POLYNOMIAL APPROXIMATION OF FINITE ORDER ANALYTIC FUNCTION

D. Kumar^{1 §}, Harvir Kaur²

^{1,2}Department of Mathematics
Research and Post Graduate Studies
M.M.H. College
Model Town, Ghaziabad, 201001, U.P., INDIA
e-mail: d_kumar001@rediffmail.com

Abstract: The aim of this paper is to find seequences $(f_n)_n$ of analytic functions which are the product of a polynomial of degree $\leq n$ and an "easy computable" second factor and such that $(f_n)_n$ converges essentially faster to f on a plane compact set K then the sequence $\{p_n^*\}_n$ of best approximating polynomials of degree $\leq n$. Here K should be thought of as a finite disc or a real interval.

AMS Subject Classification: 65B99, 30D10

Key Words: transfinite diameter, faber polynomials, growth parameters

1. Introduction

Let K be a compact subset of the complex plane C such that K and $C \setminus K$ are connected and K does not consist a single point. According to the Riemann Mapping Theorem there exists a uniquely determined conformal mapping $z = \varphi(w): \widehat{C} \setminus \Delta \to \widehat{C} \setminus K$ such that $\varphi(\infty) = \infty$ and $\varphi'(\infty) > 0$. Here $\widehat{C} = C \cup \{\infty\}$ denote as extended complex plane and we set

$$\Delta_r = \{ z \in \mathcal{C} : |z| \le r \}, \quad \Delta = \Delta_1.$$

Received: March 5, 2008 © 2008, Academic Publications Ltd.

§Correspondence author

Thus, in a neighborhood of infinity, the function has the representation

$$z = \varphi(w) = d\left[w + C_0 + \frac{C_{-1}}{w} + \cdots\right],$$

where the number d(>0) is called the conformal radius or transfinite diameter of K. If we define $\eta(w)=\varphi(w/d)$, then η maps $\{w:|w|>d\}$ onto $\widehat{C}\backslash K$ in a one-one conformal manner. If $w=\Omega(z)$ is the inverse function of η , then $\Omega(\infty)=\infty, \lim_{z\to\infty}\left(\frac{\Omega(z)}{z}\right)=1$ and, in a neighborhood of infinity, the function $\Omega(z)$ has a Laurent expansion of the form

$$\Omega(z) = z + b_0 + \frac{b_- 1}{z} \cdots.$$

Thus for each positive integer n and for sufficiently large |z|, one has an expansion of the form

$$[\Omega(z)]^n = z^n + b_{n-1,n}z^{n-1} + b_{n-1,n}z^{n-2} + \dots + b_{1,n}z + b_{0,n} + \frac{b_{-1,n}}{z} + \dots.$$
The Polynomials

$$P_n(z) = z^n + b_{n-1,n}z^{n-1} + \dots + b_{1,n}z + b_{0,n}, \quad n = 0, 1, 2, \dots,$$

which comprise non-negative power of z in the Laurent series expansion of $[\Omega(z)]^n$ about infinity, are called the Faber polynomials for K. If K is the closed disc $|z-z_0| \leq d$, then $w = \Omega(z) = z - z_0$ and so the Faber polynomials for the closed disc are given by $P_n(z) = (z - z_0)^n$, $n = 0, 1, 2, \cdots$. Thus, the Taylor polynomials $(z - z_0)^n$ are a special case of Faber polynomials. We refer to [6] for more details on Faber polynomials.

Let $L_r = \{z : z = \eta(w), |w| > d\}$. Since $\Omega(z)$ is analytic and univalent, L_r 's are analytic, Jordan curves. If K_r denotes the domain bounded by L_r , then $K \subset K_r$ for each r > d and $L_r \subset K_{r_1}$ for $r < r_1$.

Let H(K; R) denote the class of all functions f that are regular in K_R with a singularity on L_R ($d < R < \infty$). In the sequel we will consider the growth parameters for functions in H(K; R). Thus, growth parameters, analogous to those introduced for functions regular in unit disc, may be defined for functions regular in K_R as follows.

We say that $f \in H(K; R), d < R < \infty$ is of K-order ρ in K_R if

$$\rho = \limsup_{r \to R} \frac{\log^{+} \log^{+} \overline{M}(r)}{\log(R/(R-r))},$$

where

$$\overline{M}(r) = \max_{z \in L_r} |f(z)|, \quad d < r < R.$$

To compare the growth of functions in H(K; R) that have the same non zero finite K-order, the concept of K-type has been introduced. Then $f \in H(K; R)$ having K-order ρ , $(0 < \rho < \infty)$, is said to be of K-type $T < \infty$ if

$$T = \limsup_{r \to R} \frac{\log \overline{M}(r)}{(Rr/R - r)^{\rho}}.$$

Let Π_n be the set of polynomials of degree $\leq n$ and let

$$E_n(f, K) = \inf_{p \in \Pi_n} ||f - p||_K,$$

with $\|\varphi\|_K = \sup_{z \in K} |\varphi(z)|$, denote the error of best polynomial approximation of f on K. We can easily obtain the following result by [5].

