
International Journal of Pure and Applied Mathematics
————————————————————————–
Volume 44 No. 3 2008, 425-438

CONTINUOUS FIELDS OF C
∗-ALGEBRAS

BY ALMOST COMMUTING ISOMETRIES

Takahiro Sudo

Department of Mathematical Sciences
Faculty of Science

University of the Ryukyus
Nishihara, Okinawa, 903-0213, JAPAN
e-mail: sudo@math.u-ryukyu.ac.jp

Abstract: We study the C∗-algebras involving almost commuting isometries
and their structure, K-theory, and continuous fields.

AMS Subject Classification: 46L05, 46L80
Key Words: C∗-algebra, continuous field, K-theory, isometry

1. Introduction

Continuous fields of C∗-algebras have been studied of great interest (see Dixmier
[4]). Especially, continuous fields of C∗-algebras with continuous trace as fibers
are classified by the third cohomology of the base spaces, called the Dixmier-
Douady invariant (or classification) (see Raeburn and Williams [8]).

A well known fact is that the group C∗-algebra of the discrete Heisenberg
group can be viewed as a continuous field of rotation C∗-algebras (or noncom-
mutative 2-tori) on the torus T (for instance, see Anderson and Paschke [1]).
On the other hand, Exel [6] has shown that there exists a continuous field of the
C∗-algebras defined by almost commuting unitaries, called the soft tori, on the
interval [0, 2], whose fiber at 0 is C(T2) the C∗-algebra of all continuous func-
tions on the 2-torus T

2 and the fiber at 2 is C∗(F2) the full group C∗-algebra
of the free group F2 of two generators, and the K-theory (or K-groups) of the
soft tori is computed in [5] by Exel. See also the author [10] for K-theory of
continuous fields of quantum (or noncommutative) tori.
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Since the study on continuous fields of C∗-algebras has been focused on
those of C∗-algebras generated by unitaries as mentioned above (among others),
our first quesion was wheater or not there exists a non-trivial continuous field
of C∗-algebras generated by isometries. In this paper we obtain a positive
result to this quesion. In contrast with this, constructed by the author [11]
is a discontinuous deformation from a C∗-algebra generated by isometries to a
C∗-algebra generated by unitaries.

This paper is organized as follows. In Section 2 we consider the univer-
sal C∗-algebras generated by almost commuting isometries, which we call soft
Toeplitz tensor products, and if we further impose some norm estimates from
a technical requirement, we call them super-soft, and study their structure and
K-theory. In Section 3 we show that there exists a continuous field with fibers
given by the super-soft Toeplitz tensor products, so that there exists a continu-
ous field between the C∗-tensor product of Toeplitz algebras and the full unital
free product C∗-algebra of them. This interpolating result should be new and
interesting. Some methods used in Sections 2 and 3 are taken analogously from
both the methods of Exel [5] for the universal C∗-algebras generated by almost
commuting unitaries and their structure and K-theory and those of Exel [6]
for a continuous field between C(T2) (that is isomorphic the C∗-tensor product
C(T) ⊗ C(T)) and C∗(F2) (that is isomorphic to the full unital free product
C∗-algebra C(T) ∗C C(T)). For the convenience to readers, the detailed proofs
in our case are given. However, the main difference between our case and Exel’s
case is that we need to treat with the semigroup C∗-algebra of N of natural num-
bers and semigroup crossed products of C∗-algebras by endomorphisms of N in
stead of the group C∗-algebra of Z of integers and ordinary crossed products of
C∗-algebras by automorphisms of Z as in Exel’s case. Fortunately, we can use
techniques for semigroup crossed products by N such as their generators and
conditional expectations and K-theory (see Rørdam [9]). More fortunately, it is
found that we can use a reduction from our case to Exel’s case by considering
canonical quotients, which makes it possible to avoid considering technical dif-
ficulties using functional calculus (for isometries or unitaries) that is not useful
for (proper) isometies. Also, the K-theory formulas such as those for unital free
product C∗-algebras and tensor product C∗-algebras as well are available (see
Blackadar [2, 10.11.11] and Wegge-Olsen [12]).
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2. K-Theory

