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Abstract: The aim of this paper is to find seequences (fn)n of analytic
functions which are the product of a polynomial of degree ≤ n and an “easy
computable” second factor and such that (fn)n converges essentially faster to
f on a plane compact set K then the sequence {p∗n}n of best approximating
polynomials of degree ≤ n. Here K should be thought of as a finite disc or a
real interval.
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1. Introduction

Let K be a compact subset of the complex plane C such that K and C\K are
connected and K does not consist a single point. According to the Riemann
Mapping Theorem there exists a uniquely determined conformal mapping z =
ϕ(w) : Ĉ\∆ → Ĉ\K such that ϕ(∞) = ∞ and ϕ′(∞) > 0. Here Ĉ = C

⋃
{∞}

denote as extended complex plane and we set

∆r = {z ∈ C : |z| ≤ r} , ∆ = ∆1.
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Thus, in a neighborhood of infinity, the function has the representation

z = ϕ(w) = d

[
w + C0 +

C−1

w
+ · · ·

]
,

where the number d(> 0) is called the conformal radius or transfinite diameter
of K. If we define η(w) = ϕ(w/d), then η maps {w : |w| > d} onto Ĉ\K in
a one-one conformal manner. If w = Ω(z) is the inverse function of η, then

Ω(∞) = ∞, limz→∞

(
Ω(z)

z

)
= 1 and, in a neighborhood of infinity, the function

Ω(z) has a Laurent expansion of the form

Ω(z) = z + b0 +
b−1

z
· · · .

Thus for each positive integer n and for sufficiently large |z|, one has an
expansion of the form

[Ω(z)]n = zn + bn−1,nzn−1 + bn−1,nzn−2 + · · · + b1,nz + b0,n +
b−1,n

z
+ · · · .

The Polynomials

Pn(z) = zn + bn−1,nzn−1 + · · · + b1,nz + b0,n, n = 0, 1, 2, · · · ,

which comprise non-negative power of z in the Laurent series expansion of
[Ω(z)]n about infinity, are called the Faber polynomials for K. If K is the
closed disc |z − z0| ≤ d, then w = Ω(z) = z − z0 and so the Faber polynomials
for the closed disc are given by Pn(z) = (z − z0)

n, n = 0, 1, 2, · · · . Thus, the
Taylor polynomials (z − z0)

n are a special case of Faber polynomials. We refer
to [6 ] for more details on Faber polynomials.

Let Lr = {z : z = η(w), |w| > d}. Since Ω(z) is analytic and univalent, L,
rs

are analytic, Jordan curves. If Kr denotes the domain bounded by Lr, then
K ⊂ Kr for each r > d and Lr ⊂ Kr1

for r < r1.

Let H(K;R) denote the class of all functions f that are regular in KR with
a singularity on LR (d < R < ∞). In the sequel we will consider the growth
parameters for functions in H(K;R). Thus, growth parameters, analogous to
those introduced for functions regular in unit disc, may be defined for functions
regular in KR as follows.

We say that f ∈ H(K;R), d < R < ∞ is of K-order ρ in KR if

ρ = lim sup
r→R

log+ log+ M (r)

log(R/(R − r))
,

where

M(r) = max
z∈Lr

|f(z)|, d < r < R.
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To compare the growth of functions in H(K;R) that have the same non zero
finite K-order, the concept of K-type has been introduced. Then f ∈ H(K;R)
having K-order ρ, (0 < ρ < ∞), is said to be of K-type T < ∞ if

T = lim sup
r→R

log M(r)

(Rr/R − r)ρ
.

Let Πn be the set of polynomials of degree ≤ n and let

En(f,K) = inf
p∈Πn

‖f − p‖K ,

with ‖ϕ‖K = supz∈K |ϕ(z)|, denote the error of best polynomial approximation
of f on K. We can easily obtain the following result by [5].

Theorem 1.1. Let f ∈ H(K;R). Then f is the restriction on K of an
analytic function of K-order ρ and K-type T if and only if

lim sup
n→∞

n1/ρ+1 log+ [En(f,K)(C(K))n]1/n

= (C(K))ρ/ρ+1

(
ρ + 1

ρ

)
(Tρ)1/ρ+1 , (1.1)

where C(K) > 0 is the logarithmic capacity of K.

