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Abstract: This is an expansion of my previous presentation in our Third In-
ternational Conference of Applied Mathematics and Computing in 2006 in Plov-
div. Again, filter design is an integral component to enhance desired aspects
within an image such as clarity of edges. This paper provides an introduction to
filter design and image edge detection using matrices, partial derivatives, convo-
lutions and frequencies that enter into identifying components in the problem.
We are especially addressing the notion of edge detection, which has far reaching
applications in all areas of research, including medical research. For example
a patient can be diagnosed as having an aneurysm by studying an angiogram.
An angiogram is the visual view of the blood vessels whereby the edges are
highlighted. This process is completed through convolution, filters and special
frequency techniques using the software, MATLAB 7.2 (2006). Some illustra-
tions included will be vertical, horizontal and Sobel Edge Detectors together
with some wavelet transforms to locate the edges in an image. We also include
the Fast Fourier Transform to obtain the frequency space together with filter-
ing such as the use of the Ideal Filter, Butterworth Filter and Bessel Function
Filter.
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1. Introduction

To motivate this paper, we provide an introduction to some interesting prob-
lems in image processing implementing matrix techniques, partial derivatives
and convolutions. Section 2 provides an introduction to matrix and partial
derivatives and how they are applied to the pixels to obtain the gray level
value. Section 3 introduces a few specific examples such as the vertical, hor-
izontal and Sobel edge detectors. Section 4 provides the reader with a series
of illustrations that demonstrate edging techniques in three-dimensional image
processing. Section 5 illustrates several filters together with their impact on
the frequencies transferring the results to two images.

2. Some Notions and Notations

A current laptop in advertisements displays an image using 1680 x1050 pixels.
The number of pixels continues to increase everyday as technology progresses.
Therefore the images continue to become clearer as technology improves. Each
pixel location designated by the coordinates, (x1, y1), contains a gray level
value indicating the shade of gray within the image at that point. The values
are usually on a scale of 0 to 255 whereby 0 corresponds to pure white and 255
correspond to black. The value of the gray level at this lattice point, (x1, y1),
will be designated by f(x1, y1).

However before we continue with the edge detection analysis, we first review
a few matrix and calculus techniques. We first recall the familiar dot product

for two vectors, x, y, to be x•y=
2

∑

i=1
xiyi. From this dot or inner product we

define the norm to be ‖x‖2 =
2

∑

i=1
xiyi. Then we obtain the familiar and very

important result to many applications that the cosine of the angle between
the two vectors, x and y, satisfies the equation that cos(θ)=x•y/( ‖x‖ ‖y‖). We
know the maximum value for the cosine occurs when the two vectors coincide
giving a value, cosine(0)=1. This is an important observation in edge detection
and will latter be brought forward.

We now introduce the partial derivative formulas,

∂f(x, y)

∂x
= lim

∆x→0

f(x + ∆x, y) − f(x, y)

∆x
,
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and
∂f(x, y)

∂y
= lim

∆y→0

f(x, y + ∆y) − f(x, y)

∆y
.

The distance between pixel locations will be defined to be 1 so all of the in-
crements in the partial derivative formulae will be equal to one. This then
gives,

∂f(x, y)

∂x
≈ f(x + 1, y) − f(x, y)

1
,

and
∂f(x, y)

∂y
≈ f(x, y + 1) − f(x, y)

1
.

We now denote the function, f(x, y), to be the gray level values between neigh-
boring pixels in the horizontal and vertical directions respectively giving us the
formulas, f(x1+1, y1) –f(x1, y1) and f(x1, y1+1) –f(x1, y1). The spatial loca-
tions, xi and yi can only take on integer values given by their integer locations.

3. Convolution and Edge Detectors

We first introduce the usual calculus definition for convolution given by the
formula,

h(x, y) ∗ f(x, y) =

+∞
∫

−∞

+∞
∫

−∞

h(k1, k2)f(x − k1, y − k2)dk1dk2,

and its discrete version by the formula,

h(n1, n2) ∗ f(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

h(k1, k2)f(n1 − k1, n2 − k2).

We now reduce the discrete convolution to be a 3 by 3 matrix, which will
play the role of a convolute and select our function, h(n1, n2), to have the
matrix values,

h =





h(−1, 1) h(0, 1) h(1, 1)
h(−1, 0) h(0, 0) h(1, 0)
h(−1,−1) h(0,−1) h(1,−1)



 =





−1 0 1
−1 0 1
−1 0 1



 .

The arguments (n1, n2) in h(n1, n2) of the first array are easily remembered
by noting that they are the needed lattice point coordinates referred to as
a Cartesian coordinate system. This is illustrated in Figure 1. Clearly the
reduced array for h(n1, n2) is part of the complete array, where h(n1, n2) is
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part of the complete array and is equal to zero whenever |n1| or |n2| > 2. Next
we convolve the function, h(n1, n2) with the function, f(n1, n2), and obtain

h(n1, n2) ∗ f(n1, n2) =

1
∑

k1=−1

1
∑

k2=−1

h(k1, k2)f(n1 − k1, n2 − k2)

= f(n2 − 1, n2 + 1) − f(n1 + 1, n2 + 1) + f(n1 − 1, n2) − f(n1 + 1, n2 + 1)

+ f(n1 − 1, n2 + 1) − f(n1 + 1, n2 − 1).

We now investigate this last result only to find that it gives the difference
of three columns of pixel values in the horizontal direction. If one checks the
literature (see [6], [7]), we find that this is the approximation used in the hor-
izontal direction in several leading software image-processing packages. The
function, h(n1, n2), is called the kernel of the convolution and when we change
its values, we obtain different edger’s. The edge is the portion of the image,
where there is a sudden change in gray levels. The edger implemented selects a
particular feature in the image, which is beneficial to the particular application.
The kernel for vertical edging is given by

h =





1 1 1
0 0 0
−1 −1 −1



 .