Theorem 1.1. Let $f \in H(K; R)$. Then f is the restriction on K of an analytic function of K-order ρ and K-type T if and only if

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^{+} \left[E_n(f, K) (C(K))^n \right]^{1/n}$$

$$= (C(K))^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (T\rho)^{1/\rho+1} \,, \quad (1.1)$$

where C(K) > 0 is the logarithmic capacity of K.

A sequence $\{p_n\}$ with $p_n \in \Pi_n$ for all $n \in N$ is called maximally convergent on K to f if the asymptotic rate of best polynomial approximation is realized by $\{p_n\}$, that is

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^+ \left[\|f - p_n\|_K (C(K))^n \right]^{1/n} = (C(K))^{\rho/\rho + 1} \left(\frac{\rho + 1}{\rho} \right) (\rho T)^{1/\rho + 1}.$$

Besides the polynomials p_n^* of best approximation given by

$$||f - p_n^*||_K = \inf_{p \in \Pi_n} ||f - p||_K$$

the computation of which is rather expansive, here we shall consider two type of maximally convergent sequences $\{p_n\}$: polynomial interpolant in arbitrary system of nodes and Faber expansions. Now first we will give a brief introduction of these two kinds of polynomial approximants.

1. Let $(z_k^{(n)})_{n\in\mathbb{N}_0}, k=0,\cdots,n$ be (n+1) distinct points in the complex plane and let the values $(w_k^{(n)})_{n\in\mathbb{N}_0}, k=0,\cdots,n$ be given. There exist infinitely many polynomials that takes the values $w_k^{(n)}$ at the points $z_k^{(n)}(k=0,\cdots,n)$. However, if one is interested in a polynomial of degree not exceeding n that assumes the prescribed values w_k at the points z_k then such a polynomial is

unique and is given by

$$H_n(z) = \sum_{k=0}^n \frac{w_n(z)}{\left(z - z_k^{(n)}\right) w_n'\left(z_k^{(n)}\right)} w_k, \qquad (1.2)$$

where

$$w_n(z) = \prod_{k=0}^n \left(z - z_n^{(n)} \right).$$

The polynomial $H_n(z)$ is called Lagrange's interpolation polynomial. Lagrange's interpolation formula takes an elegant form in the case of functions that are regular inside and on a simple closed curve. Thus we have:

— If $L_r = \eta(\partial \Delta_r)$ is a level curve of η^{-1} for some r > d, then the (uniquely determined) polynomial interpolant $L_n(f) \in \Pi_n$ to f with respect to the nodes $z_k^{(n)}$ may be expressed y the Hermite interpolation formula

$$L_n(z) = L_n(f)(z) = \frac{1}{2\pi i} \int_{L_r} \frac{w_n(t) - w_n(z)}{t - z} \frac{f(t)}{w_n(t)} dt \quad (z \in K).$$
 (1.3)

— If
$$K = \Delta_r$$
 for some $r > 0$ and $z_k^{(n)} = 0$ for all k and n , then $L_n(f) = S_n(f)$,

where $S_n(f)$ is the *n*-th partial sum of the Taylor expansion of f around the origin.

Lagrange's interpolation formula and Hermite's interpolation formula can be easily extended to cover the case of multiple interpolation. Thus, if different points $\left(z_k^{(n)}\right)$ are given and each $z_j^{(n)}$ is associated with the quantities $w_j^{(\nu)}, \nu = 0, 1, \cdots, m_j - 1$, then the problem of constructing a polynomial m(z) of degree not exceeding $-1 + z_{j=1}^k m_j$ such that $L_n^{(\nu)}(z_j) = w_j^{(\nu)}, \nu = 0, 1, \cdots, m_j - 1, j = 1, 2, \cdots, k$, where $L_n^{(\nu)}(z)$ denotes the ν -th derivative of $L_n(z)$, is called the problem of multiple interpolation. In the case of Hermite's interpolation formula the values $w_j^{(\nu)}$ are to be replaced by $f^{(\nu)}\left(z_j^{(\nu)}\right)$, where $f^{(\nu)}(z)$ is the ν -th derivative of f(z).