A sequence {pn} with pn ∈ Πn for all n ∈ N is called maximally convergent
on K to f if the asymptotic rate of best polynomial approximation is realized
by {pn}, that is

lim sup
n→∞

n1/ρ+1 log+ [‖f − pn‖K(C(K))n]1/n = (C(K))ρ/ρ+1

(
ρ + 1

ρ

)
(ρT )1/ρ+1.

Besides the polynomials p∗n of best approximation given by

‖f − p∗n‖K = inf
p∈Πn

‖f − p‖K

the computation of which is rather expansive, here we shall consider two type of
maximally convergent sequences {pn}: polynomial interpolant in arbitrary sys-
tem of nodes and Faber expansions. Now first we will give a brief introduction
of these two kinds of polynomial approximants.

1. Let (z
(n)
k )n∈N0

, k = 0, · · · , n be (n + 1) distinct points in the complex

plane and let the values (w
(n)
k )n∈N0

, k = 0, · · · , n be given. There exist infinitely

many polynomials that takes the values w
(n)
k at the points z

(n)
k (k = 0, · · · , n).

However, if one is interested in a polynomial of degree not exceeding n that
assumes the prescribed values wk at the points zk then such a polynomial is
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unique and is given by

Hn(z) =

n∑

k=0

wn(z)(
z − z

(n)
k

)
w′

n

(
z
(n)
k

)wk , (1.2)

where

wn(z) = Πn
k=0

(
z − z(n)

n

)
.

The polynomial Hn(z) is called Lagrange’s interpolation polynomial. La-
grange’s interpolation formula takes an elegant form in the case of functions
that are regular inside and on a simple closed curve. Thus we have:

— If Lr = η(∂∆r) is a level curve of η−1 for some r > d, then the (uniquely
determined) polynomial interpolant Ln(f) ∈ Πn to f with respect to the nodes

z
(n)
k may be expressed y the Hermite interpolation formula

Ln(z) = Ln(f)(z) =
1

2πi

∫

Lr

wn(t) − wn(z)

t − z

f(t)

wn(t)
dt (z ∈ K). (1.3)

— If K = ∆r for some r > 0 and z
(n)
k = 0 for all k and n, then

Ln(f) = Sn(f),

where Sn(f) is the n-th partial sum of the Taylor expansion of f around the
origin.

Lagrange’s interpolation formula and Hermite’s interpolation formula can
be easily extended to cover the case of multiple interpolation. Thus, if different

points
(
z
(n)
k

)
are given and each z

(n)
j is associated with the quantities w

(ν)
j , ν =

0, 1, · · · ,mj − 1, then the problem of constructing a polynomial m(z) of degree

not exceeding −1 + zk
j=1mj such that L

(ν)
n (zj) = w

(ν)
j , ν = 0, 1, · · · ,mj − 1, j =

1, 2, · · · , k, where L
(ν)
n (z) denotes the ν-th derivative of Ln(z), is called the

problem of multiple interpolation. In the case of Hermite’s interpolation formula

the values w
(ν)
j are to be replaced by f (ν)

(
z
(ν)
j

)
, where f (ν)(z) is the ν-th

derivative of f(z).

2. The n-th Faber polynomial Fn = Fn,K with respect to K may be defined
by

η′(w)

η(w) − z
=

∞∑

n=0

Fn(z)

wn+1
(z ∈ K).

It is known [6] that there exist absolute constants A > 0 and α < 0.5 such
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that for every f continuous on K and analytic in the interior of K.

‖f − Tn(f)‖K ≤ AnαEn(f,K), (1.4)

where Tn(f) denotes the n-th partial sum of the Faber expansion of f , that is

Tn(f) = Tn,K(f) =

∞∑

k=0

ak(f)Fk (1.5)

with

ak(f) =
1

2πi

∫

|w|=1

f(η(w))

wn+1
dw. (1.6)

In view of (1.4) it follows that (Tn(f)) converges maximally on K to f . In
particular, for K = KR(R > d) we have by Theorem 1.1 that

lim sup
n→∞

n1/ρ+1 log+
[
‖f − Tn,ER

(f)‖KR
(R/d)n

]1/n

= (R/d)ρ/ρ+1

(
ρ + 1

ρ

)
(ρT )1/ρ+1

(note that C(KR) = R/d). For K = ∆r we have Tn,∆r(f) = Sn(f), and
therefore Theorem 1.1 gives

lim sup
n→∞

n1/ρ+1 log+
[
‖f − Sn(f)‖∆r

rn
]1/n

= rρ/ρ+1

(
ρ + 1

ρ

)
(ρT )1/ρ+1,

C(∆r) = r. Now, for K = [−1, 1], C([−1, 1]) = 1/2, Theorem 1.1 implies

lim sup
n→∞

n1/ρ+1 log+
[
‖f − Tn(f)‖[−1,1]