Let F be the Toeplitz algebra, which is defined to the universal C∗-algebra
generated by a proper (or non-unitary) isometry s, i.e., denoted by F = C∗(s),
where s∗s = 1 is the identity element (see Murphy [7] or [12]). The Toeplitz
algebra is also regarded as the semi-group C∗-algebra of N the additive semi-
group of natural numbers by endomorphisms by a non-unitary isometry u (in
the sense that α1(1H) = u1Hu

∗ = uu∗ and αn(1H) = un(u∗)n for n ∈ N, where
1H = u∗u is the identity map on a Hilbert space H), i.e., denoted by F = C∗(N).
Note also that the Toeplitz F has the decomposition into the following short
exact sequence (see [7]):

0→ K→ F→ C(T)→ 0,

where K is the C∗-algebra of compact operators on a separable infinite di-
mensional Hilbert space and C(T) is the universal C∗-algebra generated by a
unitary, and it is also the C∗-algebra of continuous functions on the torus T.

For any ε ≥ 0, the soft torus Aε of Exel is defined to be the universal C∗-
algebra generated by two unitaries uε,1, uε,2 such that ‖uε,2uε,1−uε,1uε,2‖ ≤ ε.
By definition, A0 is isomorphic to the C∗-tensor productC(T)⊗C(T), that is the
universal C∗-algebra generated by commuting two unitaries. If ε ≥ 2, then Aε
is isomorphic to the unital full free product C∗-algebra C(T)∗CC(T), which can
be viewed as the full group C∗-algebra C∗(Z∗Z) of the free product Z∗Z. This
follows from universality of Aε and that the inequality ‖uε,2uε,1− uε,1uε,2‖ ≤ 2
always holds.

Definition 2.1. For any ε ≥ 0, we define the C∗-algebra denoted by Dε

to be the universal C∗-algebra generated by two isometries sε,1, sε,2 such that
‖sε,2sε,1 − sε,1sε,2‖ ≤ ε. We call it soft Toeplitz tensor product. In addition, if
we assume the norm estimates:

‖π(sn+1
ε,2 sε,1(s

∗
ε,2)

n+1)− π(snε,2sε,1(s
∗
ε,2)

n)‖ ≤ ε

for n ∈ N and n = 0, then we call Dε super-soft Toeplitz tensor product, where
π is the canonical quotient map from Dε to Aε. If necessary to mention, we call
Dε soft or super-soft in those cases respectively, in what follows. Otherwise we
always assume that Dε is super-soft.

Remark. There exists a canonical quotient map π from Dε to Aε by
sending sε,j to uε,j for j = 1, 2. Note that unitaries are isometries. The second
norm estimate is required by a technical reason in what follows. Indeed, the first
norm estimate in the soft torus case implies the second estimate. Therefore, it
might be possible to remove the super-softness from the definition.
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By definition, D0 is isomorphic to the C∗-tensor product F ⊗ F, that is
the universal C∗-algebra generated by commuting two isometries. If ε ≥ 2,
then Dε is isomorphic to the full unital free product C∗-algebra F ∗C F, which
can be viewed as the semi-group C∗-algebra of the free product semi-group
N ∗ N, denoted by C∗(N ∗ N). This follows from the universality of F ∗C F (or
C∗(N ∗ N)) and that the inequality: ‖sε,2sε,1 − sε,1sε,2‖ ≤ 2 always holds. It is
well known that the K-groups of the Toeplitz algebra F are given by K0(F) ∼= Z

and K1(F) ∼= 0 (see [12, 9.L]). The Künneth formula implies

K0(D0) = K0(F⊗ F) ∼= [K0(F)⊗K0(F)]⊕ [K1(F)⊗K1(F)] ∼= Z,

K1(D0) = K1(F⊗ F) ∼= [K0(F)⊗K1(F)]⊕ [K1(F)⊗K0(F)] ∼= 0

(see [12, 9.3.3]). On the other hand, the K-groups of the full unital free product
C∗-algebra F ∗C F are computed as

K0(F ∗C F) ∼= (K0(F)⊕K0(F))/Z ∼= Z,

K1(F ∗C F) ∼= K1(F)⊕K1(F) ∼= 0

(see [2, 10.11.11]).