A more sophisticated edger is the Sobel edger, which uses the gradient to
approximate the edges. Since the gradient includes both horizontal and vertical
components, two kernels are employed given by the matrices,





−1 0 1
−2 0 2
−1 0 1



 ,





1 2 1
0 0 0
−1 −2 −1



 .

4. Illustrations using Edge Detectors

Figure 2 and 8 illustrate the alphabets O and N respectively in three dimen-
sions. We then employ a vertical edge detector on the alphabets O and N
shown in Figures 3 and 9 respectively. Again horizontal edge detectors are
applied and illustrated on O and N in Figures 4 and 10 respectively. The So-
bel edge detector is then applied to O and N and illustrated in Figures 5 and
11. We include in Appendix A brief discussion of the two dimensional wavelet
transform. We conclude the illustrations with a wavelet constructed using the
Gaussian illustrated in Figure 6 together with its application on the letters O
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and N illustrated in Figures 7 and 12 respectively.

We conclude the previous applications with the realization that the type of
image can yield results that are clearly visible for human sight. The Sobel edge
detector on the letters O and N are clearly visible to our eyesight. However
adjustments not readily apparent to human sight such as the wavelet transforms
on the letter O and N can have far reaching consequences when compared to
“normal” vs. “abnormal” physical phenomenon such as the aneurysm situation.
We continue with filter designs.

5. Filter Designs

Filters designed and implemented in signal analysis are an integral component
to enhance desired aspects of the application. In image processing filters are de-
signed to select frequencies to add or subtract much-needed visual components
of the image. For example the edges are significantly destroyed because of noise.
The noise component contributes heavily to the high-frequency content of the
Fourier transform of the image. To remove some of the unwanted noise can be
achieved in a low pass filter passing the low frequencies. However we view an
“ideal low pass filter” which has a sharp drop off of higher frequencies. A sharp
drop off frequency can in many situations not remove the unwarranted noise.
The drop off must be “gradual” thus making filter designs a mathematical “art
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Figure 2 Figure 3

Figure 4 Figure 5

Figure 6 Figure 7

Figure 8 Figure 9
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Figure 10 Figure 11

Figure 12

form”. We illustrate a sharp drop off with a cylinder ideal low pass filter in
Figure 13. An excellent low pass filter designed by Butterworth is illustrated in
Figure 14 and a low pass Bessel function filter illustrated in Figure 15. When
high frequencies are needed in applications we have developed the high pass
Butterworth and Bessel function filters in Figures 23 and 24 respectively.

The filters are then applies to the Letter O and N.

The high pass Ideal, Butterworth and Bessel Function filters are illustrated
in Figures 22, 23 and 24 respectively.

We now apply the high pass filters to the Letter O.



206 J. Schmeelk

Figure 13 Figure 14

Figure 15 Figure 16

Figure 17 Figure 18

Figure 19 Figure 20
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Figure 21 Figure 22

Figure 23 Figure 24

Figure 25 Figure 26
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Appendix A. Two Dimensional Wavelet Transforms

We will not include a presentation regarding multiresolution analysis leading to
a scaling function and then to a “mother” wavelet. The references [8, 13] are
but a few resources for this remarkable analysis.

We begin with a two-dimensional mother wavelet, w(x, y), having dilation
and translation parameters, (a1, a2) and (b1, b2) respectively each varying over
R2. The dilated and translated “mother” wavelet then becomes

w(a1,a2)(b1,b2)(x, y) =
1√
a1a2

w

(

x − b1

a1
,
y − b2

a2

)

,

a1 6= 0 and a2 6= 0. The Fourier transform of this wavelet then becomes

⌢

w
(a1,a2)(b1,b2)

(u, v) =
2π√
a1a2

∞
∫

−∞

∞
∫

−∞

e−jπ(ux+vy)w

(

x − b1

a1
,
y − b2

a2

)
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=
1√
a1a2

e−jπ(ub1+vb2)⌢

w(ua1, va2).

Furthermore Parsevals’ formula in R2 becomes
∞

∫

−∞

∞
∫

−∞

f(x, y)g(x, y)dxdy =
1

4π2

∞
∫

−∞

∞
∫

−∞

f̂(u, v)ĝ(u, v)dudv.

Definition A1.1. The two-dimensional wavelet transform on f(x, y) is
then defined by the formula,

(wwavf) ((a,1 , a2) , (b1, b2)) =
(

f,w(a1,a2)(b1,b2)
)

=

∞
∫

−∞

∞
∫

−∞

1√
a1a2

f(x, y)w

(

x − b1

a1
,
y − b2

a2

)

dxdy.

The resolution of the identity an important inversion tool for the wavelet
transform is given by the following theorem.

Theorem A1.2. For all f, g ∈ L2
(

R2
)

there holds
∫∫∫∫

da1da2db1db2

(a1a2)
2 {(Twavf) (a1, a2) (b1, b2)} {(Twavg) (a1, a2) (b1, b2)}

= C̟(f, g).

Proof. See reference [24].

The C̟ in Theorem A1.2 equals

C̟ =

∫∫

ds1ds2

|s1s2|
|ω(s1, s2|

2

, (A1.3)

leading to the inversion formula,

f(x)

= C−1
̟

∫∫∫

da1da2db1db2

(a1a2)
2 {(Twavf) (a1, a2) (b1, b2)}

{

ω(a1,a2)(b1,b2)
}

. (A1.4)

Expression (A1.4) requires the “mother” wavelet to satisfy the necessary
condition,

∫∫

ω(x, y)dxdy = 0 . �
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