]1/n

=

(
1

2

)ρ/ρ+1(ρ + 1

ρ

)
(ρ(T ))1/ρ+1 . (1.7)

Here Tn(f), the n-th partial sum of the Faber expansion of f equals the n-th
partial sum of the Tschebyscheff expansion of f .

Generally, the rate of best polynomial approximation on K of an analytic
function of finite order is determined by the growth parameters K-order and K-
type of f . These information cannot be used to improve the rate of convergence
for polynomial approximation of f . The aim of this paper is to modify the
function f in such a way that the modified f̃ is “better” approximable on K
by polynomials then f itself, by using the information about the growth of f ,
and then recover f from an approximation of f̃ .
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2. The RG-Method

We first describe the idea in the case of K = KR (R > d) and partial sums Tn

of the Faber expansion as approximating polynomials.

Let, for an arbitrary Faber series

f(z) =

∞∑

ν=0

aνFν

with

Tn(f)(z) =

n∑

ν=0

aνFν .

For f being analytic on KR (R > d) we obtain from Cauchy integral formula

‖f − Tn(f)‖Kr ≤ M(r, f)

(
r

r − r′

)(
r′/r

)n
,

where d < r′′ < r′ < r < R,n > n0(r
′, r′′ and M(r, f) = max |f(z)|, z ∈ Lr.

Thus, if f is an analytic function of K-order ρ and K-type T < ∞, and if
(rn) is an arbitrary sequence with d < rn → R, we get

lim sup
n→∞

n1/ρ+1 log+
[
‖f − Tn(f)‖Krn

(rn/d)n]1/n

≤ lim sup
n→∞

n1/ρ+1
[
log+(M(rn, f))1/n + log(r′/rn).(1 + o(1))

]
.

If T > 0 and if we take

R.Rn

R − rn
=

(
rnn

dρT

)1/ρ+1

,

then we take

lim sup
n→∞

n1/ρ+1
[
log+(M(rn, f))1/n + log(r′/rn)

]

≤ (rn/d)ρ/ρ+1

(
ρ + 1

ρ

)
(ρT )1/ρ+1.

Since C(rn) = rn/d, this implies that Tn(f) converges to f maximally on rn.

Now consider the case of K being the closed unit disc and the partial sums
Sn of the Taylor expansion around the origin as approximating polynomials.

Let, for an arbitrary power series

g(z) =
∞∑

ν=0

gνzν
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around the origin,

Sn(g)(z) =

n∑

ν=0

gνzν .

For g being holomorphic on ∆r for some r > 1, from Cauchy integral formula
we get

‖g − Sn(g)‖∆ ≤
M(r, g)

rn(r − 1)
.

Thus, if f is an analytic function of order ρ and type T < ∞ and if (rn) is
an arbitrary sequence with 1 < rn → R, we get

lim sup
n→∞

n1/ρ+1 log+ ‖f − Sn(f)‖∆

≤ lim sup
n→∞

n1/ρ+1
[
log(M(rn, f))1/n + log(r′/rn)

]
.

If T > 0 and if we assume

Rrn

R − rn
=

(
n

ρT

)1/ρ+1

,

then we obtain

lim sup
n→∞

n1/ρ+1
[
log+(M(rn, f))1/n + log r′/rn

]
≤

(
ρ + 1

ρ

)
(ρT )1/ρ+1.

Note that C(∆) = 1, which implies that Sn(f) converges to f maximally on ∆.

Now the main idea is to replace in the above text the function f by fϕn,
where (ϕn)n is a sequence of functions such that ϕn is continuous on K and
analytic in the interior of K. With ϕ := (rn, ϕn) and

µ(ϕ) = lim sup
n→∞

n1/ρ+1
[
log+(M(rn, f))1/n + log(r′/rn)

]

it gives

lim sup
n→∞

n1/ρ+1 log+ [‖fϕn − Tn(fϕn)‖∆]1/n ≤ µ(ϕ).