For any ε ≥ 0, Exel considered the C∗-subalgebra Bε of Aε generated by
unitaries unε,2uε,1(u

∗
ε,2)

n (n ∈ Z) satisfying

‖un+1
ε,2 uε,1(u

∗
ε,2)

n+1 − unε,2uε,1(u
∗
ε,2)

n‖ ≤ ε.

We define B′
ε to be the C∗-algebra generated by the unitaries unε,2uε,1(u

∗
ε,2)

n for
n ∈ N and n = 0.

Definition 2.2. We define Eε to be the universal C∗-algebra generated
by an isometry t1 and the elements tn+1 = unt1(u

∗)n (n ∈ N) for an isometry
u such that ‖ut1 − t1u‖ ≤ ε (or Eε may be defined as the C∗-subalgebra of Dε

generated by the corresponding elements sε,1 and snε,2sε,1(s
∗
ε,2)

n for n ∈ N). Let
αε be the endomorphism of Eε defined by αε(tn) = tn+1 = utnu

∗ for n ∈ N.
Let Eε ⋊αε

N be the semigroup crossed product C∗-algebra corresponding to
the C∗-dynamical system (Eε, αε,N). In addition, if necessary in what follows,
we further assume the norm estimates

‖π(tn+1)− π(tn)‖ ≤ ε

for n ∈ N, where π is the canonical quotient map from Eε to B′
ε. If necessary

to mention, we call Eε soft or super-soft in those cases respectively, in what
follows. Otherwise we assume that Eε is super-soft.

Remark. There exists a canonical quotient map π from Eε toB′
ε by sending

t1 and u to uε,1 and uε,2 respectively.

Recall from [9] that an endomorphism ρ on a unital C∗-algebra B by an
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isometry s is a corner endomorphism if ρ(B) = sBs∗ is equal to the corner
ρ(1)Bρ(1) = ss∗Bss∗. Then it follows s∗Bs = B that we use later. In this
case we can also use the Pimsner-Voiculesce exact sequence and conditional
expectations as given below. The above endomorphism αε of Eε is a corner
endomorphism. Indeed,

αε(1) = αε(t
∗
1t1) = (ut∗1u

∗)(ut1u
∗) = uu∗.

Note that E0 ⋊α0
N ∼= F⊗ F.

Proposition 2.3. For ε ∈ [0, 2], we have Dε
∼= Eε ⋊αε

N for Dε soft or

super-soft.

Proof. Let u be the canonical implementing isometry of Eε⋊αε
N such that

utnu
∗ = tn+1 and ‖ut1 − t1u‖ ≤ ε. By universality, it follows that there exists

a unique ∗-homomorphism ϕ from Dε to Eε ⋊αε
N such that ϕ(sε,1) = t1 and

ϕ(sε,2) = u.

On the other hand, note that

snε,2sε,1(s
∗
ε,2)

n = (sε,2s
∗
ε,2)(s

n
ε,2sε,1(s

∗
ε,2)

n)(sε,2s
∗
ε,2),

from which an endmorphism βε on Dε defined by

βε(s
n
ε,2sε,1(s

∗
ε,2)

n) = sn+1
ε,2 sε,1(s

∗
ε,2)

n+1

is a corner endomorphism. Thus, by universality there exists a ∗-homomorphism
ψ from Eε to Dε such that ψ(tn+1) = snε,2sε,1(s

∗
ε,2)

n for n ∈ N and n = 0. Since
sε,2ψ(tn)s

∗
ε,2 = ψ(tn+1), we can extend ψ to Eε ⋊αε

N by ψ(u) = sε,2. By
construction, ψ is the inverse of ϕ, and vise versa. �

Let u1 = s ⊗ 1, u2 = 1 ⊗ s be the generating isometries of F ⊗ F, where
F = C∗(s). Since u1 and u2 commute, for any ε > 0, there exists a unique
∗-homomorphism ϕε : Dε → F ⊗ F such that ϕε(sε,1) = u1 and ϕε(sε,2) = u2.
Also, there exists a unique ∗-homomorphism ψε : Eε → F such that ψε(tn) = s
for n ∈ N. This map extends to a ∗-homomorphism from Eε ⋊αε

N to F⊗ F.

Theorem 2.4. For any 0 < ε < 2 and super-soft Eε, we have

K0(Eε) ∼= Z, K1(Eε) ∼= 0.

