequel:

(H1) The operators $A : D(A) \subset H \rightarrow H, B : D(B) \subset H \rightarrow H$ are maximal monotone, possibly multivalued.

(H2) The operators $\alpha : D(\alpha) \subset H^2 \rightarrow H^2, \beta : D(\beta) \subset H^2 \rightarrow H^2$ are maximal monotone, possibly multivalued.
(H3) i) The operators α and β are bounded on bounded sets.

 ii) $(\text{int}D(\alpha)) \cap (D(B) \times D(A)) \neq \emptyset$ and $(\text{int}D(\beta)) \cap (D(B) \times D(A)) \neq \emptyset$.

(H4) The constants $h_j > 0$, $\overline{h}_j > 0$, for all $j = 1, N$.

(H5) The constants $c_j > 0$, $d_j > 0$, for all $j = 1, N$.

2. Existence and Uniqueness Results for Solutions

We express our problem $(S) + (EC) + (ID)$ as a Cauchy problem in a certain Hilbert space, using some maximal monotone operators. We consider the Hilbert space $X = H^{2N} = \{(u_1, u_2, \ldots, u_N, v_1, v_2, \ldots, v_N)^T; \ u_j, v_j \in H, \ j = 1, N\}$ with the scalar product $((u_1, \ldots, u_N, v_1, \ldots, v_N)^T, (\overline{u}_1, \ldots, \overline{u}_N, \overline{v}_1, \ldots, \overline{v}_N)^T)_X = \sum_{j=1}^{N} h_j^2 \langle u_j, \overline{u}_j \rangle + \sum_{j=1}^{N} h_j^2 \langle v_j, \overline{v}_j \rangle$ and the corresponding norm $\| \cdot \|_X$.

We introduce the operator $A_1: D(A_1) = X \to X,$

\[
A_1((u_1, u_2, \ldots, u_N, v_1, v_2, \ldots, v_N)^T) = \left(\frac{v_2 - 2v_1}{h_1^2}, \frac{v_3 - 2v_2 + v_1}{h_2^2}, \ldots, \frac{v_N - 2v_{N-1} + v_{N-2}}{h_{N-1}^2}, \frac{-2v_N + v_{N-1}}{h_N^2}, \frac{-u_N - 2u_{N-1} + u_{N-2}}{h_{N-1}^2}, \frac{-2u_N + u_{N-1}}{h_N^2} \right)^T,
\]

and the operator $A_2: D(A_2) \subset X \to X,$ $D(A_2) = \{(u_1, \ldots, u_N, v_1, \ldots, v_N)^T, (v_1, u_1)^T \in D(\alpha), (v_N, u_N)^T \in D(\beta)\},$

\[
A_2((u_1, \ldots, u_N, v_1, \ldots, v_N)^T) = \left\{ \left(\frac{v_0}{h_1^2}, 0, \ldots, 0, \frac{v_{N+1}}{h_N^2}, -\frac{u_0}{h_1^2}, 0, \ldots, 0, -\frac{u_{N+1}}{h_N^2} \right)^T, \right.
\]

\[
(u_1 - u_0, -v_1 + v_0)^T
\]

$\in \alpha((v_1, u_1)^T), (-u_{N+1} + u_N, v_{N+1} - v_N)^T \in \beta((v_N, u_N)^T) \bigg\}.$

Lemma 1. If the assumption (H4) hold, then the operator A_1 is maximal monotone in X.

Lemma 2. If the assumptions (H2) and (H4) hold, then the operator A_2 is maximal monotone in X.
We now define the operator \(A : D(A) = D(A_2) \subset X \rightarrow X, A(U) = A_1(U) + A_2(U). \)

Lemma 3. If the assumptions (H2) and (H4) hold, then the operator \(A \) is maximal monotone in \(X \).

Next, we define the operator \(B : D(B) \subset X \rightarrow X, D(B) = D(A)^N \times D(B)^N, \)

\[
B((u_1, u_2, \ldots, u_N, v_1, v_2, \ldots, v_N)^T) = \{(c_1\gamma_1, c_2\gamma_2, \ldots, c_N\gamma_N, d_1\delta_1, d_2\delta_2, \ldots, d_N\delta_N)^T, \gamma_i \in A(u_i), \delta_i \in B(v_i), i = 1, N\}.
\]

Lemma 4. If the assumptions (H1), (H4) and (H5) hold, then the operator \(B \) is maximal monotone in \(X \).

Theorem 1. If the assumptions (H1), (H2), ((H3)i) or (H3)ii), (H4) and (H5) hold, then the operator \(A + B \) is maximal monotone.

