International Journal of Pure and Applied Mathematics

Volume 45 No. 4 2008, 543-558

POLYNOMIAL APPROXIMATION OF
FINITE ORDER ANALYTIC FUNCTION

D. Kumar! ¢, Harvir Kaur?

L2Department of Mathematics
Research and Post Graduate Studies
M.M.H. College
Model Town, Ghaziabad, 201001, U.P., INDIA

e-mail: d_kumar001@rediffmail.com

Abstract: The aim of this paper is to find seequences (f,), of analytic
functions which are the product of a polynomial of degree < n and an “easy
computable” second factor and such that (f,), converges essentially faster to
f on a plane compact set K then the sequence {p}}, of best approximating
polynomials of degree < n. Here K should be thought of as a finite disc or a
real interval.
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1. Introduction

Let K be a compact subset of the complex plane C such that K and C\ K are
connected and K does not consist a single point. According to the Riemann
Mapping Theorem there exists a uniquely determined conformal mapping z =
o(w) : é\A — é\K such that p(00) = oo and ¢'(c0) > 0. Here C = C {0}
denote as extended complex plane and we set

Ar={zeC:|z|<r}, A=A
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Thus, in a neighborhood of infinity, the function has the representation
C_
z = p(w) :d[w—l-co-i-Tl—P” ;

where the number d(> 0) is called the conformal radius or transfinite diameter
of K. If we define n(w) = ¢(w/d), then n maps {w : |w| > d} onto C\K in
a one-one conformal manner. If w = Q(z) is the inverse function of 7, then

Q(2)
z

Q(00) = 00, lim, 0 ( ) = 1 and, in a neighborhood of infinity, the function

Q(z) has a Laurent expansion of the form

b_1
Q(Z):Z+b0+7"'

Thus for each positive integer n and for sufficiently large |z|, one has an
expansion of the form

b—l,n

Q)" = 2" 4+ bp1.02" by 102" 2 A bz Do+ 4.

The Polynomials
Pn(Z) =2z" + bn—l,nznil + -+ bl,nz + bO,na n= 07 1> 27 T

which comprise non-negative power of z in the Laurent series expansion of
[Q(z)]™ about infinity, are called the Faber polynomials for K. If K is the
closed disc |z — zg| < d, then w = Q(2) = z — zp and so the Faber polynomials
for the closed disc are given by P,(z) = (z — 29)",n = 0,1,2,---. Thus, the
Taylor polynomials (z — 2z9)™ are a special case of Faber polynomials. We refer
to [6 ] for more details on Faber polynomials.

Let L, = {2z : z = n(w), |w| > d}. Since (z) is analytic and univalent, L;s
are analytic, Jordan curves. If K, denotes the domain bounded by L,, then
K C K, for each r > d and L, C K, for r < ry.

Let H(K; R) denote the class of all functions f that are regular in K with
a singularity on Lp (d < R < 00). In the sequel we will consider the growth
parameters for functions in H(K; R). Thus, growth parameters, analogous to
those introduced for functions regular in unit disc, may be defined for functions
regular in K as follows.

We say that f € H(K;R),d < R < oo is of K-order p in Kp if
— limsu log™ log™ M (r)
P R log(RI(R=7))
where

M(r) = mfix|f(z)|, d<r<R.
z€Ly
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To compare the growth of functions in H (K’; R) that have the same non zero
finite K-order, the concept of K-type has been introduced. Then f € H(K; R)
having K-order p, (0 < p < 00), is said to be of K-type T' < oo if

T = lim sup M.
r—R (R?”/R - ?”)p
Let IL,, be the set of polynomials of degree < n and let
E K)= inf -
n(f, ) = mf ||f —plix,

with |||k = sup.ex |©(2)|, denote the error of best polynomial approximation
of f on K. We can easily obtain the following result by [5].

Theorem 1.1. Let f € H(K;R). Then f is the restriction on K of an
analytic function of K-order p and K-type T if and only if

lim sup pt/ptl log™ [En(f, K)(C(K))"] 1n

= (e (25 ) et )

where C(K) > 0 is the logarithmic capacity of K.