Consequently, Kj(Eε) ∼= Kj(F) for j = 0, 1.

Proof. Define σ : F→ Eε by σ(s) = t1. Then the composition ψε ◦ σ is the
identity map of F. Indeed, ψε ◦ σ(s) = ψε(t1) = s.

Let π : Eε → π(Eε) = B′
ε be the canonical quotient map. Then π(tn) for

n ∈ N are unitaries, and π(Eε) is the C∗-algebra generated by unitaries π(tn)
such that ‖π(tn+1)−π(tn)‖ ≤ ε for n ∈ N. Note that π(E0) = π(F) ∼= C(T). By
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using the method for [5, Theorem 2.2] there exists a homotopy between π(Eε)
and C(T) such that for the map [σ] : C(T)→ π(Eε) defined by [σ](π(s)) = π(t1)
and [ψ]ε : π(Eε)→ C(T) defined as in [5, Theorem 2.2], the composition [ψ]ε◦[σ]
is the identity map of C(T), and the composition [σ] ◦ [ψ]ε is homotopic to the
identity map idπ(Eε) of π(Eε).

Consider the following exact sequence:

0→ Iε → Eε → π(Eε)→ 0,

where Iε is the kernel of π. By definition, Iε consists of elements of Eε in
K + uKu∗ + · · ·+ unK(u∗)n + · · · , where this K is the closed ideal of compact
operators in the C∗-algebra C∗(t1) generated by t1 such that C∗(t1)/K ∼= C(T).
Since unK(u∗)n ∼= K, it is not hard to see that Iε has the same K-theory as
K. Indeed, this follows from homotopy invariance and continuity of K-theory.
Thus, we have the six term exact sequence:

K0(K) −−−−→ K0(Eε) −−−−→ K0(π(Eε))
x









y

K1(π(Eε)) ←−−−− K1(Eε) ←−−−− K1(K).

Note thatK0(K) ∼= Z and K1(K) ∼= 0. It follows from the homotopy equivalence
between π(Eε) and C(T) shown above that Kj(π(Eε)) ∼= Kj(C(T)) for j = 0, 1.
Note that Kj(C(T)) ∼= Z for j = 0, 1. Furthermore, we have K0(K) ∼= Z ∼=
K1(π(Eε)) by the index map. Therefore, we obtain K0(Eε) ∼= Z and K1(Eε) ∼=
0. �

Theorem 2.5. For any 0 < ε < 2, the induced map (ϕε)∗ (or (ψε)∗) from

Kj(Dε) (or Kj(Eε ⋊αε
N)) to Kj(F⊗F) (or Kj(F ⋊id N)) is an isomorphism for

j = 0, 1.

Proof. The Pimsner-Voiculescu six-term exact sequence for semigroup cros-
sed products of C∗-algebras by N (see Rørdam [9, Corollary 2.2]) implies

K0(Eε)
(id−αε)∗
−−−−−→ K0(Eε)

i∗−−−−→ K0(Eε ⋊αε
N)

∂

x









y
∂

K1(Eε ⋊αε
N) ←−−−−

i∗
K1(Eε) ←−−−−−

(id−αε)∗
K1(Eε) ,

where i is the canonical inclusion from Eε to Eε ⋊αε
N. In fact, this six term
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diagram is induced from the following commutative diagram:

Eε
αε−−−−→ Eε

i
−−−−→ Eε ⋊αε

N




y
λ





y
λ





y
λ

Eε ⊗K
βε
−−−−→ Eε ⊗K

i
−−−−→ (Eε ⊗K) ⋊βε

Z

and its usual Pimsner-Voiculescu six-term exact sequence for crossed products
of C∗-algebras by Z:

K0(Eε ⊗K)
(id−βε)∗
−−−−−→ K0(Eε ⊗K)

i∗−−−−→ K0((Eε ⊗K) ⋊βε
Z)

∂

x









y
∂

K1((Eε ⊗K) ⋊βε
Z) ←−−−−

i∗
K1(Eε ⊗K) ←−−−−−

(id−βε)∗
K1(Eε ⊗K) ,

where K is the C∗-algebra of compact operators, and λ is an embedding from
Eε onto a corner of Eε⊗K and βε is an automorphism on Eε so that λ extends
to an embedding from Eε⋊αε

N onto a corner of (Eε⊗K)⋊βε
Z. Moreover, the

induced maps λ∗ on K0, K1-groups are isomorphisms, and the maps (id− βε)∗
are zero maps, which implies that the maps (id−αε)∗ are also trivial. Therefore,
we obtain the following short exact sequences:

0→ Kj(Eε)→ Kj(Eε ⋊αε
N)→ Kj+1(Eε)→ 0

for j = 0, 1, where j + 1 (mod 2).