Using the operators \(A \) and \(B \) our problem can be written as the following Cauchy problem in the space \(X \)

\[
\begin{aligned}
\{ & \frac{dU}{dt}(t) + A(U(t)) + B(U(t)) \ni F(t), \\
& U(0) = U_0,
\end{aligned}
\]

where \(U = (u_1, \ldots, u_N, v_1, \ldots, v_N)^T, U_0 = (u_{01}, \ldots, u_{0N}, v_{01}, \ldots, v_{0N})^T, F = (f_1, \ldots, f_N, g_1, \ldots, g_N)^T. \)

Theorem 2. Assume that the assumptions (H1), (H2), ((H3)i) or (H3)ii), (H4) and (H5) hold. If \((v_{10}, u_{01})^T \in D(\alpha) \cap (D(B) \times D(A)), u_{j0} \in D(A), v_{j0} \in D(B),\) for all \(j = 2, N - 1, (v_{01}, u_{00})^T \in D(\beta) \cap (D(B) \times D(A)) \) (that is \(U_0 \in D(A) \cap D(B) \)), \(f_j, g_j \in W^{1,1}(0, T; H), j = 1, N \), then there exist unique functions \(u_j, v_j \in W^{1,\infty}(0, T; H), j = 1, N \), \((v_1(t), u_1(t))^T \in D(\alpha) \cap (D(B) \times D(A)), (v_N(t), u_N(t))^T \in D(\beta) \cap (D(B) \times D(A)), u_j(t) \in D(A), v_j(t) \in D(B),\) for all \(j = 2, N - 1,\) for all \(t \in [0, T]\), that verify the system (S) and the extreme conditions (EC) for all \(t \in [0, T] \) and the initial data (ID). Besides, \(u_j, v_j, j = 1, N \) are everywhere differentiable from right in the topology of \(H \) and

\[
\begin{aligned}
\frac{d^+u_j}{dt}(t) &= \left(f_j(t) - c_jA(u_j(t)) - \frac{v_{j+1}(t) - 2v_j(t) + v_{j-1}(t)}{h_j^2} \right)^0, \\
& j = 2, N - 1, \\
\frac{d^+v_j}{dt}(t) &= \left(g_j(t) - d_jB(v_j(t)) + \frac{u_{j+1}(t) - 2u_j(t) + u_{j-1}(t)}{h_j^2} \right)^0,
\end{aligned}
\]
for all $t \in [0, T)$, with $(u_1(t) - u_0(t), -v_1(t) + v_0(t))^T \in \alpha((v_1(t), u_1(t))^T),$

$(-u_{N+1}(t) + u_N(t), v_{N+1}(t) - v_N(t))^T \in \beta((v_N(t), u_N(t))^T)$, for all $t \in [0, T)$.

Proof. By Theorem 1, the operator $A + B$ is maximal monotone in X. Using Barbu [2], Theorem 2.2, Corollary 2.1, Chapter III, we deduce that for $U_0 \in D(A) \cap D(B)$ and $F \in W^{1,1}(0, T; X)$, the problem $(P) \equiv (S) + (EC) + (ID)$ has a unique strong solution $U = (u_1, \ldots, u_N, v_1, \ldots, v_N)^T \in W^{1,\infty}(0, T; X)$, $U(t) \in D(A) \cap D(B)$, for all $t \in [0, T)$. We can conclude that $U(T) \in D(A) \cap D(B)$, by extending correspondingly the functions f_j, g_j, $j = 1, N$ and by considering the equation $(P)_j$ in the interval $[0, T + \varepsilon]$, with $\varepsilon > 0$. The solution U is everywhere differentiable from right and $\frac{d^+U}{dt}(0) = (F(t) - A(U(t)) - B(U(t)))^0$, for all $t \in [0, T)$, that is we have the relations from the conclusion of the theorem. Moreover we have

$$
\left\| \frac{d^+U}{dt}(t) \right\|_X \leq \| (F(0) - A(U_0) - B(U_0))^0 \|_X + \int_0^t \left\| \frac{dF}{ds}(s) \right\|_X \, ds, \forall t \in [0, T).
$$

The proof is completed. \(\square\)

Remark. Under the assumptions of Theorem 2, if $U_0 \in D(A) \cap D(B)$ and $F \in L^1(0, T; X)$, then by Barbu [2], Corollary 2.2, Chapter III, we deduce that the problem (P) has a unique weak solution $U \in C([0, T]; X)$.

$$j = 2, N - 1,$$

$$\left(\begin{array}{c}
\frac{d^+u_1}{dt}(t) \\
\frac{d^+v_1}{dt}(t)
\end{array} \right) = \left(\begin{array}{c}
f_1(t) - c_1A(u_1(t)) - \frac{v_2(t) - 2v_1(t) + v_0(t)}{h_1^2} \\
g_1(t) - d_1B(v_1(t)) + \frac{u_2(t) - 2u_1(t) + u_0(t)}{h_1^2}
\end{array} \right)^0
$$

$$\left(\begin{array}{c}
\frac{d^+u_N}{dt}(t) \frac{d^+v_N}{dt}(t)
\end{array} \right) = \left(\begin{array}{c}
f_N(t) - c_NA(u_N(t)) - \frac{v_{N+1}(t) - 2v_N(t) + v_{N-1}(t)}{h_N^2} \\
g_N(t) - d_NB(v_N(t)) + \frac{u_{N+1}(t) - 2u_N(t) + u_{N-1}(t)}{h_N^2}
\end{array} \right)^0,
$$
References