A sequence {p,,} with p,, € II,, for all n € N is called maximally convergent
on K to f if the asymptotic rate of best polynomial approximation is realized
by {pn}, that is

1
IMwwW“mﬂw—mmwme%ﬂamWW(E;yﬂwﬁx
n—o0 p
Besides the polynomials p; of best approximation given by
— ¥l = inf _
If = pullx = inf [If = pllx

the computation of which is rather expansive, here we shall consider two type of
maximally convergent sequences {p,}: polynomial interpolant in arbitrary sys-
tem of nodes and Faber expansions. Now first we will give a brief introduction
of these two kinds of polynomial approximants.

1. Let (z,(gn))ne]vo,k =0,---,n be (n+ 1) distinct points in the complex

plane and let the values (w,in))ne No, kB =0,---,n begiven. There exist infinitely
many polynomials that takes the values w,(cn) at the points z,in)(k =0,---,n).

However, if one is interested in a polynomial of degree not exceeding n that
assumes the prescribed values w; at the points z; then such a polynomial is
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unique and is given by
n

&) w ()

wp(z) =17 _, (z - 27(1")> .

The polynomial H,(z) is called Lagrange’s interpolation polynomial. La-
grange’s interpolation formula takes an elegant form in the case of functions
that are regular inside and on a simple closed curve. Thus we have:

where

— If L, = n(0A,) is a level curve of =1 for some r > d, then the (uniquely

determined) polynomial interpolant L, (f) € I, to f with respect to the nodes

z,(gn) may be expressed y the Hermite interpolation formula

Lu(2) = La(f)(2) = — /L wnlt) — wnlz) 10 4 (z € K). (1.3)

T 2mi t—z wy,(t)

— If K = A, for some r > 0 and z,(f) = 0 for all £ and n, then

Ln(f) = Sn(f),

where S, (f) is the n-th partial sum of the Taylor expansion of f around the
origin.
Lagrange’s interpolation formula and Hermite’s interpolation formula can
be easily extended to cover the case of multiple interpolation. Thus, if different
(n) (n) )

points (zk ) are given and each z;™ is associated with the quantities w; ™, v =

0,1,---,mj — 1, then the problem of constructing a polynomial m(z) of degree
not exceeding —1 + z;-“zlmj such that Lg’)(zj) = wgy), v=0,1,---,mj—1,j =

1,2,--- ,k, where Lg’)(z) denotes the v-th derivative of L,(z), is called the
problem of multiple interpolation. In the case of Hermite’s interpolation formula

the values w;,,) are to be replaced by f®) (z](-y)>, where f*)(z) is the v-th
derivative of f(z).

2. The n-th Faber polynomial F;, = F}, i with respect to K may be defined
by

"(w . F,(z
ToERd WL

It is known [6] that there exist absolute constants A > 0 and a < 0.5 such
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that for every f continuous on K and analytic in the interior of K.

If = Tu(H)llx < An“Ey(f, K), (1.4)
where T,,(f) denotes the n-th partial sum of the Faber expansion of f, that is
Ta(f) = Tux(f) = Y ax(f)Fi (1.5)

k=0

with

2 wntl

a _ f(n(w))dw. 1.6
D=5 ] (16)

In view of (1.4) it follows that (7,(f)) converges maximally on K to f. In
particular, for K = Kr(R > d) we have by Theorem 1.1 that
1/n
limsup !+ log* [|If = T (), (R/d)"]

= (R/d)P/PH <i1> (pT) /P +1
p

(note that C(Kgr) = R/d). For K = A, we have T, A, (f) = Sn(f), and
therefore Theorem 1.1 gives

lim sup n/?  log ™ || f = Sn(f)] o, 7]V = relot? (ﬂ) (pT)V/P 1,
i P

n—~0o0

C(A,) =r. Now, for K = [-1,1],C([-1,1]) = 1/2, Theorem 1.1 implies

. 1/n
lim sup pl/Pt1 log™ {Hf - Tn(f)”[—l,l]]

Here T, (f), the n-th partial sum of the Faber expansion of f equals the n-th
partial sum of the Tschebyscheff expansion of f.