2. The *n*-th Faber polynomial $F_n = F_{n,K}$ with respect to K may be defined by

$$\frac{\eta'(w)}{\eta(w)-z} = \sum_{n=0}^{\infty} \frac{F_n(z)}{w^{n+1}} \quad (z \in K).$$

It is known [6] that there exist absolute constants A > 0 and $\alpha < 0.5$ such

that for every f continuous on K and analytic in the interior of K.

$$||f - T_n(f)||_K \le An^{\alpha} E_n(f, K), \tag{1.4}$$

where $T_n(f)$ denotes the n-th partial sum of the Faber expansion of f, that is

$$T_n(f) = T_{n,K}(f) = \sum_{k=0}^{\infty} a_k(f) F_k$$
 (1.5)

with

$$a_k(f) = \frac{1}{2\pi i} \int_{|w|=1} \frac{f(\eta(w))}{w^{n+1}} dw.$$
 (1.6)

In view of (1.4) it follows that $(T_n(f))$ converges maximally on K to f. In particular, for $K = K_R(R > d)$ we have by Theorem 1.1 that

$$\lim_{n \to \infty} \sup n^{1/\rho + 1} \log^{+} \left[\|f - T_{n, E_{R}}(f)\|_{K_{R}} (R/d)^{n} \right]^{1/n}$$
$$= (R/d)^{\rho/\rho + 1} \left(\frac{\rho + 1}{\rho} \right) (\rho T)^{1/\rho + 1}$$

(note that $C(K_R) = R/d$). For $K = \Delta_r$ we have $T_{n,\Delta_r}(f) = S_n(f)$, and therefore Theorem 1.1 gives

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^+ \left[\|f - S_n(f)\|_{\Delta_r} r^n \right]^{1/n} = r^{\rho/\rho + 1} \left(\frac{\rho + 1}{\rho} \right) (\rho T)^{1/\rho + 1},$$
 $C(\Delta_r) = r$. Now, for $K = [-1, 1], C([-1, 1]) = 1/2$, Theorem 1.1 implies

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^+ \left[\|f - T_n(f)\|_{[-1,1]} \right]^{1/n}$$

$$= \left(\frac{1}{2}\right)^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (\rho(T))^{1/\rho+1} . \quad (1.7)$$

Here $T_n(f)$, the *n*-th partial sum of the Faber expansion of f equals the *n*-th partial sum of the Tschebyscheff expansion of f.

Generally, the rate of best polynomial approximation on K of an analytic function of finite order is determined by the growth parameters K-order and K-type of f. These information cannot be used to improve the rate of convergence for polynomial approximation of f. The aim of this paper is to modify the function f in such a way that the modified \tilde{f} is "better" approximable on K by polynomials then f itself, by using the information about the growth of f, and then recover f from an approximation of \tilde{f} .

2. The RG-Method

We first describe the idea in the case of $K = K_R$ (R > d) and partial sums T_n of the Faber expansion as approximating polynomials.

Let, for an arbitrary Faber series

$$f(z) = \sum_{\nu=0}^{\infty} a_{\nu} F_{\nu}$$

with

$$T_n(f)(z) = \sum_{\nu=0}^n a_{\nu} F_{\nu}.$$

For f being analytic on K_R (R > d) we obtain from Cauchy integral formula

$$||f - T_n(f)||_{K_r} \le \overline{M}(r, f) \left(\frac{r}{r - r'}\right) (r'/r)^n,$$

where $d < r'' < r' < R, n > n_0(r', r'')$ and $M(r, f) = \max |f(z)|, z \in L_r$.

Thus, if f is an analytic function of K-order ρ and K-type $T < \infty$, and if (r_n) is an arbitrary sequence with $d < r_n \to R$, we get

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^+ \left[\|f - T_n(f)\|_{K_{r_n}} (r_n/d)^n \right]^{1/n}$$

$$\leq \limsup_{n \to \infty} n^{1/\rho+1} \left[\log^+(M(r_n, f))^{1/n} + \log(r'/r_n) \cdot (1 + o(1)) \right].$$

If T > 0 and if we take

$$\frac{R.R_n}{R-r_n} = \left(\frac{r_n n}{d\rho T}\right)^{1/\rho+1},$$

then we take

$$\limsup_{n \to \infty} n^{1/\rho + 1} \left[\log^+(M(r_n, f))^{1/n} + \log(r'/r_n) \right]$$

$$\leq (r_n/d)^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (\rho T)^{1/\rho+1}.$$

Since $C(r_n) = r_n/d$, this implies that $T_n(f)$ converges to f maximally on r_n .

Now consider the case of K being the closed unit disc and the partial sums S_n of the Taylor expansion around the origin as approximating polynomials.