If µ(ϕ) <
(

ρ+1
ρ

)
(ρT )1/ρ+1 and |ϕn|

1/n converges to 1 uniformly on ∆, then

the sequence
(
ϕ−1

n Tn(fϕn)
)
n

converges asymptotically by the factor
[
exp

(
µ(ϕ)/

(
ρ + 1

ρ

)
(ρT )1/ρ+1

)]n

faster to f than maximally convergent polynomial sequences.

Using (1.3), one can prove the following more general result.

Theorem 2.1. Let f ∈ H(K;R), and let f is the restriction on K of
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an analytic function of K-order ρ and K-type T < ∞. Suppose further that
ϕ := (rn, ϕn)n is a sequence such that 0 < d < rn → R for n → ∞ and ϕn

is a function which is holomorphic on ∆rn
⋃

K. If
(
z
(n)
k

)
n∈N0,k=0,··· ,n

is an

arbitrary system of nodes on K, then

lim sup
n→∞

n1/ρ+1 log+ [‖fϕn − Ln(fϕn)‖K(C(K))n]1/n ≤ C(K)ρ/ρ+1µ(ϕ). (2.1)

The estimates (1.1) and (2.1) suggest the following idea for an algorithm:

1. Search for a sequence ϕ = (rn, ϕn)n as in Theorem 1.2 such that

µ(ϕ) <

(
ρ + 1

ρ

)
(ρT )1/ρ+1

and |ϕn|
1/n → 1 locally uniformly on C.

2. Compute an approximating polynomial Pn = Pn(fϕn,K) of fϕn.

3. Take ϕ−1
n .Pn(fϕn) as approximation of f .

In view of our proposed algorithm two questions arise:

(i) Let Φ be the set of all sequences ϕ = (rn, ϕn)n as in Theorem 1.2 with
|ϕn|

1/n → 1 locally uniformly on C. Can we determine

m = mf = inf
ϕ∈Φ

µ(ϕ)?

(ii) If so, how can we find “easy computable” sequences ϕ ∈ Φ such that
µ(ϕ) ≈ m?

To answer these questions we have to define the indicator function

h = hf (θ) = lim sup
r→R

log
∣∣f(reiθ)

∣∣
(Rr/(R − r))ρ , |θ| ≤ α.

From definition it follows that hf (θ) ≤ T for all θ. The Crucial role in our
game is played by

I = If =
1

2π

∫ 2π

0
hf (θ)dθ.

The value of I is intimately related to the number of zeros of f . The
fundamental results connecting the modulus of an entire function with the
number of its zeros was first given by Jensen [4]. The result states: “Let f(z)
be analytic for |z| < R”; suppose that f(0) 6= 0 and let r1, r2, · · · , rn · · · , rm, be
the modulii of zeros of f(z) inside the circle |z| = R arranged in non-decreasing
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order then if rn ≤ r < rn+1,

log

{
rn|f(0)|

r1r2 · · · rn

}
=

1

2π

∫ 2π

0
log
∣∣∣f(reiθ)

∣∣∣ dθ. (2.2)

Let n(r) denote the number of zeros of f(z) in ∆r. Then n(r) is non-
decreasing function of r which is constant in any interval which does not contain
the modules of any zero of f(z). Then (2.2) can be written as

∫ r

0

n(x)

x
dx =

1

2π

∫ 2π

0
log
∣∣∣f(reiθ)

∣∣∣ dθ − log |f(0)|. (2.3)

It is clear from (2.3) that greater the number of zeros of f(z), faster the
function must grow. If

N(r) =

∫ r

0

n(x)

x
dx,

then

N(r) ≤ log M(r, f). (2.4)

From the above cited results it follows that I ≥ 0 and I ∈ [0, T ]. The
following result give an answer to question (i).

Lemma 2.1. Let f be an analytic function of order ρ > 0 and of completely
regular growth. Then we have

m =

(
ρ + 1

ρ

)
(ρI)1/ρ+1 .

Proof. Using (2.3) and (2.4) with simple calculation we obtain

m ≥

(
ρ + 1

ρ

)
(ρI)1/ρ+1. �

Now let us turn to the question (ii) of how to find sequences ϕ ∈ Φ such
that

µ(ϕ) ≈

(
ρ + 1

ρ

)
(ρI)1/ρ+1

and such that the function ϕn are “easy computable”. We can consider the
sequences (ρn) of the form ϕn = e−Rn , where the Rn are polynomials. Also
(ϕn) may be rational functions.

