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*

It has long been a great mystery of coding theory, why there is a gap of a factor
of

√
2 between the maximum length of double error correcting codes given

by the sphere packing bound, and the length of the best known linear double
error correcting codes. In Dowd [3] it was observed that a better theory of these
packings would seem to be a prerequisite to a theory of the analog of the Erdös-
Turan conjecture for linear double error correcting codes. Some theorems were
proved about configurations in such codes. For some later references concerning
the Erdös-Turan conjecture, see Borwein et al [1], Nathanson [6], and Grekos
et al [4].

In this extended abstract some further facts about such configurations are
proved, and some conjectures made relevant to the main questions. The com-
plete manuscript is available at the author’s web site www.hyperonsoft.com.
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This describes some computational experiments concerning the conjectures.

We adopt the following notational conventions. Fq denotes the finite field
of order q, for a prime power q. A binary code of length n is a subset of the
vector space Fn

2 over F2. Such a code is linear if it is a subspace; if k is the
dimension the redundancy r is defined to be n−k, and the code is said to be an
[n, k] code. Codewords are generally denoted v, w, etc. Positions are generally
denoted i, j, etc., with 1 ≤ i ≤ n. As usual, vi denotes the element of F2 in
position i of v. A vector in Fn

2 will be called a bit vector, of length n.

Suppose χ is a code containing 0, of minimum distance at least d where
d = 2δ + 1 is odd. Define the A configuration determined by χ to be the set of
weight d vectors. Define A(n) to be the largest size of an A configuration in a
code of length n. For v ∈ χ let αv = {u − v : d(u, v) = d, u ∈ χ}. Let Ā(χ) be
the

The following “codewise” version of the Johnson bound is stated in Brouwer
and Tolhuizen [2], and may be proved by modifications to the proof in MacWil-
liams and Sloane [5].

Theorem 1. With notation as above,

|χ|
(

1 + n +

(

n

2

)

+ · · ·
(

n

δ

)

+

(

n
δ+1

)

−
(

d
δ

)

Ā(χ)

⌊n/(δ + 1)⌋

)

≤ 2n.

Suppose χ is a code with A configuration α, v ∈ α, 1 ≤ i ≤ n, and t ∈ Fn
2

with |t| = δ. Let

— αi = {v ∈ α : i ∈ v};
— αt = {v ∈ α : t ⊆ v};
— νv = {w ∈ α : |w − v| = d + 1};
— νvi = νv ∩ αi, where i ∈ v;

— νvij = νv ∩ α{i,j}, where i, j ∈ v.

If v,w ∈ α then |v − w| ≥ d + 1, so νv is the neighborhood of v within α.
Also, |v −w| = d + 1 iff |v ∩w| = δ. A νv is partitioned into the 10 classes νvij ,
for i, j ∈ v, i < j; νvi is the union of 4 of these.

A number of further definitions used below will now be given.

— An A1 configuration is any αi occurring in some code. A1(χ) is the
maximum of |αi| for an αi in χ. A1(n) is the maximum of |αi| for an αi in a
code of length n.

— An N configuration is any νv occurring in some code. N(α) is the
maximum of |νv| for a v ∈ α. N(n) is the maximum of |νv | for a νv in a code
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of length n.

— An N1 configuration is any νvi occurring in some code. N1(α) is the
maximum of |νvi| for v ∈ α and i a posdition of v. N1(n) is the maximum of
|νvi| for a νvi in a code of length n.

— If χ is required to be linear, L is appended to the subscript, for A, A1,
N , or N1, configurations or functions of n.

— Let ν ′
v denote νv, restricted to vc; and similarly for ν ′

vi and ν ′
vij .

The following theorem gives various facts about quantities just defined;
some parts are given in Dowd [3], and some are well-known.

Theorem 2. a. νv is the disjoint union of the sets αt − {v}; hence
∑

t⊆v

|αt| = |νv| +
(

d

δ

)

.

b.

(

d

δ

)

|α| =
∑

t

|αt|.

c.

(

d

δ

)2

|α| ≤
(

n

δ

)(

N(α) +

(

d

δ

))

.

d. Two members of αt intersect in t. Hence |αt| ≤ (n − δ)/(δ + 1).

e. N(n) ≤
(

d

δ

)⌊

n − d

δ + 1

⌋

.

f. |α| ≤ (n/d)A1(χ).

g. |αi| ≤
n − 1

d − 1

[

δ − 1

d − 1
N1(α) + 1

]

.