Let, for an arbitrary power series

$$g(z) = \sum_{\nu=0}^{\infty} g_{\nu} z^{\nu}$$

around the origin,

$$S_n(g)(z) = \sum_{\nu=0}^n g_{\nu} z^{\nu}.$$

For g being holomorphic on Δ_r for some r > 1, from Cauchy integral formula we get

$$||g - S_n(g)||_{\Delta} \le \frac{M(r,g)}{r^n(r-1)}.$$

Thus, if f is an analytic function of order ρ and type $T < \infty$ and if (r_n) is an arbitrary sequence with $1 < r_n \to R$, we get

$$\limsup_{n\to\infty} n^{1/\rho+1} \log^+ \|f - S_n(f)\|_{\Delta}$$

$$\leq \limsup_{n \to \infty} n^{1/\rho + 1} \left[\log(M(r_n, f))^{1/n} + \log(r'/r_n) \right].$$

If T > 0 and if we assume

$$\frac{Rr_n}{R - r_n} = \left(\frac{n}{\rho T}\right)^{1/\rho + 1},$$

then we obtain

$$\limsup_{n \to \infty} n^{1/\rho + 1} \left[\log^+(M(r_n, f))^{1/n} + \log r' / r_n \right] \le \left(\frac{\rho + 1}{\rho} \right) (\rho T)^{1/\rho + 1}.$$

Note that $C(\Delta) = 1$, which implies that $S_n(f)$ converges to f maximally on Δ .

Now the main idea is to replace in the above text the function f by $f\varphi_n$, where $(\varphi_n)_n$ is a sequence of functions such that φ_n is continuous on K and analytic in the interior of K. With $\varphi := (r_n, \varphi_n)$ and

$$\mu(\varphi) = \limsup_{n \to \infty} n^{1/\rho + 1} \left[\log^+(M(r_n, f))^{1/n} + \log(r'/r_n) \right]$$

it gives

$$\lim_{n \to \infty} \sup_{n \to \infty} n^{1/\rho + 1} \log^+ \left[\|f\varphi_n - T_n(f\varphi_n)\|_{\Delta} \right]^{1/n} \le \mu(\varphi).$$

If $\mu(\varphi) < \left(\frac{\rho+1}{\rho}\right)(\rho T)^{1/\rho+1}$ and $|\varphi_n|^{1/n}$ converges to 1 uniformly on Δ , then the sequence $\left(\varphi_n^{-1}T_n(f\varphi_n)\right)_n$ converges asymptotically by the factor

$$\left[\exp\left(\mu(\varphi)/\left(\frac{\rho+1}{\rho}\right)(\rho T)^{1/\rho+1}\right)\right]^n$$

faster to f than maximally convergent polynomial sequences.

Using (1.3), one can prove the following more general result.

Theorem 2.1. Let $f \in H(K;R)$, and let f is the restriction on K of

an analytic function of K-order ρ and K-type $T < \infty$. Suppose further that $\varphi := (r_n, \varphi_n)_n$ is a sequence such that $0 < d < r_n \to R$ for $n \to \infty$ and φ_n is a function which is holomorphic on $\Delta r_n \bigcup K$. If $\left(z_k^{(n)}\right)_{n \in N_0, k=0, \dots, n}$ is an arbitrary system of nodes on K, then

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^{+} \left[\| f \varphi_n - L_n(f \varphi_n) \|_K (C(K))^n \right]^{1/n} \le C(K)^{\rho/\rho + 1} \mu(\varphi). \quad (2.1)$$

The estimates (1.1) and (2.1) suggest the following idea for an algorithm:

1. Search for a sequence $\varphi = (r_n, \varphi_n)_n$ as in Theorem 1.2 such that

$$\mu(\varphi) < \left(\frac{\rho+1}{\rho}\right)(\rho T)^{1/\rho+1}$$

and $|\varphi_n|^{1/n} \to 1$ locally uniformly on C.

- 2. Compute an approximating polynomial $P_n = P_n(f\varphi_n, K)$ of $f\varphi_n$.
- 3. Take $\varphi_n^{-1}.P_n(f\varphi_n)$ as approximation of f.

In view of our proposed algorithm two questions arise:

(i) Let Φ be the set of all sequences $\varphi = (r_n, \varphi_n)_n$ as in Theorem 1.2 with $|\varphi_n|^{1/n} \to 1$ locally uniformly on C. Can we determine

$$\underline{m} = \underline{m}_f = \inf_{\varphi \in \Phi} \mu(\varphi)$$
?

(ii) If so, how can we find "easy computable" sequences $\varphi \in \Phi$ such that $\mu(\varphi) \approx \underline{m}$?