Generally, the rate of best polynomial approximation on K of an analytic
function of finite order is determined by the growth parameters K-order and K-
type of f. These information cannot be used to improve the rate of convergence
for polynomial approximation of f. The aim of this paper is to modify the
function f in such a way that the modified f is “better” approximable on K
by polynomials then f itself, by using the information about the growth of f,
and then recover f from an approximation of f.
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2. The RG-Method

We first describe the idea in the case of K = K (R > d) and partial sums 7,
of the Faber expansion as approximating polynomials.

Let, for an arbitrary Faber series

[ee]

f(z)= Z a, F,
v=0
with
n
T,(f)(z) =) _a,F.
v=0

For f being analytic on K (R > d) we obtain from Cauchy integral formula

I =T, < T ) () ()"

where d <" <1’ <r < R,n > no(r',r"” and M(r, f) = max|f(z)|,z € L.

Thus, if f is an analytic function of K-order p and K-type T' < oo, and if
(rn) is an arbitrary sequence with d < r, — R, we get

limsup n!/** log* [ = L)1, (r/d)"] "
< limsupn!/P*! [log+(M(rn,f))1/” + log(r’ /ry).(1 + 0(1))} :
n—oo

If T > 0 and if we take

R.R, Tnh 1/pt1
R—r, (de) ’
then we take

lim sup n/?*! [logt (M (ry, f))V/" + log(r'/rn)]

n—oo

< (e (251) (pryiion,
p
Since C(ry) = ry,/d, this implies that T, (f) converges to f maximally on r,,.

Now consider the case of K being the closed unit disc and the partial sums
S, of the Taylor expansion around the origin as approximating polynomials.

Let, for an arbitrary power series

0
g(z) = Z guZV
v=0
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around the origin,
n
Sul@)2) =3 g
v=0

For g being holomorphic on A, for some r > 1, from Cauchy integral formula
we get
M(r, g)
ro(r—1)°
Thus, if f is an analytic function of order p and type T' < oo and if (r;,) is
an arbitrary sequence with 1 < r, — R, we get
limsup n'/** log™ ||f — Su(f)l|a

n—oo

lg = Sn(9)lla <

< lim sup nl/pt1 [log(M(Tm f))l/n + log(r//rn)] .

n—oo

If T > 0 and if we assume

Rr, (' n 1/p+1
R—r, \pI ’
then we obtain

lim sup /7! [10g+(M(rn,f))1/” +log7“//7"n] < <—p: 1> (pT)'/PH.

n—oo

Note that C(A) = 1, which implies that S,,(f) converges to f maximally on A.

Now the main idea is to replace in the above text the function f by fy,,
where (¢,,), is a sequence of functions such that ¢, is continuous on K and
analytic in the interior of K. With ¢ := (1, ¢,) and

() = limsupn/#+1 [log* (M (1, £/ +log(r )]

n—o0
it gives

limsup 2/ log™ [|| fon — Tu(feon)|al/™ < u(e).

n—oo

If p(e) < (%)1) (pT)YP*1 and |, |/™ converges to 1 uniformly on A, then
the sequence (@,; T (f @n))n converges asymptotically by the factor

[eXp <u(90)/ (p—;l> (pT)l/p“)r

faster to f than maximally convergent polynomial sequences.
Using (1.3), one can prove the following more general result.
Theorem 2.1. Let f € H(K;R), and let f is the restriction on K of
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an analytic function of K-order p and K-type 1' < oo. Suppose further that

@ = (Tn, Pn)n is a sequence such that 0 < d < r, — R for n — oo and ¢,

(n)

is a function which is holomorphic on Ar,|JK. If (Zk is an

>n€No,k:O,---,n
arbitrary system of nodes on K, then
limsup /7 og™ [|| fon — Ln(feon) [ (C(K))"™ < CK)P ). (2.1)

The estimates (1.1) and (2.1) suggest the following idea for an algorithm:

1. Search for a sequence ¢ = (ry,, ¥p ), as in Theorem 1.2 such that
p+1
) < (252) (pryios

and |, |/ — 1 locally uniformly on C.
2. Compute an approximating polynomial P, = P,(fyn, K) of fp,.
3. Take ¢, *.P,(f¢n) as approximation of f.
In view of our proposed algorithm two questions arise:
(i) Let @ be the set of all sequences ¢ = (7, ¥n)n as in Theorem 1.2 with

1/n 1 locally uniformly on C'. Can we determine

—m, = inf ?
m=mg gl;elq)u(w)

|n

(ii) If so, how can we find “easy computable” sequences ¢ € ® such that
() = m?
To answer these questions we have to define the indicator function
B L log | f(re')|
h=hyl0) =t swe o R P
From definition it follows that hy(#) < T for all #. The Crucial role in our
game is played by

0] < a.

