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Abstract: A modeling methodology is developed for complex systems, sys-
tems of several interacting components, with observable component perfor-
mance normal fields that are also separable over the space of uncertainties.
The algebra of operator representations of system components is completed by
using separable equivalents in place of sums which are in general nonseparable.
The end product is a computation of the mean and variance of the performance
of the modeled system at each point in the space of system uncertainties.
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1. Wiener Fields and Spaces of Hellinger Integrable Functions

An emerging class of decision problems under conditions of uncertainty and risk
requires a flexible modeling methodology for representing multiple component
systems [17, 18]. Providing a framework or setting for these models in the math-
ematical literature motivates this paper. Certain tools used in the methodology
have a long history: reproducing kernel Hilbert spaces [1], Hellinger integrals [7,
22], Wiener fields [4], representations of operators on spaces of functions of sev-
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eral variables [12], and Central Limit Theorem [5]. However, the requirements
of a modeling methodology exposes new problems to be addressed in this set-
ting. In particular, the representation of separable random fields [28], the class
of fields most like continuous random processes, and separable approximations
for sums of separable fields, which in general are nonseparable, are addressed.

Our approach to random fields is from a modeling viewpoint, as opposed
to a data driven approach, using theoretical means and covariances of random
fields to construct more complex models out of simpler component models.
The models are not dynamic, in fact time is usually not a system variable, but
rather linear operators on appropriate inner product spaces of functions. The
end product is a computation of the mean and variance of the modeled field at
each point in the domain of the random field (the space of uncertainties).

1.1. Representation of Discrete Surfaces

Suppose each of S and T is a positive number and F is a field defined on
[0, S] × [0, T ]. If 0 = s1 < s2 < · · · < sm = S and 0 = t1 < t2 < · · · < tn = T
then let Fst denote the discrete surface defined by

Fst(i, p) = F (si, tp) .

Fst can also be thought of as an m × n matrix. Let Kss and Ktt denote
the discrete covariance kernels of the standard Wiener process W on [0, S]
and [0, T ], respectively. That is, Kss(i, j) = EW (si)W (sj) and Ktt(p, q) =
EW (tp)W (tq). For the rest of the paper we fix S and T as positive numbers,
m and n as positive integers, and s = {sp}m

p=1 and t = {tq}n
q=1 as partitions of

[0, S] and [0, T ], respectively.

1.2. Definition of a Random Wiener Field

Random Wiener fields play a fundamental role in the representation of more
general random fields. We can use Wiener fields to define the basic inner prod-
uct spaces in which more general random fields with mean zero can at first be
identified with positive definite operators.

The standard Wiener field [4, 15], also denoted by W , on [0, S] × [0, T ] has
the following defining properties:

— sample fields are continuous,

— W (a, 0) = W (0, b) = 0,
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— E[W (a, b)] = 0,

— E[(W (b, d) − W (a, d) − W (b, c) + W (a, c))2] = E[(dW (a, b, c, d))2 ] =
(b − a)(d − c),

— if [a, b] × [c, d] ∩ [z,w] × [x, y] is empty or has no interior then

E[dW (a, b, c, d)dW (z,w, x, y)] = 0,

where E[·] is the expectation operator.

Notice that for 0 < a, b the process 1√
a

W (a, ) is the standard Wiener

process on [0, T ] and 1√
b
W ( , b) is the standard Wiener process on [0, S].

1.3. The Wiener Kernel for Fields

Suppose F is a field defined on [0, S] × [0, T ] × [0, S] × [0, T ], such as the
covariance kernel of the Wiener field. Let F(st)2 denote the discrete function
defined by

F(st)2(i, p, j, q) = F (si, tp, sj, tq) .

Let KC
ss and KC

tt be upper triangular matrices with nonnegative diagonals
such that (KC

ss)
T KC

ss = Kss and (KC
tt )

T KC
tt = Ktt. In an extension of clas-

sic usage we refer to KC
ss and KC

tt as upper Cholesky factors of Kss and Ktt,
respectively. We can obtain simulations of Wst in terms of KC

ss and KC
tt as

follows:

Wst = (KC
ss)

T ZstK
C
tt ,

where Zst is a (0, 1)-normal m × n matrix of independent random variables.

Theorem 1. Wst is a discretization of the standard Wiener field.

Lemma 1. If Uss is a nonnegative m × m matrix with upper Cholesky
factor UC

ss in the above sense and Vtt is a nonnegative n× n matrix with upper
Cholesky factor V C

tt then

E([(UC
ss)

T ZstV
C
tt ](i, p)(UC

ss)
T ZstV

C
tt ](j, q) = Uss(i, j)Vtt(p, q)

for 1 ≤ i, j ≤ m and 1 ≤ p, q ≤ n.

Proof of Lemma 1.

E([(UC
ss)

T ZstV
C
tt ](i, p)(UC

ss)
T ZstV

C
tt ](j, q)

= E





m
∑

ℓ1=1

n
∑

ℓ2=1

(UC
ss)

T (i, ℓ1)Zst(ℓ1, ℓ2)V
C
tt (ℓ2, p)




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×





m
∑

ℓ̄1=1

n
∑

ℓ̄2=1

(UC
ss)

T (j, ℓ̄1)Zst(ℓ̄1, ℓ̄2)V
C
tt (ℓ̄2, q)





=

m
∑

ℓ1=1

n
∑

ℓ2=1

(UC
ss)

T (i, ℓ1)(U
C
ss)

T (j, ℓ1)V
C
tt (ℓ2, p)V C

tt (ℓ2, q)

=

m
∑

ℓ1=1

(UC
ss)

T (i, ℓ1)U
C
ss(ℓ1, j)

n
∑

ℓ2=1

(V C
tt )T (p, ℓ2)V

C
tt (ℓ2, q) = Uss(i, j)Vtt(p, q) .