To answer these questions we have to define the indicator function

$$h = h_f(\theta) = \limsup_{r \to R} \frac{\log |f(re^{i\theta})|}{(Rr/(R-r))^{\rho}}, \quad |\theta| \le \alpha.$$

From definition it follows that $h_f(\theta) \leq T$ for all θ . The Crucial role in our game is played by

$$I = I_f = \frac{1}{2\pi} \int_0^{2\pi} h_f(\theta) d_\theta.$$

The value of I is intimately related to the number of zeros of f. The fundamental results connecting the modulus of an entire function with the number of its zeros was first given by Jensen [4]. The result states: "Let f(z) be analytic for |z| < R"; suppose that $f(0) \neq 0$ and let $r_1, r_2, \dots, r_n, r_m$, be the modulii of zeros of f(z) inside the circle |z| = R arranged in non-decreasing

order then if $r_n \leq r < r_{n+1}$,

$$\log\left\{\frac{r^n|f(0)|}{r_1r_2\cdots r_n}\right\} = \frac{1}{2\pi} \int_0^{2\pi} \log\left|f(re^{i\theta})\right| d\theta. \tag{2.2}$$

Let n(r) denote the number of zeros of f(z) in Δr . Then n(r) is non-decreasing function of r which is constant in any interval which does not contain the modules of any zero of f(z). Then (2.2) can be written as

$$\int_{0}^{r} \frac{n(x)}{x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| f(re^{i\theta}) \right| d\theta - \log |f(0)|. \tag{2.3}$$

It is clear from (2.3) that greater the number of zeros of f(z), faster the function must grow. If

$$N(r) = \int_0^r \frac{n(x)}{x} dx,$$

then

$$N(r) \le \log M(r, f). \tag{2.4}$$

From the above cited results it follows that $I \geq 0$ and $I \in [0, T]$. The following result give an answer to question (i).

Lemma 2.1. Let f be an analytic function of order $\rho > 0$ and of completely regular growth. Then we have

$$\underline{m} = \left(\frac{\rho+1}{\rho}\right) (\rho I)^{1/\rho+1}.$$

Proof. Using (2.3) and (2.4) with simple calculation we obtain

$$\underline{m} \ge \left(\frac{\rho+1}{\rho}\right) (\rho I)^{1/\rho+1}.$$

Now let us turn to the question (ii) of how to find sequences $\varphi \in \Phi$ such that

$$\mu(\varphi) \approx \left(\frac{\rho+1}{\rho}\right) (\rho I)^{1/\rho+1}$$

and such that the function φ_n are "easy computable". We can consider the sequences (ρ_n) of the form $\varphi_n = e^{-R_n}$, where the R_n are polynomials. Also (φ_n) may be rational functions.

For given h_f we consider a polynomial Q such that Q(0) = 0, and we set

$$T(Q) = T_f(Q) = \max_{Q} (h_f(\theta) - ReQ(e^{i\theta})). \tag{2.5}$$

Since ReQ is sub-harmonic in Δ , we find for $\theta \in [-\pi, \pi]$ (since $h_f(-\pi) =$

$$h_f(\pi)$$
 and $I = \frac{1}{2\pi} \int_{-\pi}^{\pi} h_f(\theta) d\theta$
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[h_f(\theta) - ReQ(e^{i\theta}) \right] d\theta \ge I - ReQ(0) = I$$

and we get

$$T(Q) \ge I$$
.

Set

$$\frac{Rr_n}{R - r_n} = \left(\frac{n}{T(Q)\rho}\right)^{1/\rho + 1} \tag{2.6}$$

and

$$\varphi_n(z) = \varphi_{n,Q}(z) = \exp\left(-\left(Rr_n/(R - r_n)^{\rho}Q(z/r_n)\right), z \in C.$$
 (2.7)

Then $\varphi \in (r_n, \varphi_n)_n \in \Phi$ and one can prove the following.

Lemma 2.2. Let (r_n) and (φ_n) be defined by (2.6) and (2.7). Then we have

$$\mu(\varphi) \le \left(\frac{\rho+1}{\rho}\right) (\rho T(Q))^{1/\rho+1}.$$
 (2.8)

Proof. We have $(Rr_n/(R-r_n))^{\rho} \log |\varphi_n(r_ne^{i\theta})| = ReQ(e^{i\theta})$ for every $n \in N$ and thus

$$\frac{\log^{+} M(r_{n}, f\varphi_{n})}{(Rr_{n}/(R-r_{n}))^{\rho}} \leq \max_{\theta} \left[\frac{\log^{+} |f(r_{n}e^{i\theta})|}{(Rr_{n}/(R-r_{n}))^{\rho}} - h_{f}(\theta) \right] + \max_{\theta} \left[h_{f}(\theta) - ReQ(e^{i\theta}) \right].$$

From Theorem 28, Chapter I, of [5] one can easily obtain

$$\limsup_{n \to \infty} \max_{\theta} \left[\frac{\log^+ ||f(r_n e^{i\theta})|}{(Rr_n/(R-r_n))^{\rho}} - h_f(\theta) \right] \le 0$$

and thus

$$\limsup_{n \to \infty} \frac{\log^+ M(r_n, f\varphi_n)}{(Rr_n/(R - r_n))^{\rho}} \le T(Q).$$

In view of (2.6) we get

$$\mu(\varphi) =$$

$$\limsup_{n \to \infty} n^{1/\rho + 1} \left[\log^+ \left[(M(r_n, f\varphi_n)) \binom{R - r_n}{R r_n} \right]^{\rho} \right]^{\left(\frac{R r_n}{R - r_n}\right)^{\rho}/n} + \log(r'/r_n) \right]$$

$$\leq \left(\frac{\rho+1}{\rho}\right) (\rho T(Q))^{1/\rho+1}. \quad \Box$$

Now we have

Theorem 2.2. Let $f \in H(K,R)(R > d)$ and let Q be a polynomial with Q(0) = 0. Suppose further that f is an analytic function of K-order $\rho \in (0,\infty)$ and K-type $T < \infty$ and that (φ_n) is given by (2.7).