On the other hand, the Pimsner-Voiculescu six-term exact sequence implies
the following:

K0(F)
(id−id)∗
−−−−−→ K0(F)

i∗−−−−→ K0(F ⋊id N)

∂

x









y
∂

K1(F ⋊id N) ←−−−−
i∗

K1(F) ←−−−−−
(id−id)∗

K1(F),

which splits into the following two short exact sequences:

0→ Kj(F)→ Kj(F ⋊id N)→ Kj+1(F)→ 0

for j = 0, 1, where j + 1 (mod 2).

Since Dε
∼= Eε ⋊αε

N by Proposition 2.3 and F ⋊id N ∼= F ⊗ F, we obtain
the following commutative diagram:

0 −−−−→ Kj(Eε) −−−−→ Kj(Dε) −−−−→ Kj+1(Eε) −−−−→ 0




y





y

(ψε)∗





y

(ϕε)∗





y

(ψε)∗





y

0 −−−−→ Kj(F) −−−−→ Kj(F⊗ F) −−−−→ Kj+1(F) −−−−→ 0 ,
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where the maps (ψε)∗ are isomorphisms by Theorem 2.4. The Lemma 5 implies
that (ϕε)∗ is an isomorphism as desired. �

Corollary 2.6. For any ε ∈ [0, 2],

K0(Dε) ∼= Z, K1(Dε) ∼= 0.

3. Continuity

For any 0 ≤ ε1 ≤ ε2 ≤ 2, by universality there exists a unique ∗-homo-
morphism from Dε2 to Dε1 sending sε2,j to sε1,j for j = 1, 2. In particular, for
ε2 = 2 and ε1 = ε, let qε be the unique ∗-homomorphism from D2 to Dε. As
the main result of this section, it is obtained that

Theorem 3.1. There exists a continuous field of C∗-algebras on the in-

terval [0, 2] such that Dε is the fiber at ε ∈ [0, 2] and the maps fa defined by

[0, 2] ∋ ε→ qε(a) = fa(ε) ∈ Dε for a ∈ D2 are continuous.

The proof for this is given later. Let Iε be the kernel of qε. Then the norm
‖qε(a)‖ for a ∈ D2 is equal to the distance d(a, Iε) between a and Iε. Note that
if ε < ε′, then Iε ⊃ Iε′ and ‖qε(a)‖ ≤ ‖qε′(a)‖ since ‖qε(a)‖ = infb∈Iε ‖a − b‖
by definition. Let I+

ε be the norm closure of the union ∪ε<ε′≤2Iε′ , and I−ε the
intersection ∩0≤ε′<εIε′ .

Proposition 3.2. For ε ∈ [0, 2), if Iε = I+
ε , then fa is right continuous

at ε for a ∈ D2. For ε ∈ (0, 2], if Iε = I−ε , then fa is left continuous at ε for

a ∈ D2.

Proof. For any a ∈ D2 we have

d(a, I+
ε ) = inf

ε<ε′≤2
d(a, Iε′), d(a, I−ε ) = sup

0≤ε′<ε
d(a, Iε′).

Indeed, by definition d(a, I+
ε ) = infb∈I+ε ‖a− b‖. Since I+

ε ⊃ Iε′ for ε < ε′,

d(a, I+
ε ) ≤ inf

ε<ε′≤2
d(a, Iε′).

There exsits a sequence of bn ∈ Iε′n such that ε < ε′n+1 < ε′n and d(a, I+
ε ) =

limn→∞ ‖a− bn‖. Since ‖a− bn‖ ≥ d(a, Iε′n), it follows that

d(a, I+
ε ) ≥ inf

ε<ε′≤2
d(a, Iε′).

