IJPAM: Volume 43, No. 3 (2008)


J. Gani$^1$, R.J. Swift$^2$
$^1$Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200, AUSTRALIA
e-mail: gani@maths.anu.edu.au
$^2$Department of Mathematics and Statistics
California State Polytechnic University
Pomona, CA 91768, USA
e-mail: rjswift@csupomona.edu

Abstract.This paper is concerned with three stochastic processes (Poisson, pure birth and pure death) subject to mass movement immigration or emigration. Such positive or negative mass movements may occur on a single occasion, or recur at times distributed as a Poisson process. For positive movements in the recurrent case, the resulting process is shown to be the sum of the Poisson, birth or death process and an independent immigration type process.

Received: February 18, 2008

AMS Subject Classification: 60J80

Key Words and Phrases: Poisson process, Birth process, death process, immigration, emigration, single or recurrent mass movement

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2008
Volume: 43
Issue: 3