1. If $(z_k^{(n)})_{n\in\mathbb{N}_0,k=0,\cdots,n}$ is an arbitrary system of nodes on K, then $\limsup_{n\to\infty} n^{1/\rho+1}\log^+\left[\|f-\varphi_n^{-1}L_n(f\varphi_n)\|_k(C(K))^n\right]^{1/n}$

$$\leq (C(K))^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (\rho T(Q)^{1/\rho+1}.$$
 (2.9)

2. Let ε denote the set of all functions $f \in H(K, R)$. If T_n is a sequence of operator $T_n : \varepsilon \to \Pi_n$ such that there exist constants $A, \beta > 0$ with

$$||g - T_n(g)||_K \le An^{\beta} E_n(g, K)$$
 (2.10)

for all $g \in \varepsilon$, then

 $\limsup_{n \to \infty} n^{1/\rho + 1} \log^{+} \left[\| f - \varphi_n^{-1} T_n(f \varphi_n) \|_K (C(K))^n \right]^{1/n}$

$$\leq (C(K))^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (\rho T(Q))^{\rho/\rho+1}. \tag{2.11}$$

Proof. Since $|\varphi_n|^{-1/n} \to 1$ uniformly on K, then in view of Theorem 2.1 and Lemma 2.2, part 1 follows.

Let $L_n(f\varphi_n)$ denote the *n*-th polynomial interpolant to $f\varphi_n$ with respect to the system of arbitrary nodes of K. By Theorem 2.1 and Lemma 2.2 we get

$$\lim_{n \to \infty} \sin^{1/\rho+1} \log^{+} [\|f\varphi_{n} - T_{n}(f\varphi_{n})\|_{K} (C(K))^{n}]^{1/n}$$

$$= \lim_{n \to \infty} n^{1/\rho+1} \log^{+} [E_{n}(f\varphi_{n}, K)]^{1/n}$$

$$\leq \lim_{n \to \infty} \sup_{n \to \infty} n^{1/\rho+1} \log^{+} [\|f\varphi_{n} - L_{n}(f\varphi_{n})\|_{K} (C(K))^{n}]^{1/n}$$

$$\leq (C(K))^{\rho/\rho+1} \left(\frac{\rho+1}{\rho}\right) (\rho T(Q))^{1/\rho+1}.$$

Since $|\varphi_n|^{-1/n} \to 1$ uniformly on K, we get our result i.e., assertion 2. \square

Remark. The condition (2.10) is satisfied by the sequence of best approximation operators, that is, $T_n(g)$ is defined by

$$||g - T_n(g)||_K = \inf_{p \in \Pi_n} ||g - p||_K.$$

Moreover, by a result of Kovari and Pommerenke [6], the same is true for the sequence (T_n) of the n-th partial sums of the Faber expansion with respect to K and therefore, in particular, in the case of K = [-1, 1] for the Tschebyscheff sections.

For a finite set $M \subset N$ we define

$$\Pi_M = \left\{ \sum_{\nu \in M} a_{\nu} z^{\nu} : a_{\nu} \in C \text{ for } \nu \in M \right\},\,$$

i.e., Π_M is the set of polynomials with powers only in M. (Q(0) = 0 for $Q \in \Pi_M$). If $Q \in \Pi_M$, then, by definition (2.7), we have $\varphi_n = e^{-R_n}$ when $R_n \in \Pi_M$ for all $n \in N$. Therefore, the approximation of f obtained by the RG- method are of the form

$$\varphi_n^{-1}.P_n = e^{R_n}.Pn$$
 with $R_n \in \Pi_M$ and $p_n \in \Pi_n$.

Since the effort for the evaluation of the factor e^{R_n} does not increase with n we may regard $\varphi_n^{-1}.P_n$ as a "near polynomial approximation" of f. Theorems 1.1 and 1.3 show that, if T(Q) < T, we get a (geometric) acceleration factor $\left[\exp(T(Q)/T)^{1/\rho+1}\right]^n$ if we approximate $f\varphi_n$ instead of f by a polynomial sequence as in Theorem. The "cost" for that is an additional multiplication by $\varphi_n^{-1} = e^{R_n}$.