1 2m

I=1=— h(0)dg.

f o 0 f( ) 0
The value of I is intimately related to the number of zeros of f. The
fundamental results connecting the modulus of an entire function with the
number of its zeros was first given by Jensen [4]. The result states: “Let f(z)
be analytic for |z| < R”; suppose that f(0) # 0 and let 1,79, , 7y -+ , 7, be
the modulii of zeros of f(z) inside the circle |z| = R arranged in non-decreasing
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order then if r, <r < rpyq,

log {M} - % /27r log (f(rei")( do. (2.2)

T2 Ty 0
Let n(r) denote the number of zeros of f(z) in Ar. Then n(r) is non-

decreasing function of r which is constant in any interval which does not contain
the modules of any zero of f(z). Then (2.2) can be written as

/or e = o / log |£(re’®)| do — 10g | /(0)] (2.3)

T

It is clear from (2.3) that greater the number of zeros of f(z), faster the
function must grow. If

N(r)= /07’ @dm,
N(r) <log M(r, f). (2.4)

From the above cited results it follows that I > 0 and I € [0,7]. The
following result give an answer to question (i).

then

Lemma 2.1. Let f be an analytic function of order p > 0 and of completely
regular growth. Then we have

m= (%ﬂ) (pI)l/PJFl )

Proof. Using (2.3) and (2.4) with simple calculation we obtain
m > (p_—i—l) (pI)'/r+1t, 0
p

Now let us turn to the question (ii) of how to find sequences ¢ € ® such

that
+1
() ~ ("7) (p1) /o1

and such that the function ¢, are “easy computable”. We can consider the
sequences (py,) of the form ¢, = e f» where the R, are polynomials. Also
(¢n) may be rational functions.

For given hy we consider a polynomial @) such that Q(0) = 0, and we set
T@Q)=T¢Q) = mgX(hf(@ — ReQ(e")). (2.5)

Since Re(@ is sub-harmonic in A, we find for § € [, 7| (since hy(—m) =
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hy(m) and T = o= [ h;(0)d0)

% ! [hf(a) - ReQ(ew)} 0 > 1 — ReQ(0) = I
and we get
T(Q) = I.
Set
Rry, n 1/p+1
e Cron) 20
and

on(2) = on,q(2) = exp (=(Rrp /(R — 1)’ Q(2/m)) , 2 € C. (2.7)
Then ¢ € (1, ¢n)n € ¢ and one can prove the following.
Lemma 2.2. Let (r,) and (p,) be defined by (2.6) and (2.7). Then we

have

o) < (258) @y, (25)

Proof. We have (Rr,,/(R — r,,))" 1og |¢n(rne®?)| = ReQ(e') for every n € N
and thus
+
log™ M (7, fon) < max
(Rrn/(R —1n))P 4

log* | f(rac’®)]
(Rra/(R—12))? W)]

+ max [hf(ﬁ) - ReQ(ew)} .

From Theorem 28, Chapter I, of [5] one can easily obtain

10g+ Hf(rnew)‘
li —he(0)| <0
msupmax | o — s ~h0)) <
and thus
log™ M
lim sup o8 (rn, fipn) <T(Q).

n—oo (R'I”n/(R — ?”n))p -
In view of (2.6) we get

plp) =

n—oo

fim sup /71 {mg* 0t sen( )] L ) |
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<(§§)@N@W”PD

Now we have

Theorem 2.2. Let f € H(K,R)(R > d) and let QQ be a polynomial with
Q(0) = 0. Suppose further that f is an analytic function of K-order p € (0, 00)
and K-type T < oo and that (p,) is given by (2.7).