Proof of Theorem 1. First, EWst = 0, the m×n zero matrix, and Wst(1, ) =
Wst( , 1) = 0. Also from the lemma with Uss = Kss and Vtt = Ktt

EWst(i, p)Wst(j, q) = E[(KC
ss)

T ZstK
C
tt ](i, p)[(KC

ss)
T ZstK

C
tt ](j, q)

= Kss(i, j)Ktt(p, q) .

Therefore K(st)2(i, p, j, q) = Kss(i, j)Ktt(p, q). Furthermore, for i ≤ j and
p ≤ q,

E(Wst(j, q) − Wst(i, q) − Wst(j, p) + Wst(i, p))2

= E(Wst(j, q)2 + EWst(i, q)2 + EWst(j, p)2 + EWst(i, p)2

− 2EWst(j, q)Wst(i, q) − 2EWst(j, q)Wst(j, p)

+2EWst(j, q)Wst(i, p) + 2EWst(i, q)Wst(j, p)

− 2EWst(i, q)Wst(i, p) − 2EWst(j, p)Wst(i, p)

= Kss(j, j)Ktt(q, q) + Kss(i, i)Ktt(p, p)

−Kss(i, i)Ktt(q, q) − Kss(j, j)Ktt(p, p)

= (Kss(j, j) − Kss(i, i))(Ktt(q, q) − Ktt(p, p))

= (sj − si)(tq − tp) .

Finally, suppose [i, j]× [p, q]∩ [̄i, j̄]× [p̄, q̄] = φ. Assume to be definite that
i < j < ī < j̄. The other cases work the same way. Then

E(Wst(j, q) − Wst(i, q) − Wst(j, p) + Wst(i, p))

× (Wst(j̄, q̄) − Wst(̄i, q̄) − Wst(j̄, p̄) + Wst(̄i, p̄))

= (Kss(j, j̄) − Kss(j, ī) − Kss(i, j̄) + Kss(i, ī))

× (Ktt(q, q̄) − Ktt(q, p̄) − Ktt(p, q̄) + Ktt(p, p̄)) = 0 . �

The discrete representations and the method of proof in this first theorem
are the result of our modeling viewpoint. Implementation of the theory to
be developed, because of the matrix emphasis, becomes almost immediate in
MATLAB, our computational environment. Although most of the material
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in Section 2 is familiar, we will present everything in terms of finite matrix
manipulations.

In addition to the role of the standard Wiener field W in the structure of
the theory taken up in the next subsection, the Wiener field is the prototyp-
ical of the random fields of interest. The Wiener kernel can be factored, i.e.,
K(st)2(i, p, j, q) = Kss(i, j)Ktt(p, q), for 0 ≤ i, j ≤ m and 0 ≤ p, q ≤ n, and
Kss and Ktt can in turn be factored and the factors used to simulate the dis-
crete Wiener field Wst. See the note in Section 2.3 for more general Wiener
fields [4].

1.4. Separable Random Fields

For scalar fields defined on two-dimensional rectangles, sufficient conditions
on the system covariance kernel are given for the development of a system
linearization based on a factorization of the system covariance kernel. The
mathematical question of limitations imposed by the covariance condition can
be discussed in terms of properties of the resulting linearizations. A set of
reasonable conditions on linear systems can be shown to be equivalent to the
covariance condition. Thus the methods apply to a rich class of random fields.

The central idea in this subsection is to produce a condition on the co-
variance kernel of a random field (function of two variables) which for fields F
generated by linear systems, i.e., of the form F = AW , is sufficient to produce
a representation of A (here W is the standard Wiener field, discussed earlier).
If F is generated by a nonlinear system Â then the method produces a lin-
earization of Â, namely A. In this case the utility of the linearization depends
upon the particular application and how nearly the assumption of the condition
(perhaps uncheckable) is to holding.

The condition is the following: for each pair of points (a, b) and (c, d) in
[0, S] × [0, T ]

cov(F (a, b), F (c, d))

= cov(F (a, T ), F (c, T )) · cov(F (S, b), F (S, d))/var(F (S, T )) , (1)

where cov(·) is the covariance operator (see [28], p. 82). Random fields satis-
fying the condition are said to be separable. Note that the condition is on the
observation field F rather than on the underlying unmodeled system. Also note
that the standard Wiener field is separable.

In general, the independence expressed in the condition might not hold.
However, such independence is implicit in the common engineering practice of
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exploring a given physical system by allowing only one quantity to vary at a
time.

Vanmarcke [28], with an extensive bibliography, provides a foundation ref-
erence for separable fields. Separability in Vanmarcke is given in terms of cor-
relation functions rather than covariance kernels. See Yaglom [27], also using
correlations rather than covariances and with a large bibliography, for alterna-
tive representations for random fields. Models incorporating time are different
because time is different from a space variable, i.e., for time there is a past, a
present, and a future. Space variables are not linearly ordered. While related
to our random fields, random space-time functions have a different flavor [8].
In fact our random fields would correspond to the limited case where spatial
behavior is the same at all time instants.

Wiener fields were introduced by Chentsov [4]. A Wiener field is not Lévy’s
Brownian motion process of two parameters [10, 11, 2]. Our use of “separable” is
not to be confused with the use for abstract metric spaces or infinite dimensional
spaces, i.e., the existence of a countable dense subset. In this use separable
processes are processes whose sample paths are separable subsets of a function
space [14, 13].

1.5. Reproducing Kernel Hilbert (RKH) Spaces

Covariance kernels for random fields have the nonnegative function property
that makes them reproducing kernels of some complete inner product space
of functions of two variables [1]. Of interest are those kernels which can be
associated with positive linear operators on the space determined by the Wiener
kernel. A scalar function R on [0, S] × [0, T ] × [0, S] × [0, T ] is said to be
nonnegative definite provided for each sequence {up}ℓ

p=1, where up is an ordered
pair in [0, S] × [0, T ], and sequence {ap}n

p=1 of nonzero real numbers
n

∑

p=1

n
∑

q=1

R(up, uq)apaq ≥ 0 .