For given hf we consider a polynomial Q such that Q(0) = 0, and we set

T (Q) = Tf (Q) = max
Q

(hf (θ) − ReQ(eiθ)). (2.5)

Since ReQ is sub-harmonic in ∆, we find for θ ∈ [−π, π] (since hf (−π) =
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hf (π) and I = 1
2π

∫ π
−π hf (θ)dθ)

1

2π

∫ π

−π

[
hf (θ) − ReQ(eiθ)

]
dθ ≥ I − ReQ(0) = I

and we get

T (Q) ≥ I.

Set

Rrn

R − rn
=

(
n

T (Q)ρ

)1/ρ+1

(2.6)

and

ϕn(z) = ϕn,Q(z) = exp (−(Rrn/(R − rn)ρQ(z/rn)) , z ∈ C. (2.7)

Then ϕ ∈ (rn, ϕn)n ∈ Φ and one can prove the following.

Lemma 2.2. Let (rn) and (ϕn) be defined by (2.6) and (2.7). Then we
have

µ(ϕ) ≤

(
ρ + 1

ρ

)
(ρT (Q))1/ρ+1. (2.8)

Proof. We have (Rrn/(R − rn))ρ log |ϕn(rneiθ)| = ReQ(eiθ) for every n ∈ N
and thus

log+ M(rn, fϕn)

(Rrn/(R − rn))ρ
≤ max

θ

[
log+

∣∣f(rneiθ)
∣∣

(Rrn/(R − rn))ρ
− hf (θ)

]

+ max
θ

[
hf (θ) − ReQ(eiθ)

]
.

From Theorem 28, Chapter I, of [5] one can easily obtain

lim sup
n→∞

max
θ

[
log+

∣∣|f(rneiθ)
∣∣

(Rrn/(R − rn))ρ
− hf (θ)

]
≤ 0

and thus

lim sup
n→∞

log+ M(rn, fϕn)

(Rrn/(R − rn))ρ
≤ T (Q).

In view of (2.6) we get

µ(ϕ) =

lim sup
n→∞

n1/ρ+1


log+

[
(M(rn, fϕn))

(
R − rn

Rrn

)ρ]
“

Rrn
R−rn

”ρ

/n

+ log(r′/rn)
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≤

(
ρ + 1

ρ

)
(ρT (Q))1/ρ+1. �

Now we have

Theorem 2.2. Let f ∈ H(K,R)(R > d) and let Q be a polynomial with
Q(0) = 0. Suppose further that f is an analytic function of K-order ρ ∈ (0,∞)
and K-type T < ∞ and that (ϕn) is given by (2.7).

1. If (z
(n)
k )n∈N0,k=0,··· ,n is an arbitrary system of nodes on K, then

lim sup
n→∞

n1/ρ+1 log+
[
‖f − ϕ−1

n Ln(fϕn)‖k(C(K))n
]1/n

≤ (C(K))ρ/ρ+1

(
ρ + 1

ρ

)
(ρT (Q)1/ρ+1. (2.9)

2. Let ε denote the set of all functions f ∈ H(K,R). If Tn is a sequence of
operator Tn : ε → Πn such that there exist constants A, β > 0 with

‖g − Tn(g)‖K ≤ AnβEn(g,K) (2.10)

for all g ∈ ε, then

lim sup
n→∞

n1/ρ+1 log+
[
‖f − ϕ−1

n Tn(fϕn)‖K(C(K))n
]1/n

≤ (C(K))ρ/ρ+1

(
ρ + 1

ρ

)
(ρT (Q))ρ/ρ+1. (2.11)

Proof. Since |ϕn|
−1/n → 1 uniformly on K, then in view of Theorem 2.1

and Lemma 2.2, part 1 follows.

Let Ln(fϕn) denote the n-th polynomial interpolant to fϕn with respect
to the system of arbitrary nodes of K. By Theorem 2.1 and Lemma 2.2 we get

lim sup
n→∞

n1/ρ+1 log+ [‖fϕn − Tn(fϕn)‖K(C(K))n]1/n

= lim
n→∞

n1/ρ+1 log+ [En(fϕn,K)]1/n

≤ lim sup
n→∞

n1/ρ+1 log+ [‖fϕn − Ln(fϕn)‖K(C(K))n]1/n

≤ (C(K))ρ/ρ+1

(
ρ + 1

ρ

)
(ρT (Q))1/ρ+1.