1. If (Z;(gn))neNo,k:O,m,n is an arbitrary system of nodes on K, then

limsup '/ log™ [||f — o Lo (feon) e (C(K))"] "

n—oo

< ()t (250 i@, (29)

2. Let e denote the set of all functions f € H(K, R). If T,, is a sequence of
operator T,, : ¢ — II,, such that there exist constants A, 3 > 0 with

lg = Tu(9)llx < AnPEn(g, K) (2.10)
for all g € €, then

limsupn'/* ™ log™ [||f — @5 To(feon) | (C(K)"]

n—oo

1/n

< et (22) r@pie (2.11)

Proof. Since |¢,|~'/" — 1 uniformly on K, then in view of Theorem 2.1

and Lemma 2.2, part 1 follows.

Let L,(f¢n) denote the n-th polynomial interpolant to fep, with respect
to the system of arbitrary nodes of K. By Theorem 2.1 and Lemma 2.2 we get
lim sup n'/7 log™ (|| feon — T (fipn) | (C(K))"] /"

n—~0o0

—  lim nY/rt! log™ [En(fﬁﬂnaK)]l/n

n—oo

< limsupn'/? M og* (|| fon — La(feon)|lx (C(K))™™

n—oo
p+1

< (C(K))p/p+1< ;

) (pT(Q))"/PHL.

Since |@,|~Y™ — 1 uniformly on K, we get our result i.e., assertion 2. [

Remark. The condition (2.10) is satisfied by the sequence of best approx-
imation operators, that is, T),(g) is defined by

-7 — inf ||g—pllx.
lg —Tn(g)|lx pghn\lg Pl
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Moreover, by a result of Kovari and Pommerenke [6], the same is true for the
sequence (7,) of the n-th partial sums of the Faber expansion with respect to
K and therefore, in particular, in the case of K = [—1,1] for the Tschebyscheff
sections.

For a finite set M C N we define

HM:{Zal,z”:al,eC for Z/EM},

veM
i.e.,, IIps is the set of polynomials with powers only in M. (Q(0) = 0 for
Q € ). If Q € 11y, then, by definition (2.7), we have ¢, = e~ when
R, € 1l for all n € N. Therefore, the approximation of f obtained by the
RG— method are of the form

gogl.Pn = ef'" Pn with R, € Il); and p, €1l,.

Since the effort for the evaluation of the factor e/ does not increase with n
we may regard ¢, 1. P, as a “near polynomial approximation” of f. Theorems
1.1 and 1.3 show that, if T(Q) < T', we get a (geometric) acceleration factor
[exp(T @)/ )Y f’“]n if we approximate f¢, instead of f by a polynomial se-
quence as in Theorem. The “cost” for that is an additional multiplication by
ot = eftn.

Now it is the question of ho to choose an appropriate polynomial 8 in order
to apply RG-method in an efficient way. For let us consider the following
problem:

Choose Qs € 11 such that

max(hy (9) = ReQui (")) = min max(hs(8) — ReQ(e")).

This is a kind of one-sided Tschebyscheff approximation of the (continuous
and 27— periodic) function hy by trigonometric polynomials without constant
term.

For the important case M = {1,--- , M} we but Q, = Q... ;n)} and obtain
the following estimates.

Theorem 2.3. With above assumptions we have
I <T(Qm) < I+ 2em(hy),

where ey, (hy) denotes the error of best approximation of hy by trigonometric
polynomials of degree < m. This implies

T(Q@m) = I (m — oo).
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Proof. Let t,, denote the best approximating trigonometric polynomial of
degree < m to the function hy on [—7, 7). If agm/n is the constant term of ¢,,,

that is
lag'| _ 1 / "
—_— = tm(6)do,
2 2 J_. (©)
then
m 1 s ™
L | [ ns@an+ [ (0nt) - ng(o0a0] < 1+ et
thus
max [hf(e) - (tm(o) - %OH < I+ 26, (hy).
Since t,, — % is the real part of a polynomial in e? of degree < m without

constant term. Hence the proof is completed. O
Assume that we have found a polynomial @) such that 7" > T'(Q) ~. The
question now is how to choose the approximating polynomial p,, = p,,(fon, K) €
II,, of fy, on K. Since the polynomial @) does only depend on hy, we had so
far no need to look on our compact set K on which we want to approximate
f. This set K now plays an important role in order to choose p,. Concern-
ing speed of approximation, the best possible choice is given by the sequence
pl = pi(fen, K) of best approximating polynomials of f¢, with respect to K.
However, in the most interesting case of K being a disk or an interval.