The space of Hellinger integrable functions of two variables provide an ex-
plicit representation of the RKH space determined by the Wiener kernel [12].
Functions f defined on [0, S]×[0, T ] are said to be Hellinger integrable provided
the set of approximating sums

{

∑

s

∑

t

(df(u, v))2

du dv
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=

m
∑

i=2

n
∑

p=2

(f(si, tp) − f(si−1, tp) − f(si, tp−1) + f(si−1, tp−1))
2

(si − si−1)(tp − tp−1)







is bounded. The least upper bound is denoted by
∫ ∫

[0, S]×[0, T ]
(df(u, v))2

du dv .

The covariance kernel for the standard Wiener surface W is

E(W (u, v)W (x, y)) = min(u, v)min(x, y) = K(u, v)K(x, y) .

The complete inner product space of functions {G, Q} determined by this
kernel is the space of Hellinger integrable functions f on [0, S] × [0, T ] such
that f(0, ·) = 0 and f(· , 0) = 0. Further, the inner product is defined by

Q(f, g) =
∫ ∫

[0, S]×[0, T ]
df(u, v) dg(u, v)

du dv .

1.6. Approximating Sums and Discrete Representations

We can consider approximating sums as the results of matrix products.

Theorem 2.
∑

t

∑

s

df(s, t) dg(s, t)

ds dt
= trace((KC

tt )
−T fT

stK
−1
ss gst(K

C
tt )

−1) .

Proof of Theorem 2. Recall that for 2 ≤ i, p

[(KC
ss)

−T fst(K
C
tt )

−1](i, p)

=
{f(si, tp) − f(si−1, tp) − f(si, tp−1) + f(si−1, tp−1)}

(
√

si − si−1
√

tp − tp−1)

Let A = (KC
ss)

−T fst(K
C
tt )

−1 and B = (KC
ss)

−T gst(K
C
tt )

−1. Then

trace((KC
tt )

−T fT
stK

−1
ss gst(K

C
tt )

−1)

= trace(((KC
ss)

−T fst(K
C
tt )

−1)T ((KC
ss)

−T gst(K
C
tt )

−1))

= trace(AT B) =

n
∑

p=1

[AT B](p, p) =

n
∑

p=1

m
∑

i=1

A(i, p)B(i, p)

=
∑

t

∑

s

df(s, t) dg(s, t)

ds dt
. �

From the general theory of RKH spaces obtained using Hellinger integrals
[12], we know that Q(f, K( , u)K( , v)) = f(u, v), i.e., the Wiener kernel is
the reproducing kernel for {G, Q}, but it is useful to use our representation of
Q to establish this fact in our context.
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Theorem 3. For f in {G, Q} and (u, v) in [0, S] × [0, T ]

Q(f, K( , u)K( , v)) = f(u, v) .

Proof of Theorem 3. Suppose si = u and tp = v. Then

Q(f, K( , u)K( , v)) ∼ trace((KC
tt )

−T fT
stK

−1
ss Kss( , i)Ktt( , p)T (KC

tt )
−1)

= trace((KC
tt )

−T fT
uvIuu( , i)KC

vv( , p)T )

= trace((KC
tt )

−T fst(i, )T KC
tt ( , p)T ) = fst(i, )(KC

tt )
−1KC

tt ( , p)

= fst(i, )Itt( , p) = fst(i, p) = f(u, v) . �

Again, from the general theory we can characterize all continuous linear
operators on {G, Q} and their matrix representations [12]. Our interest is in a
special class of operators which the following theorem enables us to characterize
in terms of their matrix representations.

Theorem 4. Suppose L is the matrix representation of a continuous linear
transformation A on {G, Q}. These are equivalent:

1. There is an m × m matrix AL and an n × n matrix AR such that
[Af ]st(j, q) = ((KC

ss)
−1AL( , j))T fst(K

C
tt )

−1AR( , q).

2. There is an m × m matrix L1
ss and an n × n matrix L2

tt such that
L(st)2(i, j, p, q) = [L1

ss( , j)(L2
tt( , q))T ](i, p).

Proof of Theorem 4. Suppose (Af)st = ((KC
ss)

−1AL)T fst(K
C
tt )

−1AR, where
AL is an m × m matrix, fst is an m × n matrix, and AR is an n × n matrix.
Then

(AK( , u)K( , v))st = ((KC
ss)

−1AL)T Kss( , i)Ktt( , p)T (KC
tt )

−1AR

= AT
L(KC

ss)
−T (KC

ss)
T KC

ss( , i)((KC
tt )

T (KC
tt )( , p))T (KC

tt )
−1AR

= AT
LKC

ss( , i)KC
tt ( , p)T AR .

Therefore

L(st)2(i, j, p, q) = Q(AK( , si)K( , tp), K( , sj)K( , tq))

= trace((KC
tt )

−T AT
RKC

tt ( , p)KC
ss( , i)T ALK−1

ss Kss( , j)Ktt( , q)T (KC
tt )

−1)

= trace((KC
tt )

−T AT
RKC

tt ( , p)KC
ss( , i)T AL( , j)Ktt( , q)T (KC

tt )
−1)

= (AL( , j))T KC
ss( , i)KC

tt ( , p)T AR(KC
tt )

−1KC
tt ( , q)

= (AL( , j))T KC
ss( , i)KC

tt ( , p)T AR( , q) = [L1
ss( , j)(L2

tt( , q))T ](i, p) .

On the other hand, suppose that

L(st)2(i, j, p, q) = [L1
ss( , j)(L2

tt( , q))T ](i, p)
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and

[(Af)st](j, q) = trace((KC
tt )

−T fT
stK

−1
ss L(st)2( , j, , q)(KC

tt )
−1) .