Now consider the map q from D2 to the direct product Π0≤ε′<εDε′ defined by
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q(a) = (qε′(a))0≤ε′<ε. Then the kernel of q is I−ε . Therefore,

d(a, I−ε ) = ‖q(a)‖ = sup
0≤ε′<ε

‖qε′(a)‖ = sup
0≤ε′<ε

d(a, Iε′).

If Iε = I+
ε , then for ε ∈ [0, 2),

‖qε(a)‖ = d(a, Iε) = d(a, I+
ε ) = inf

ε<ε′≤2
d(a, Iε′) = lim

ε<ε′≤2
‖qε′(a)‖,

and if Iε = I−ε , then for ε ∈ (0, 2],

‖qε(a)‖ = d(a, Iε) = d(a, I−ε ) = sup
0≤ε′<ε

d(a, Iε′) = lim
0≤ε′<ε

‖qε′(a)‖. �

Proposition 3.3. For any ε ∈ [0, 2), we have I+
ε = Iε.

Proof. First assume that Dε is soft. For the generating isometries s2,1, s2,2 ∈
D2, denote by s+ε,1, s

+
ε,2 their images in D2/I

+
ε respectively. Then for any ε <

ε′ ≤ 2,

‖s+ε,2s
+
ε,1 − s

+
ε,1s

+
ε,2‖ = inf

b∈I+ε

‖s2,2s2,1 − s2,1s2,2 + b‖

≤ inf
b∈Iε′
‖s2,2s2,1 − s2,1s2,2 + b‖ = ‖qε′(s2,2s2,1 − s2,1s2,2)‖

= ‖qε′(s2,2)qε′(s2,1)− qε′(s2,1)qε′(s2,2)‖ = ‖sε′,2sε′,1 − sε′,1sε′,2‖ ≤ ε
′.

Hence, it follows ‖s+ε,2s
+
ε,1− s

+
ε,1s

+
ε,2‖ ≤ ε. By the universality of Dε, there exists

a ∗-homomorphism from Dε
∼= D2/Iε to D2/I

+
ε sending sε,j to s+ε,j for j = 1, 2.

Thus, Iε must be contained in I+
ε .

On the other hand, for any a ∈ I+
ε , there exists a sequence of bn ∈ Iεn

such
that ε < εn and (bn) converges to a. Then qε(a) = limn→∞ qε(bn) = 0 because
the following diagram:

D2 D2

qεn





y





y

qε

Dεn

qεn,ε
−−−−→ Dε ,

commutes, where qεn,ε is a unique ∗-homomorphism by universality, and qε(bn) =
qεn,ε(qεn

(bn)) = 0. Therefore, I+
ε is contained in Iε.

Now assume that Dε is super-soft. For this case, we consider the following
diagram:

0 −−−−→ Iε −−−−→ D2
qε

−−−−→ Dε −−−−→ 0

π





y

π





y

π





y

0 −−−−→ Jε −−−−→ A2
pε
−−−−→ Aε −−−−→ 0 ,
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where pε is the canonical onto ∗-homomorphism and Jε is the kernel of pε.
Indeed, note that if x ∈ Iε so that qε(x) = 0, then pε(π(x)) = π(qε(x)) = 0.
Hence π(x) ∈ Jε. This diagram induces the following:

D2 −−−−→ D2/I
+
ε





y





y

A2 −−−−→ A2/J
+
ε

and
Dε −−−−→ D2/I

+
ε





y





y

Aε −−−−→ A2/J
+
ε ,

where J+
ε = Jε. By the same argument as for Dε soft, the conclusion

follows.

Recall the following fact:

Lemma 3.4. (see [9]) The semigroup crossed product B ⋊α N of a unital

C∗-algebra B by a corner endomorphism α defined by α(b) = sbs∗ for a proper

isometry s has a dense ∗-subalgebra generated by B and s, whose elements are

of the form:

(s∗)nb−n + · · · + s∗b−1 + b0 + b1s+ · · ·+ bns
n ≡ f

for some n ∈ N and bj ∈ B for j = −n, · · · , n.