Since |ϕn|
−1/n → 1 uniformly on K, we get our result i.e., assertion 2.

Remark. The condition (2.10) is satisfied by the sequence of best approx-
imation operators, that is, Tn(g) is defined by

‖g − Tn(g)‖K = inf
p∈Πn

‖g − p‖K .
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Moreover, by a result of Kovari and Pommerenke [6], the same is true for the
sequence (Tn) of the n-th partial sums of the Faber expansion with respect to
K and therefore, in particular, in the case of K = [−1, 1] for the Tschebyscheff
sections.

For a finite set M ⊂ N we define

ΠM =

{
∑

ν∈M

aνzν : aν ∈ C for ν ∈ M

}
,

i.e., ΠM is the set of polynomials with powers only in M . (Q(0) = 0 for
Q ∈ ΠM ). If Q ∈ ΠM , then, by definition (2.7), we have ϕn = e−Rn when
Rn ∈ ΠM for all n ∈ N . Therefore, the approximation of f obtained by the
RG− method are of the form

ϕ−1
n .Pn = eRn .Pn with Rn ∈ ΠM and pn ∈ Πn.

Since the effort for the evaluation of the factor eRn does not increase with n
we may regard ϕ−1

n .Pn as a “near polynomial approximation” of f . Theorems
1.1 and 1.3 show that, if T (Q) < T , we get a (geometric) acceleration factor[
exp(T (Q)/T )1/ρ+1

]n
if we approximate fϕn instead of f by a polynomial se-

quence as in Theorem. The “cost” for that is an additional multiplication by
ϕ−1

n = eRn .

Now it is the question of ho to choose an appropriate polynomial θ in order
to apply RG-method in an efficient way. For let us consider the following
problem:

Choose QM ∈ ΠM such that

max
θ

(hf (θ) − ReQM (eiθ)) = min
θ∈ΠM

max
θ

(hf (θ) − ReQ(eiθ)).

This is a kind of one-sided Tschebyscheff approximation of the (continuous
and 2π− periodic) function hf by trigonometric polynomials without constant
term.

For the important case M = {1, · · · ,M} we but Qm = Q{1,··· ,m} and obtain
the following estimates.

Theorem 2.3. With above assumptions we have

I ≤ T (Qm) ≤ I + 2εm(hf ) ,

where εm(hf ) denotes the error of best approximation of hf by trigonometric
polynomials of degree ≤ m. This implies

T (Qm) → I (m → ∞).
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Proof. Let tm denote the best approximating trigonometric polynomial of
degree ≤ m to the function hf on [−π, π]. If a0m/n is the constant term of tm,
that is

|am
0 |

2
=

1

2π

∫ π

−π
tm(θ)dθ,

then
|am

0 |

2
=

1

2π

∣∣∣∣
∫ π

−π
hf (θ)dθ +

∫ π

−π
(tm(θ) − hf (θ))dθ

∣∣∣∣ ≤ I + εm(hf ),

thus

max
θ

[
hf (θ) −

(
tm(θ) −

am
0

2

)]
≤ I + 2εm(hf ).

Since tm −
am
0

2 is the real part of a polynomial in eiθ of degree ≤ m without
constant term. Hence the proof is completed.

Assume that we have found a polynomial Q such that T > T (Q) ≈. The
question now is how to choose the approximating polynomial pn = pn(fϕn,K) ∈
Πn of fϕn on K. Since the polynomial Q does only depend on hf , we had so
far no need to look on our compact set K on which we want to approximate
f . This set K now plays an important role in order to choose pn. Concern-
ing speed of approximation, the best possible choice is given by the sequence
p∗n = p∗n(fϕn,K) of best approximating polynomials of fϕn with respect to K.
However, in the most interesting case of K being a disk or an interval.

Since Ln(fϕn) = Ln(Ln(f))Ln(ϕn) for the polynomial interpolant of degree

≤ m in an arbitrary system of nodes (z
(x)
k ), the computation of Ln(fϕn) does

not requiree more information about f than the computation of Ln(f), namely,
the values of f (and, in the case of multiple nodes, derivatives of f) at the nodes

(z
(x)
k ).