Let AL = (KC
ss)

−T L1
ss and AR = (KC

tt )
−T L2

tt. Then

[(Af)st](j, q) = trace((KC
tt )

−T (fst)
T K−1

ss L1
ss( , j)(L2

tt( , q))T (KC
tt )

−1)

= trace((KC
tt )

−T (fst)
T (KC

ss)
−1AL( , j)AR( , q)T )

= ((KC
ss)

−1AL( , j))T fst(K
C
tt )

−1AR( , q) .

See [22] for a survey of Hellinger’s contributions to integration and operator
theory. The collection of benchmark papers edited by Weinert [26] contains the
foundation papers for applications of reproducing kernel Hilbert space methods
to signal analysis. Note the small change in notation. We use RKH space
representations meaning operator representations on the reproducing kernel
Hilbert space. For the Parzen/Kailath meaning (RKHS representations) the
random process is represented by the reproducing kernel Hilbert space itself.

2. Linear Operators Associated with Separable Random Fields

The method of stochastic linearization [3] is considered in the context of separa-
ble random surfaces. The factorization of the surface kernels following from this
assumption enables us to present a representation of linear operators generating
the random surfaces.

2.1. Producing Linearizations of Separable Random Fields

We provide a recipe for representations of linear systems generating separable
random fields. The recipe works for a large class of systems. Finite dimensional
approximations for a linear operator A require two matrices. For instance,

AWst = ((KC
ss)

−1AL)T Wst(K
C
tt )

−1AR,

where AL is an m × m matrix, Wst is an m × n matrix, the discretization of
the standard Wiener field, and AR is an n × n matrix. The representation
problem for a linear transformation A in the general case reduces to a search
for appropriate matrices AL and AR.

Theorem 5. If F is a separable random field defined on [0, S]× [0, T ] then
there are appropriate matrices AL and AR such that

AWst = ((KC
ss)

−1AL)T Wst(K
C
tt )

−1AR
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has the mean and covariance of Fst.

Proof of Theorem 5. Let Uss and Vtt be matrices defined by

Uss(i, j) = cov(Fst(i, n), Fst(j, n))/std(F (S, T ))

and

Vtt(p, q) = cov(Fst(m, p), Fst(m, q))/std(F (S, T ))

Then Uss = (UC
ss)

T UC
ss and Vtt = (V C

tt )T V C
tt , where each of UC

ss and V C
tt is an

upper triangular matrix with nonnegative entries on the main diagonal. For
AL = UC

ss and AR = V C
tt we have, using Lemma 1,

cov([AWst](i, p), [AWst](j, q)) = Uss(i, j)Vtt(p, q)

= cov([AWst](i, n), [AWst](j, n))/std(F (S, T ))

× cov([AWst](m, p), [AWst](m, q))/std(F (S, T )) . �

Hence, AWst has the mean and covariance of Fst and so A is the stochastic
linearization of the system generating Fst.

Corollary 1. For 1 ≤ i ≤ m and 1 ≤ p ≤ n

cov([AWst](i, p), [AWst](i, p)) = Uss(i, i)Vtt(p, p) .

That is, the variance of AWst at each point can be readily computed from
the diagonals of Uss and Vtt.

Corollary 2. The risk surface for F is specified by two increasing functions
k1 and k2 with k1(0) = k2(0) = 0.

2.2. Basic Results for Linearizations

Our goal is risk analysis for complex systems constructed of simpler components.
Combining components requires algebraic rules for combining linearizations.
From the basic representation of a separable field H, we say an operator A is
separable provided

Hst = AFst = (AL)T (KC
ss)

−T Fst(K
C
tt )

−1AR

for each field F in the domain of A. Recall from Theorem 4 that the defini-
tion could have been given equivalently in terms of factorization of the matrix
representation. Further, the definition results in the random field Hst = AWst,
using an extension of A to the continuous functions, being separable. Compo-
sition (or products) and inverses of the separable linear transformations yield
separable linear transformations. A similar result fails for addition. In general,
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(A + B)L 6= AL + BL and (A + B)R 6= AR + BR. See discussion below for
approximation results.

Theorem 6. If each of A and B is a separable linear transformation, then

(AB)L = BL(KC
ss)

−1AL and (AB)R = BR(KC
tt )

−1AR .

Furthermore,

(A−1)L = KC
ss(AL)−1KC

ss and (A−1)R = KC
tt (AR)−1KC

tt .

Proof of Theorem 6.

E {[ABWst](i, p)[ABWst](i, p)} = [AT
L(KC

ss)
−T BT

LBL(KC
ss)

−1AL](i, i)

× [AT
R(KC

tt )
−T BT

RBR(KC
tt )

−1AR](p, p) ,

i.e. Uss = AT
L(KC

ss)
−T BT

LBL(KC
ss)

−1AL or UC
ss = (AB)L = BL(KC

ss)
−1AL.

In the same way, (AB)R = BR(KC
tt )

−1AR.

2.3. Special Results

Formulas for Kss, Uss, and Vss. The nonnegative definite matrices Kss, Uss,
and Vss have a special form and combine in nice ways. For instance

Uss =





















0 0 0 0 . . .
0 k(s2) k(s2) k(s2) . . .
0 k(s2) k(s3) k(s3) . . .
0 k(s2) k(s3) k(s4) . . .
· · · · . . .
· · · · . . .
· · · · . . .





















,

UC
ss =























0 0 0 0 . . .

0
√

k(s2)
√

k(s2)
√

k(s2) . . .

0 0
√

k(s3) − k(s2)
√

k(s3) − k(s2) . . .

0 0 0
√

k(s4) − k(s3) . . .
· · · · . . .
· · · · . . .
· · · · . . .























.