Moreover, an action β of the torus T on B ⋊α N is given by βz(b) = b and

βz(s) = zs for b ∈ B, z ∈ T. A conditional expectation E : B ⋊α N → B is

defined by

E(f) =

∫

T

βz(f)dµ(z),

where dµ = z−1dz is the normalized Lebesque measure on T, and E satisfies

the equations E(ba) = bE(a), E(ab) = E(a)b, and E(b) = b for a ∈ B ⋊α N

and b ∈ B. For the element f of the form above, we have E(f) = b0.

Furthermore, the above element f = 0 if and only if E(f) = 0, E(fsm) = 0
and E(f(s∗)m) = 0 for every m ∈ N, from which f can be replaced with any

element of B.

Proof. Since α is a corner endomorphism, we have s∗Bs = B. Note that

sb = sbs∗ss = α(b)s, and bs∗ = s∗sbs∗ = s∗α(b)

from which the first part of the statement follows.
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For the second part of the statement, we compute

E(bks
k) =

∫

T

βz(bks
k)dµ(z) = bks

k

∫

T

zkdµ(z),

E((s∗)kb−k) =

∫

T

βz((s
∗)kb−k)dµ(z) = (s∗)kb−k

∫

T

z−kdµ(z)

for 0 ≤ k ≤ n. Since we have
∫

T

zkdµ(z) = (2πi)−1

∫ 2π

0
ei(k−1)θieiθdθ =

{

1 k = 0,

0 0 6= k ∈ Z,

where z = eiθ ∈ T, it follows that

E(f) =

n
∑

k=0

E(bks
k) +

n
∑

k=1

E((s∗)kb−k) = b0 ∈ B.

Therefore, we obtain E(b) = b for any b ∈ B. Since

bf = b(s∗)nb−n + · · ·+ bs∗b−1 + bb0 + bb1s+ · · ·+ bbns
n

= (s∗)nαn(b)b−n + · · · + s∗α1(b)b−1 + bb0 + bb1s+ · · ·+ bbns
n,

fb = (s∗)nb−nb+ · · ·+ s∗b−1b+ b0b+ b1sb+ · · ·+ bns
nb

= (s∗)nb−nb+ · · ·+ s∗b−1b+ b0b+ b1α1(b)s+ · · · + bnαn(b)s
n,

where αn = α ◦ · · · ◦ α (the n-times composed map), we have E(bf) = bE(f)
and E(fb) = E(f)b. Therefore, E(ba) = bE(a) and E(ab) = E(a)b for any
a ∈ B ⋊α N and b ∈ B.

For the third part of the statement, note that

(bks
k)s = bks

k+1 ∈ Bsk+1,

(s∗)kb−ks = (s∗)n−1(s∗b−ks) ∈ (s∗)n−1B, and

(bks
k)s∗ = bks

k−1(ss∗) = bks
k−1(ss∗)(s∗)k−1sk−1

= bks
k(s∗)ksk−1 ∈ Bsk−1,

(s∗)kb−ks
∗ = (s∗)ks∗sb−ks

∗ = (s∗)k+1(sb−ks
∗) ∈ (s∗)k+1B.

Hence, it follows that E(fsm) = (s∗)mb−ms
m and E(f(s∗)m) = bms

m(s∗)m for
m ≤ n, and if m > n, then E(fsm) = 0 = E(f(s∗)m). Thus, E(fsm) = 0 if
and only if b−m = 0, and E(f(s∗)m) = 0 if and only if bms

m = 0. �

Proposition 3.5. There exists a sequence (γm)m∈N of endomorphisms of

π(Eε) converging pointwise to the identify map on π(Eε) such that

sup
n∈N

‖γm(π(tn))− γm(π(tn+1))‖ < ε,

where π : Eε → π(Eε) = B′
ε is the canonical quotient map.
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Proof. Use [6, Proposition 2.2]. �

Now define Lε to be the kernel of the map ρε : E2 → Eε by universality.
Also define [L]ε to be the kernel of the map [ρ]ε : π(E2)→ π(Eε).

Proposition 3.6. We have [L]ε = ∩0≤ε′<ε[L]ε′ .

Proof. This is [6, Theorem 2.4] using the above proposition. �

Proposition 3.7. We have Lε = ∩0≤ε′<εLε′ .