Now it is the question of ho to choose an appropriate polynomial θ in order to apply RG-method in an efficient way. For let us consider the following problem:

Choose $Q_M \in \Pi_M$ such that

$$\max_{\theta}(h_f(\theta) - ReQ_M(e^{i\theta})) = \min_{\theta \in \Pi_M} \max_{\theta}(h_f(\theta) - ReQ(e^{i\theta})).$$

This is a kind of one-sided Tschebyscheff approximation of the (continuous and 2π – periodic) function h_f by trigonometric polynomials without constant term

For the important case $M = \{1, \dots, M\}$ we but $Q_m = Q_{\{1,\dots,m\}}$ and obtain the following estimates.

Theorem 2.3. With above assumptions we have

$$I \leq T(Q_m) \leq I + 2\varepsilon_m(h_f)$$
,

where $\varepsilon_m(h_f)$ denotes the error of best approximation of h_f by trigonometric polynomials of degree $\leq m$. This implies

$$T(Q_m) \to I \ (m \to \infty).$$

Proof. Let t_m denote the best approximating trigonometric polynomial of degree $\leq m$ to the function h_f on $[-\pi, \pi]$. If $a_0 m/n$ is the constant term of t_m , that is

$$\frac{|a_0^m|}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} t_m(\theta) d\theta,$$

then

$$\frac{|a_0^m|}{2} = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} h_f(\theta) d\theta + \int_{-\pi}^{\pi} (t_m(\theta) - h_f(\theta)) d\theta \right| \le I + \varepsilon_m(h_f),$$

thus

$$\max_{\theta} \left[h_f(\theta) - \left(t_m(\theta) - \frac{a_0^m}{2} \right) \right] \le I + 2\varepsilon_m(h_f).$$

Since $t_m - \frac{a_0^m}{2}$ is the real part of a polynomial in $e^{i\theta}$ of degree $\leq m$ without constant term. Hence the proof is completed.

Assume that we have found a polynomial Q such that $T > T(Q) \approx$. The question now is how to choose the approximating polynomial $p_n = p_n(f\varphi_n, K) \in \Pi_n$ of $f\varphi_n$ on K. Since the polynomial Q does only depend on h_f , we had so far no need to look on our compact set K on which we want to approximate f. This set K now plays an important role in order to choose p_n . Concerning speed of approximation, the best possible choice is given by the sequence $p_n^* = p_n^*(f\varphi_n, K)$ of best approximating polynomials of $f\varphi_n$ with respect to K. However, in the most interesting case of K being a disk or an interval.

Since $L_n(f\varphi_n) = L_n(L_n(f))L_n(\varphi_n)$ for the polynomial interpolant of degree $\leq m$ in an arbitrary system of nodes $(z_k^{(x)})$, the computation of $L_n(f\varphi_n)$ does not require more information about f than the computation of $L_n(f)$, namely, the values of f (and, in the case of multiple nodes, derivatives of f) at the nodes $(z_k^{(x)})$.

1. The case $K = \Delta_r$. Let g be holomorphic in Δ_r and let

$$g(z) = \sum_{\nu=0}^{\infty} g_{\nu} z^{\nu} \quad (z \in \Delta_r),$$

be the Taylor expansion of g around the origin. In the case $K = \Delta_r$, the Taylor sections

$$S_n(g)(z) = \sum_{\nu=0}^n g_{\nu} z^{\nu} \quad (z \in C)$$

represent the interpolation polynomials of degree $\leq n$ to g in the arbitrary system of nodes $z_k^{(n)} = 0$ for $k = 0, \dots, n$ as well as the n-th partial sum of the

Faber expansion with respect to K of g. Since $C(\Delta_r) = r$, by Theorem 1.3 we have

$$\limsup_{n\to\infty} n^{1/\rho+1} \log^+ \left[\left\| f - \varphi_n^{-1} S_n(f\varphi_n) \right\|_{\Delta_r} r^n \right]^{1/n} \leq r^{\rho/\rho+1} \left(\frac{\rho+1}{\rho} \right) (\rho T(Q)^{\frac{1}{\rho+1}}).$$

If $Q(z) = \sum_{\nu \in M} a_{\nu} z^{\nu}$ for some $M \subset N$ and if (r_n) and (φ_n) are given by (2.6) and (2.7), then the Taylor coefficients $\varphi_{k,n} = \varphi_n^{(k)}(0)/k!$ of

$$\varphi_n(z) = \exp\left(-(Rr_n/(R-r_n))^{\rho}\theta(z/r_n)\right)$$
$$= \prod_{\nu \in M} \exp\left(-a_{\nu}z^{\nu}r_n^{-\nu}\left(Rr_n/(R-r_n)\right)^{\rho}\right),$$

may be computed by repeated Cauchy product (i.e., by repeated discrete convolution) from the Taylor coefficients of $\exp(-a_{\nu}z^{\nu}r_{n}^{-\nu}(Rr_{n}/(R-r_{n}))^{\rho})$. Now, if the Taylor coefficients $f_{k} = f^{(k)}(0)/k$! of f for $k = 0, \dots, n$ are known, one more Cauchy product gives

$$S_n(f\varphi_n)(z) = \sum_{\nu=0}^n z^{\nu} \left(\sum_{k=0}^{\nu} f_k \varphi_{\nu-k,n} \right).$$