Starting with Uss we get UC
ss and conclude, since the principal subdetermi-

nants of UC
ss are nonnegative, that Uss is nonnegative definite. Assuming equal
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increments for the partition {sp}n
p=0, we have

(KC

ss)
−1 =

1√
s1





















0 0 0 0 . . .
0 1 −1 0 . . .
0 0 1 −1 . . .
0 0 0 1 . . .
· · · · . . .
· · · · . . .
· · · · . . .





















,

UC

ss(K
C

ss)
−1 =

1√
s1





















0 0 0 0 . . .

0
√

k(s2) 0 0 . . .

0 0
√

k(s3) − k(s2) 0 . . .

0 0 0
√

k(s4) − k(s3) . . .
· · · · . . .
· · · · . . .
· · · · . . .





















,

[UC

ss(K
C

ss)
−1V C

ss ](i, j)

=

{

0 if i = 1 or j < i ,
1√
s1

√

k1(si) − k(si−1)
√

k2(si) − k(si−1) otherwise ,

[(UC

ss(K
C

ss)
−1V C

ss )′(UC

ss(K
C

ss)
−1V C

ss )](i, j)

=

{

0 if i = 1 or j < i ,
1

s1

∑i

ℓ=2
(k1(sℓ) − k(sℓ−1))(k2(sℓ) − k(sℓ−1)) otherwise .

Note for i ≤ j that

[(UC
ss(K

C
ss)

−1V C
ss )′(UC

ss(K
C
ss)

−1V C
ss )](i, j)

= [(UC
ss(K

C
ss)

−1V C
ss )′(UC

ss(K
C
ss)

−1V C
ss )](j, i)

= [(UC
ss(K

C
ss)

−1V C
ss )′(UC

ss(K
C
ss)

−1V C
ss )](i, i) .

2.4. A Note on Kernels for Fields with More Than
Two Independent Variables

Suppose d is a positive integer and {ki}d
1 is a sequence of increasing functions

on [0, 1] with ki(0) = 0, for i = 1, . . . , d. Let

R(u, v) = Πd
i=1ki(ui ∧ vi)
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for d-sequences u = {ui}d
i=1 and v = {vi}d

i=1 with values in [0, 1], where a∧b =
min(a, b).

Theorem 7. R is positive definite, i.e., if {up}n
p=1 is a sequence of d-

sequences up with values in (0, 1] and {ap}n
p=1 is a nonzero sequence of real

numbers then
n

∑

p=1

n
∑

q=1

R(up, uq)apaq > 0 .

Example. The Wiener field [4, 15] on [0, 1]d has covariance kernel

K(u, v) = Πd
i=1(ui ∧ vi) .

Lemma 2. If M is an n × n symmetric matrix such that:

1. M(1, 1) > 0,

2. M(p, q) = M(q, p) = M(p, p), for 1 ≤ p ≤ q ≤ n, and

3. {M(p, p)}n
p=1 is an increasing sequence.

Then M is positive definite.

Proof of Lemma 2. Note that

MC =















p

M(1, 1)
p

M(1, 1)
p

M(1, 1)
p

M(1, 1) . . .

0
p

M(2, 2) − M(1, 1)
p

M(2, 2) − M(1, 1)
p

M(2, 2) − M(1, 1) . . .

0 0
p

M(3, 3) − M(2, 2)
p

M(3, 3) − M(2, 2) . . .

0 0 0
p

M(4, 4) − M(3, 3) . . .

· · · · . . .

· · · · . . .

· · · · . . .















is the upper Cholesky factor of M . Therefore the principal subdeterminants of
M are positive and so M is positive definite.

Proof for Theorem 7. Suppose d = 2. Let U(p, q) = k1(up ∧ uq) and
V (p, q) = k2(vp ∧ vq) for 1 ≤ p, q ≤ n. Let up = (up, vp) for p = 1, . . . , n and

M(p, q) = R(up, uq) = k1(up ∧ uq)k2(vp ∧ vq) = U(p, q)V (p, q)

for 1 ≤ p, q ≤ n. By Lemma 2, M is positive definite and the theorem follows
for d = 2. The extension to d > 2 is immediate. Interest in building more
complicated models from simpler components also arises in data driven studies.
This pursuit is well represented by [6] which goes over some of the same ground
covered in this paper. The viewpoint is quite different, however. Rather than
considering the object random field as the result of a “visible” interaction of
components, the modeling viewpoint, the field is analyzed in terms of available
observables of the field itself. The goal of the research thrust is the most
general representation of a random field that can be unraveled in terms of the
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observables of the field.

Our starting point is the class of separable random fields, the most tractable
case. Since the envisioned application is to decision problems with uncertainty
and risk, we are able to restrict our attention to an even smaller class of fields.
The principal difficulty is developing an algebra for combining the simpler mod-
els. Dealing with this difficulty is a principal focus of this paper.

2.5. Covergence Results

In following subsections, we present some of the convergence results.

2.5.1. Central Limit Theorem

Assume that {up} is a sequence of positive integers with limit ∞ and {X̂jp}
is a double sequence such that, for each positive integer p, 1 ≤ j ≤ u(p). Let

Sp =
∑u(p)

j=1 X̂jp.

Theorem 8. (see Chung, 2001) If EX̂jp = 0 and E(|X̂jp|3) is finite, for

p ≥ 1 and 1 ≤ j ≤ u(p),
∑u(p)

j=1 E(X̂jp)
2 = 1, for p ≥ 1, and

∑u(p)
j=1 E(|X̂jp|3)

has limit 0 as p → ∞ then {Sp} converges in distribution to a (0, 1)-normal
random variable.