Since Ly, (fen) = Ln(Ln(f))Ln(¢n) for the polynomial interpolant of degree
< m in an arbitrary system of nodes (z,(f)), the computation of L, (f¢,) does
not requiree more information about f than the computation of L, (f), namely,
the values of f (and, in the case of multiple nodes, derivatives of f) at the nodes
().

1. The case K = A,. Let g be holomorphic in A, and let

9z) =) a2 (z€4),
v=0

be the Taylor expansion of g around the origin. In the case K = A, the Taylor
sections

Sn(9)(z) =) a2’ (€C)
v=0

represent the interpolation polynomials of degree < n to g in the arbitrary
system of nodes z,gn) =0for k=0, ---,n as well as the n-th partial sum of the
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Faber expansion with respect to K of g. Since C'(A,) = r, by Theorem 1.3 we
have

isupnt** og" (| = i), ] < e

n—~0o0

+1 1
220 pri@)).
p
If Q(2) = > ,car awz” for some M C N and if (r,) and (¢,) are given by
(2.6) and (2.7), then the Taylor coefficients ¢y, ,, = @%k)(O)/k! of

on(2) = exp (= (Rry /(R —13))P0(2/r0))
= Il exp (—a,,z”rg” (Rr, /(R — rn))p) ,
may be computed by repeated Cauchy product (i.e., by repeated discrete con-
volution) from the Taylor coefficients of exp (—a,2"r,,”(Rry,/(R — 15,))?). Now,
if the Taylor coefficients f, = f*)(0)/k ! of f for k = 0,--- ,n are known, one
more Cauchy product gives

fQDn Z z (Z fk@uk,n) .
k=0

2. The case K = [a,b]. It is well known, in the case K = [—1, 1] system of
arbitrary nodes are for example the zeros of the Tschebyscheff polynomials
(n)_ (2k}+1)7T E—0.-..
2, —cos<72(n+1) , k=0,--- n,
or the Fejer nodes given by

n 2k
z,(g)—cos<n+7rl), k=20,---,n.

Since in the second case z,in) = T(Z )k 4q for k=1,---,n, we have interpolation
of f and f’ in these nodes.
The Faber polynomials for K = [—1,1] coincide with the (normalized)

Tschebyscheff polynomials, more precisely,
{ 2cos(narccosz) ifn=1,2,...,

1, if n=0.
for x € [—1,1] and the n-th partial sum 7,, of the Faber expansion equals the
n-th partial sum of the Tschebycheff expansion. Since C'[—1,1] = 1/2, Theorem
2.2 gives

/n p/p+1
ll;njolipnl/p+llog [Hf on T fen) H 11]]1 §<%> <%> (hT(Q))-

Thus, we see that the smaller capacity of K = [—1,1] compared to K = A
causes an acceleration factor of [exp((1/2)p/ p“)]n if f is approximated by

Fn(x) =
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¢n Tu(fen) instead of ¢, 1Sy (fn) on [~1,1].

The case of an arbitrary interval K = [a,b] with a,b € C may be reduced
to the case K = [—1,1] by a simple linear transformation, so that this case is
essentially included above. In particular, for a function g holomorphic on [a, b]
the n-th Faber section T,(g) = T}, (4,5 (g9) With respect to [a,b] is given by

" 2 b+a
Tn’[@b](g)(w) = Tnv[_Ll}(g) - <b - v b— (1) '

a
where
§(z) = b—az+a+b
g\z) =g 9 9 .
As in the standard case [a,b] = [~1,1] we denote T}, [43(g9) as n-th Tsche-

byscheff section of g (with respect to [a, b]).

More general compact set K (having simply connected complement CK )
may be handled similar to the above case of K = [a,b] by choosing the n-
th partial sum 7, of the Faber expansion instead of the n-th Tschebyscheff
section. An efficient method for the numerical evaluation of T,, is described in
[2]. Moreover, in [1] and [5] explicit expressions for the Faber polynomials F;, j
in the case of K being a circular or an annular sector are given.
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