1. The case K = ∆r. Let g be holomorphic in ∆r and let

g(z) =
∞∑

v=0

gνzν (z ∈ ∆r),

be the Taylor expansion of g around the origin. In the case K = ∆r, the Taylor
sections

Sn(g)(z) =

n∑

ν=0

gνz
ν (z ∈ C)

represent the interpolation polynomials of degree ≤ n to g in the arbitrary

system of nodes z
(n)
k = 0 for k = 0, · · · , n as well as the n-th partial sum of the
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Faber expansion with respect to K of g. Since C(∆r) = r, by Theorem 1.3 we
have

lim sup
n→∞

n1/ρ+1 log+
[∥∥f − ϕ−1

n Sn(fϕn)
∥∥

∆r
rn
]1/n

≤ rρ/ρ+1

(
ρ + 1

ρ

)
(ρT (Q)

1

ρ+1 ).

If Q(z) =
∑

ν∈M aνz
ν for some M ⊂ N and if (rn) and (ϕn) are given by

(2.6) and (2.7), then the Taylor coefficients ϕk,n = ϕ
(k)
n (0)/k! of

ϕn(z) = exp (−(Rrn/(R − rn))ρθ(z/rn))

= Πν∈M exp
(
−aνz

νr−ν
n (Rrn/(R − rn))ρ) ,

may be computed by repeated Cauchy product (i.e., by repeated discrete con-
volution) from the Taylor coefficients of exp (−aνz

νr−ν
n (Rrn/(R − rn))ρ). Now,

if the Taylor coefficients fk = f (k)(0)/k ! of f for k = 0, · · · , n are known, one
more Cauchy product gives

Sn(fϕn)(z) =

n∑

ν=0

zν

(
ν∑

k=0

fkϕν−k,n

)
.

2. The case K = [a, b]. It is well known, in the case K = [−1, 1] system of
arbitrary nodes are for example the zeros of the Tschebyscheff polynomials

z
(n)
k = cos

(
(2k + 1)π

2(n + 1)

)
, k = 0, · · · , n,

or the Fejer nodes given by

z
(n)
k = cos

(
2kπ

n + 1

)
, k = 0, · · · , n.

Since in the second case z
(n)
k = z

(n)
n−k+1 for k = 1, · · · , n, we have interpolation

of f and f ′ in these nodes.

The Faber polynomials for K = [−1, 1] coincide with the (normalized)
Tschebyscheff polynomials, more precisely,

Fn(x) =

{
2 cos(n arccos x) if n = 1, 2, . . . ,

1, if n = 0.

for x ∈ [−1, 1] and the n-th partial sum Tn of the Faber expansion equals the
n-th partial sum of the Tschebycheff expansion. Since C[−1, 1] = 1/2, Theorem
2.2 gives

lim sup
n→∞

n1/ρ+1 log+
[∥∥f − ϕ−1

n Tn(fϕn)
∥∥

[−1,1]

]1/n
≤

(
1

2

)ρ/ρ+1(ρ + 1

ρ

)
(ρT (Q)).

Thus, we see that the smaller capacity of K = [−1, 1] compared to K = ∆
causes an acceleration factor of

[
exp((1/2)ρ/ρ+1)

]n
if f is approximated by
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ϕ−1
n Tn(fϕn) instead of ϕ−1

n Sn(fϕn) on [−1, 1].

The case of an arbitrary interval K = [a, b] with a, b ∈ C may be reduced
to the case K = [−1, 1] by a simple linear transformation, so that this case is
essentially included above. In particular, for a function g holomorphic on [a, b]
the n-th Faber section Tn(g) = Tn,[a,b](g) with respect to [a, b] is given by

Tn,[a,b](g)(w) = Tn,[−1,1](g̃) =

(
2

b − a
w −

b + a

b − a

)
,

where

g̃(z) = g

(
b − a

2
z +

a + b

2

)
.

As in the standard case [a, b] = [−1, 1] we denote Tn,[a,b](g) as n-th Tsche-
byscheff section of g (with respect to [a, b]).

More general compact set K (having simply connected complement ĈK)
may be handled similar to the above case of K = [a, b] by choosing the n-
th partial sum Tn of the Faber expansion instead of the n-th Tschebyscheff
section. An efficient method for the numerical evaluation of Tn is described in
[2]. Moreover, in [1] and [5] explicit expressions for the Faber polynomials Fn,k

in the case of K being a circular or an annular sector are given.
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