Suppose that {sp} is a sequence of partitions of [0, 1], 0 = s0(0) < s0(1) <
· · · < s0(m) = 1, sp+1 refines sp, and mesh(sp) → 0 as p → ∞. Assume
that {ui}m

i=0 is a sequence of nondecreasing integer valued sequences such that:
sp(ui(p)) = s0(i), for 0 ≤ p and 0 ≤ i ≤ m. Note that sp(u(·)(p)) = s0. Also,
for 0 ≤ i ≤ m, ui(p) → ∞ as p → ∞. Further, suppose that {tq} is a sequence
of partitions of [0, 1], 0 = t0(0) < t0(1) < · · · < t0(n) = 1, tq+1 refines tq, and
mesh(tq) → 0 as q → ∞. Assume that {vj}n

j=0 is a sequence of nondecreasing
integer valued sequences such that tq(vj(q)) = t0(j), for 0 ≤ q and 0 ≤ j ≤ n.
Suppose that:

1. Z is a random function on [0, 1] × [0, 1] such that:

(a) Z(s, t) is (0, 1)-normal.

(b) Z(s, t) and Z(u, v) are independent for (s, t) 6= (u, v).

2. Each of kL and kR is a continuous increasing function on [0, 1], kL(0) =
kR(0) = 0, and kL(1) = kR(1) = 1.

3. RL and RR are nonnegative definite functions on [0, 1] × [0, 1] defined
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(a) RL(s, t) = kL(min(s, t)).

(b) RR(s, t) = kR(min(s, t)).

Theorem 9. If i and j are fixed, s = s0(i), and t = t0(j), then

Spq =

ui(p)
∑

α=1

vj(q)
∑

β=1

√

kL(sp(α)) − kL(sp(α − 1))

×
√

kR(tq(β)) − kR(tq(β − 1)) Zsptq(α, β)

has limit in distribution the (0, (kL(s)kR(t))1/2)-normal random variable
∫ t
0

∫ s
0 Z(α, β) (dkL(α))1/2(dkR(β))1/2 as p, q → ∞.

Proof of Theorem 9. If q is fixed and 1 ≤ β ≤ vj(q) then the Central Limit
Theorem allows us to conclude that

ui(p)
∑

α=1

√

kL(sp(α)) − kL(sp(α − 1))Zsptq(α, β)

has limit in distribution the (0, kL(s)1/2)-normal random variable
∫ s

0
Z(α, tq(β)) (dkL(α))1/2

as p → ∞. Further, we can conclude that
vj(q)
∑

β=1

√

kR(tq(β)) − kR(tq(β − 1))

∫ s

0
Z(α, tq(β)) (dkL(α))1/2

has limit in distribution the (0, (kL(s)kR(t))1/2)-normal random variable
∫ t
0

∫ s
0 Z(α, β) (dkL(α))1/2(dkR(β))1/2 as q → ∞. Hence the result.

Let U = RL and V = RR. Then, for 0 ≤ i ≤ m and 0 ≤ j ≤ n, Spq =
[(UC

spsp
)T ZsptqV

C
tqtq ](ui(p), vj(q)) has limit in distribution

∫ t0(j)

0

∫ s0(i)

0
Z(α, β) (dkL(α))1/2(dkR(β))1/2

as p, q → ∞.

Note that a more general result is available, i.e., for more general RL and
RR, but the limit will lack the nice integral representation. Assuming the setup
above, i.e., {{sp}, {ui}, {tq}, {vj}, Z}, U = RL, and V = RR, then, for i and j
fixed, s = s0(i), and t = t0(j), Spq = [(UC

spsp
)T ZsptqV

C
tqtq ](ui(p), vj(q)) has limit

in distribution a (0, (RL(s, s)RR(t, t))1/2)-normal random variable.

We can extend a continuous linear operator A on {G, Q} with associated
discretized covariances Uspsp and Vtqtq to a domain including random functions
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as follows:

[ÂF ](s, t) = [AE(F )](s, t) + lim
p

lim
q

[(UC
spsp

)T (KC
spsp

)−T (F − E(F ))sptq

(KC
tqtq)

−1V C
tqtq ](ui(p), vj(q)) .

We have to impose conditions on F −E(F ) in order satisfy the hypothesis of the
Central Limit Theorem but we do not have to assume normality. On the other
hand, for simulations we can substitute a zero mean normal field for F −E(F )
simplifying the numerics and arrive at the same limit. Because these extensions
are always available, we concentrate on continuous linear operators defined on
{G, Q} for decision models developed in the next section.

3. Risk Analysis of an Uncertain Complex System

A system with at least two interacting components is a complex system. Broadly
defined risk is the probability of an undesirable decision outcome. In our setup
the distribution of outcomes depends on the uncertainties, our independent
variables. The goal of decision making for complex systems is a subjective
balance of expected payoff and risk. Risk is only half of the equation.

In a recent INFORMS Tutorial, Rockafellar [21] surveyed a variety of ap-
proaches to risk and the axioms of risk. The goal of the axioms is a coherent
risk assessment, which we interpret as a consistent assessment leading to a
consistent decision methodology. More on consistency later.

Rockafellar assumes uncertainties can be quantified, i.e., the randomness he
chooses to categorize as uncertainties has a distribution. Our investigation of
Ellsburg’s paradox [20] leads us in a different direction. Uncertainties should
be modeled as independent variables (no distributions) and decision problems
with uncertainties should be resolved using multi-criteria decision methods.

The goal of balance can be achieved by either maximizing µ − α σ or min-
imizing µ + ασ, where µ is the mean of a component performance, σ2 is the
variance of the performance, and α is a positive parameter set by the decision
maker reflecting his/her risk tolerance (see [25]). Note that the probability that
performance is less than µ − σ, an undesirable event, is approximately 0.1586.
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F1 F2

G1

G2

M N

Figure 1: A two component model representing the interaction of two
random fields F1 and F2

3.1. Network Representations of Complex Systems

The following example, Figure 1, has all of the essential features of more com-
plex systems and will serve to illustrate general results. We want to study the
interaction of random fields, in particular, estimates of µi − ασi, α a real pa-
rameter, computed from Gi, i = 1, 2 (see Figure 1). Our general approach is
through the construction of more complex models by combining simpler compo-
nents. Notice that the nodes (M and N) represent linear operators and the arcs
(Fi and Gi) represent random fields. The model could be used for a simplified
investment decision [19] or some other multicriteria decision problem [17, 18].