Proof. Note that Lε ∩ I2 = {0} since ρε maps I2 to Iε, Therefore,

[L]ε = Lε + I2/I2
∼= Lε/(Lε ∩ I2) ∼= Lε.

Hence the conclusion follows from the above proposition. �

Lemma 3.8. Let h : A → B be a ∗-homomorphism of C∗-algebras A,B.

Suppose that h is equivariant with respect to corner endomorphisms α, β of A,

B respectively, i.e., h(α(a)) = β(h(a)) for a ∈ A. Let h∼ : A ⋊α N → B ⋊β N

be the ∗-homomorphism induced by h. Then

ker(h∼) = {f ∈ A ⋊α N |EA(fsn), EA(f(s∗)n) ∈ ker(h) for n ∈ N, n = 0},

where EA : A⋊αN→ A is the conditional expectation, ker(·) means the kernel,

and s is the isometry implementing α.

Proof. The following diagram commutes:

A ⋊α N
h∼
−−−−→ B ⋊β N

EA





y





y

EB

A
h

−−−−→ B.
Indeed, for f = (s∗)na−n + · · · + s∗a−1 + a0 + a1s+ · · ·+ ans

n, aj , a−j ∈ A,

h∼(f) = (t∗)nh(a−n) + · · · + t∗h(a−1) + h(a0) + h(a1)t+ · · ·+ h(an)t
n ,

where t = h∼(s) is the isometry implementing β. Therefore,

(h ◦ EA)(f) = h(a0) = (EB ◦ h
∼)(f).

For any g ∈ A⋊αN with g ∈ ker(h∼), we have h∼(g) = 0, which is equivalent
to that EB(h∼(g)tn) = 0 and EB(h∼(g)(t∗)n) = 0 for n ∈ N and n = 0. This
says that h(EA(g)sn) = 0 and h(EA(g)(s∗)n) = 0 for n ∈ N and n = 0. �

Theorem 3.9. For any ε ∈ (0, 2), one has I−ε = Iε.

Proof. Let E : D2 → E2 be the conditional expectation induced by the
isomorphism D2

∼= E2⋊α2
N. For a ∈ I−ε , we have E(asn) ∈ Lε′ and E(a(s∗)n) ∈
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Lε′ for all n ∈ N and n = 0 and ε′ < ε. Thus,

E(asn), E(a(s∗)n) ∈ ∩0≤ε′<εLε′ = Lε

for all n ∈ N and n = 0. This shows that a ∈ Iε.

On the other hand, since Iε′ ⊃ Iε for ε′ < ε, we have

I−ε = ∩0≤ε′<εIε′ ⊃ Iε. �

Theorem 3.10. We have I−2 = I2.

Proof. Let 0 6= a ∈ I−2 . Note that π(D2) is isomorphic to the full group C∗-
algebra C∗(F2) of the free group F2 of two generators. It is shown by Choi [3]
that C∗(F2) has a separating family of finite dimensional representations. Since
the map qε maps I2 to Iε, we have Iε = ker(qε) ∼= [I]ε, where [I]ε = Iε+I2/I2 (in
particular ε = 2). Thus, we may assume that π(a) 6= 0. Therefore, there exists
a finite dimensional representation χ of π(D2) to Mn(C) such that χ(π(a)) 6= 0.
Let u1 = χ(π(s2,1)) and u2 = χ(π(s2,2)). Then using [6, Proposition 3.2] we
have u1 = limj→∞ u′j for the unitaries u′j ∈Mn(C) such that ‖u′ju2−u2u

′
j‖ < 2.

For each j, there exists a representation χj of π(D2) such that χj(π(s2,1)) = u′j
and χj(π(s2,2)) = u2. If ‖u′ju2 − u2u

′
j‖ = εj < 2, then χj vanishes on Jεj

,
where Jεj

is the kernel of the map: π(D2) → π(Dεj
). Thus, χj vanishes

on the intersection of Jεj
for 1 ≤ j < ∞. Note that π(Iε) = Jε. Hence,

χj(π(a)) = 0. Furthermore, χj converge pointwise to χ so that χ(π(a)) = 0,
which is a contradiction. �

Proof of Theorem 3.1. Summing up the above arguments we obtain the
desired result. �
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