2. The case K = [a, b]. It is well known, in the case K = [-1, 1] system of arbitrary nodes are for example the zeros of the Tschebyscheff polynomials

$$z_k^{(n)} = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), \quad k = 0, \dots, n,$$

or the Fejer nodes given by

$$z_k^{(n)} = \cos\left(\frac{2k\pi}{n+1}\right), \quad k = 0, \dots, n.$$

Since in the second case $z_k^{(n)} = z_{n-k+1}^{(n)}$ for $k = 1, \dots, n$, we have interpolation of f and f' in these nodes.

The Faber polynomials for K = [-1, 1] coincide with the (normalized) Tschebyscheff polynomials, more precisely,

$$F_n(x) = \begin{cases} 2\cos(n\arccos x) & \text{if } n = 1, 2, \dots, \\ 1, & \text{if } n = 0. \end{cases}$$

for $x \in [-1, 1]$ and the *n*-th partial sum T_n of the Faber expansion equals the *n*-th partial sum of the Tschebycheff expansion. Since C[-1, 1] = 1/2, Theorem 2.2 gives

$$\limsup_{n \to \infty} n^{1/\rho + 1} \log^{+} \left[\left\| f - \varphi_n^{-1} T_n(f\varphi_n) \right\|_{[-1, 1]} \right]^{1/n} \le \left(\frac{1}{2} \right)^{\rho/\rho + 1} \left(\frac{\rho + 1}{\rho} \right) (\rho T(Q)).$$

Thus, we see that the smaller capacity of K = [-1, 1] compared to $K = \Delta$ causes an acceleration factor of $\left[\exp((1/2)^{\rho/\rho+1})\right]^n$ if f is approximated by

 $\varphi_n^{-1}T_n(f\varphi_n)$ instead of $\varphi_n^{-1}S_n(f\varphi_n)$ on [-1,1].

The case of an arbitrary interval K = [a, b] with $a, b \in C$ may be reduced to the case K = [-1, 1] by a simple linear transformation, so that this case is essentially included above. In particular, for a function g holomorphic on [a, b] the n-th Faber section $T_n(g) = T_{n,[a,b]}(g)$ with respect to [a, b] is given by

$$T_{n,[a,b]}(g)(w) = T_{n,[-1,1]}(\widetilde{g}) = \left(\frac{2}{b-a}w - \frac{b+a}{b-a}\right),$$

where

$$\widetilde{g}(z) = g\left(\frac{b-a}{2}z + \frac{a+b}{2}\right).$$

As in the standard case [a, b] = [-1, 1] we denote $T_{n,[a,b]}(g)$ as n-th Tschebyscheff section of g (with respect to [a, b]).

More general compact set K (having simply connected complement $\widehat{C}K$) may be handled similar to the above case of K = [a, b] by choosing the n-th partial sum T_n of the Faber expansion instead of the n-th Tschebyscheff section. An efficient method for the numerical evaluation of T_n is described in [2]. Moreover, in [1] and [5] explicit expressions for the Faber polynomials $F_{n,k}$ in the case of K being a circular or an annular sector are given.

Acknowledgements

This work was done in the memory of Professor H.S. Kasana, Senior Associate, ICTP, Trieste, Italy.

References

- [1] J.P. Coleman, N.J. Myers, The Faber polynomials for annular sectors, *Math. Comp.*, **64** (1995), 181-203.
- [2] D. Elliott, Truuncation error in Pade approximatons to certain functions, an alternative approach, *Math. Comp.*, **31** (1967), 398-406.
- [3] K. Gatermann, Ch. Hoffmann, G. Opfer, Faber polynomials on circular sectors, *Math. Comp.*, **58** (1992), 241-253.
- [4] J.L.W.V. Jensen, Sur un nouvel et important theorems de la theorie des fonctions, *Acta. Math.*, **22** (1899), 356-364.

- [5] O.P. Juneja, G.P. Kapoor, Analytic Functions Growth Aspects, Research Notes in Mathematics, 104, Pitman Advanced Publishing Program, Boston, London and Melbourne (1985).
- [6] T. Kovari, Ch. Pommerenke, On Faber polynolmials and Faber expansions, Math. Z., 99 (1967), 193-206.