In these, and other decision problems, the domain of the random fields is
interpreted as the space of uncertainties and the decision variable µ−α σ as an
acceptable balance of expected payoff and risk. Formally, taking M and N as
linear operators on an appropriate space of fields, we have

G1 = M(F1 + G2) , G2 = N(F2 + G1) ,

(I − MN)G1 = M(F1 + NF2) , G1 = (I − MN)−1M(F1 + NF2) .

Thus we need to be able to deal with sums of fields and products and inverses of
sums of operators. In general, the sum of two separable fields is not separable.
At one level, this is not a problem since we can still express the covariance
of the sum in terms of the covariances of each of the summands. However,
for model building we need a single linear operator representation of the sum
and this representation should be separable so we can combine the result with
other operator representations of fields. We have to be content with separable
approximations to the sum rather than separable representations.
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3.2. Separable Approximations of Sums of Fields

There are two cases, i.e., we need separable approximations for a discrete ran-
dom field Hst when either

1. Hst = (AL)T ZstAR + (BL)T Z̄stBR, where Zst and Z̄st are independent
(0, 1)-normal, and

2. Hst = (AL)T ZstAR + (BL)T ZstBR, where Zst is (0, 1)-normal.

Referencing the example the first case arises, for instance in G1, when AL =
F 1

L, AR = F 1
R, BL = F 2

L(KC
ss)

−1NL and BR = F 2
L(KC

tt )
−1NR. The second

case arises, again in G1, when AL = AR = KC
ss, BL = NL(KC

ss)
−1ML, and

BR = NR(KC
tt )

−1MR.

For the first case,

cov([Hst](i, p), [Hst](j, q)) = [(AL)T AL](i, j)[(AR)T AR](p, q)

+ [(BL)T BL](i, j)[(BR)T BR](p, q) .

Note that for i ≤ j and p ≤ q we have

cov([Hst](i, p), [Hst](j, q)) = cov([Hst](i, p), [Hst](i, p)) .

Therefore we seek increasing functions k1 and k2 on [0, 1] such that k1(0) =
k2(0) = 0 and maxi, p(|cov([Hst](i, p), [Hst](i, p))− k1(si)k2(tp)|) is as small as
possible.

Suppose each of F and G is a random field on [0, S]× [0, T ] with risk fields
RF and RG, respectively. Our modeling assumption is that we only “observe”
F ( ·, T ) and F (S, · ), i.e., we only “know” RF ( ·, T ) and RF (S, · ). Something
similar holds for G. We say that F and G are equivalent if RF ( ·, T ) = RG( ·, T )
and RF (S, · ) = RG(S, · ). Further, we say G is the separable equivalent of F if
RG(s, t) = RF (s, T )RF (S, t)/RF (S, T ), for (s, t) in [0, S] × [0, T ]. Note that
the separable equivalent is always available.

Turning to the second case, suppose
Hst = (AL)T (KC

ss)
−T Wst(K

C
tt )

−1AR + (BL)T (KC
ss)

−T Wst(K
C
tt )

−1BR.

We begin by computing the covariance for Hst.

Theorem 10.

cov([Hst](i, p), [Hst](j, q)) = [(AL)T AL](i, j)[(AR)T AR](p, q)

+ [(BL)T AL](i, j)[(BR)T AR](p, q) + [(AL)T BL](i, j)[(AR)T BR](p, q)

+ [(BL)T BL](i, j)[(BR)T BR](p, q) .
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Proof of Theorem 10. Using Lemma 1,

cov([Hst](i, p), [Hst](j, q))

= E([(AL)T ZstAR + (BL)T ZstBR](i, p)[(AL)T ZstAR + (BL)T ZstBR](j, q))

= E([(AL)T ZstAR](i, p)[(AL)T ZstAR](j, q))

+ E([(AL)T ZstAR](i, p)[(BL)T ZstBR](j, q))

+ E([(BL)T ZstBR](i, p)[(AL)T ZstAR](j, q))

+ E([(BL)T ZstBR](i, p)[(BL)T ZstBR](j, q))

= [(AL)T AL](i, j)[(AR)T AR](p, q) + [(BL)T AL](i, j)[(BR)T AR](p, q)

+ [(AL)T BL](i, j)[(AR)T BR](p, q) + [(BL)T BL](i, j)[(BR)T BR](p, q) .

3.3. Separable Approximations of Inverses of Sums of Operators

In the modeling context we require a separable approximation of (I − A)−1,
where A is separable. If we use the separable approximation B to I − A then
one of the basic results gives a separable representation of B−1.

3.3.1. Separable Representation of the Inverse of a Sum: The
Dependent Case

Suppose

Hst = Wst − (AL)T (KC
ss)

−T Wst(K
C
tt )

−1AR ,

then

cov([Hst](i, p), [Hst](i, p))

= [Kss(i, i)[Ktt(p, p) − 2[(AL)T KC
ss](i, i)[(AR)T KC

tt ](p, p)

+ [(AL)T AL](i, i)[(AR)T AR](p, p)

= [diag(Kss)diag(Ktt)
T ](i, p)

− 2[diag((AL)T KC
ss)diag((AR)T KC

tt )
T ](i, p)

+ [diag((AL)T AL)diag((AR)T AR)T ](i, p) .

From the basic result

((I − A)−1)L ∼ (BL)−1 = KC
ss(U

C
ss)

−1KC
ss

and

((I − A)−1)R ∼ (BR)−1 = KC
tt (V

C
tt )−1KC

tt .
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Thus given F1 and F2 we are able to simulate the discrete version of

G1 = (I − MN)−1M(F1 + NF2)

and hence can estimate µ1 = EG1 and σ2
1 = var(G1). In the same way we can

estimate µ2 and σ2. These are simple tasks in the MatLab environment. We
are ready to take up the decision process.

3.3.2. The Decision Process

The discussion of the example of a complex decision problem can be completed
by briefly indicating how the modeling methodology which we have developed
can be employed to resolve a hypothetical decision problem, choosing from a
finite set of alternatives.

1. An outline for comparing decision alternatives for the example

(a) We assume the criteria interact with the interactions modeled by Figure
1.

(b) Associated with the j-th alternative will be a pair of continuous linear
operators M j and N j.

(c) We assume the random external influences F1 and F2 are the same for
all alternatives.

(d) The evaluation of the j-th alternative results in two random fields Gj
1

and Gj
2, different for each alternative.

(e) We compute the mean and standard deviation fields µj
i and σj

i for Gj
i ,

i = 1, 2.

2. Two steps to problem resolution

(a) Multi-criteria optimization. Since the goal is to balance µ and σ, we
would either consider maximizing µ − σ or minimizing µ + σ based on the
example’s objective, where µ is the mean of a component performance and σ2

is the variance of the performance. Let us assume that we are interested in
maximizing µ − σ for our decision problem represented by Figure 1. Therefore
for each of the finite set of alternative, we compute Rj

i = (µj
i − σj

i ), i = 1, 2.

Given two alternatives, in multi-criteria decision making for a minimization
problem, Alternative 1 is said to dominate Alternative 2 if for all uncertainties
R1

i ≤ R2
i and for at least one discretized uncertainty R1

i < R2
i . Otherwise, both

alternatives are said to be nondominated.

The first step of problem resolution involves in finding all nondominated
alternatives. If the first step provides an unique nondominated alternative, this
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is the preferred alternative. On the other hand, if at the end of first step we have
multiple nondominated alternatives, we go to the second step of the problem
resolution.

(b) Identifying the preferred choice. If more than one alternative is non-
dominated, we do not have a clear preferred choice. To choose a preferred
alternative we first define an ideal alternative. An ideal alternative is any in-
feasible alternative which clearly dominates all the nondominated alternatives
from step one. Then, we use L2 norm to pick a preferred alternative from the
set of nondominated alternatives which is closest to the ideal alternative.

(3) Questions of consistency for our approach are resolved [20] by estab-
lishing a mapping between Savage’s informal probability structure [24] and our
preference rules. Only the first four of Savage’s postulates hold but those suffice
to show the methodology is rational.

The models open a new field of application to decision problems. Re-
quirements for decision problems dictate our approach at various points: the
discretization/matrix representations ease the computational burden, two di-
mensional domains represent a significant enlargement of the class of possible
applications, the emphasis on risk comes from decision problems. Decisions
in an environment of uncertainty and risk are ubiquitous. The modeling tools
discussed in this paper enable us to consider larger, more complex problems.
Problems for developing a decision making methodology are not discussed but
would include efficient multi-criteria optimization algorithms and implementa-
tion of decision preference rules for multi-criteria decisions.

3.4. An Engineering Approach to Risk Analysis of Complex Systems

Engineering systems, such as submarines or power generation plants, can be
composed of many parts. A method for estimating risk of failure for such
complex systems proceeds as follows [9]. Estimate expected time to failure for
each part, perhaps based on experiment. The possible failures are partitioned
by significance, for example as major or minor. Risk for each category is the
probability of failure during an operating period, for example the probability
of a major failure during the next year. The probabilities increase over time
limiting the useful “safe” lifetime of the system. Part of the engineering art
is deciding when a series of minor failures can cascade into a major failure,
for example the pattern of failures in the Three Mile Island incident. Risk
estimates in this methodology are not functions of “uncertainties” although
the estimates of future risk can be updated using operating histories. Many
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aircraft operate long after the end of the original designed “lifespan” because
of hardware updates and refurbishment. Whether our “soft” approach has
anything to offer to “hard” engineering problems remains to be seen.

4. Conclusions

The paper is a mixture of hard results and plausible methods based on numerical
experiments. The results are firmly based in RKH space theory but theory
which is restricted to special cases. The numerical experiments need to be
followed up with a more systematic study.

Separable approximations enable us to build complex models from simpler
components. We have a complete algebra of separable components, at least
in terms of approximations. Separable approximations to nonseparable fields
(operators) obtained through addition seem unavoidable. The approximations
are not heavily penalized, at least in numerical experiments, and so seem to be
useful for modeling.

The approximations fit within an established framework, i.e., RKH spaces.
Discretizations of various objects, for instance fields and covariance kernels, are
not approximations but exact. The random fields of interest are not elements
of the underlying RKH space. However, the covariance kernel of a random field
provides the matrix representation of a linear transformation of the RKH space
which can be extended to a larger space including the Wiener field enabling
the representation of the random field. The representations provide a complete
characterization of the zero mean random fields. The representations are more
tractable, at least for our purposes, than distribution function representations,
etc..

Convergence is a natural question for continuous parameter models. From
a data viewpoint, the usual collection methodology starts with discrete random
functions but some representations (transform methods) immediately progress
to continuous parameter models. Denied the possibility of infinite sampling,
the convergence question is mute.

Some optimization problems, at first glance, seem to be approachable as
large mathematical programming problems after a suitable discretization. Such
an approach leaves open the problem of convergence of the optimal solutions
of the subproblems. A difficulty which is often overlooked. Our multi-criteria
optimization problems on the discrete models might leave us open to similar
criticisms. However, our discretizations leave us in the original RKH space
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setting, i.e., we can claim that the discrete problem is the “real” problem.

Are we losing something by only modeling risk? Of course we are. Many
different system models, models based on different covariances, can share the
same risk profiles. However, if the decision is to turn on analysis of risk then
we might as well choose the simpler models.
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