Proof. For part a, if w ∈ αt − {v} then w ∈ νv. If w ∈ νv then w ∩ v = t
for a unique t, and w ∈ αt − {v}. For part b, counting pairs 〈v, t〉, the left side
counts v first, and the right side counts t first. For part c, let it denote |αt|.
Using parts a and b,

∑

t

i2t =
∑

t

it |{v ∈ α : t ⊆ v}| =
∑

v∈α

∑

t⊆v

it =
∑

v∈α

|νv| +
∑

t

it.

For fixed c =
∑

v∈α |νv|,
∑

t it is maximized, subject to
∑

t(i
2
t − it) equaling c,

when the it are equal, say to the common value i, and it follows that
(

n

δ

)

(i2 − i) = c.

By part b,
(

n

δ

)

i =

(

d

δ

)

|α|.
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Finally, c ≤ |α|N(α), and part c follows. For part d, by definition two members
intersect in at least t, and they cannot intersect in a larger set. Part e follows by
parts a and d. For part f, counting 1’s in the incidence matrix of α,

∑

i |αi| =
d|α|. Since |αi| ≤ A1(χ), d|α| ≤ nA1(χ). For part g, given an αi, let α′

i be the
incidence matrix with the common position i deleted. Let pl be the number of
rows which are 1 in column l. Let qj = |νvi|, where v is row j. Then

∑

l

pl = (d − 1)|αi|, (δ − 1)
∑

j

qj = 2
∑

i

(

pi

2

)

, and qj ≤ N1(α).

Given c = (δ − 1)
∑

j qj,
∑

l pl is maximized subject to 2
∑

l

(

pl

2

)

= c when the

pl are all equal, say to p. At equality 2(n − 1)
(

p
2

)

= c ≤ (δ − 1)|αi|N1(α) and
(n − 1)p = (d − 1)|αi|; part g follows.

From hereon only δ = 2, d = 5 will be considered. In this case, Theorem
2.

f becomes |α| ≤ (n/5)A1(χ); equality holds for any binary code with a
transitive automorphism group, in particular for cyclic codes. Also, |νv| ≤
10⌊(n − 5)/3⌋. The bound is achieved in a 3-(n,5,1) design; these exist for
n = 4m+1 where m ≥ 1 (see [1], Theorem 6.9). In such a design |αt| = (n−2)/3
for any pair t, and the claim follows. In such a design

|α| =
1

10

(

n

3

)

=
1

60
n(n − 1)(n − 2).

It is a question of interest how large a code exists, which has this as an A
configuration.

Theorem 2. g becomes |αi| ≤ (n− 1)/4[N1(α)/4 + 1]. This yields the usual
bound (n−1)(n−2)/12 on A1(χ) for an arbitrary code χ, when N1 = 4(n−5)/3.

Configurations almost this large occur in the Preparata codes. These are
defined when n = 4m − 1 where m ≥ 2. The weight 5 vectors form a 2-
(n,5,(n − 3)/3) design, and |α| = (1/60)n(n − 1)(n − 3) (MacWilliams and
Sloane [5], Theorem 15.33). It follows that |νv| = (10/3)(n − 6).

The Johnson bound when d = 5 is

|χ|
(

1 + n +

(

n

2

)

+

(

n
3

)

− 10 Ā(χ)

⌊n/3⌋

)

≤ 2n.

Since 3-(n,5,1) designs exist, this does not yield an improvement almost ev-
erywhere to the sphere packing bound. The nonexistence of perfect codes
(MacWilliams and Sloane [5]) does show that the sphere packing bound for
double error correcting codes is met only finitely often. The Preparata codes
(which are examples of “nearly perfect” codes) show, however, that for nonlin-
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ear codes of minimum weight 5 the sphere packing bound is nearly tight.

The Johnson bound does yield an improvement sometimes. The bound
A(n) ≤ ⌊n

5
⌊n−1

4
⌊n−2

3
⌋⌋⌋ is well-known (MacWilliams and Sloane [5], Corollary

17.5). The weaker bound 1

10

(

n
2

)

⌊n−2

3
⌋ follows by Theorem 2.c and 2.e. It also

follows by Theorem 2.g, and the fact that for d = 5, N1(n) ≤ 4⌊n−5

3
⌋. The

importance of Theorem 2 lies in the hope that for linear codes, better bounds
on N(n) or N1(n) can be obtained. Indeed, a slight improvement is readily
obtained.

Theorem 3. Suppose n − 5 = 3l + t. Then N1L(n) ≤ 4l − 3 if n ≡ 2 or

n ≡ 3 mod 6; and N1L(n) ≤ 4l − 1 if n ≡ 0 mod 6.

Proof. For the first claim, suppose two νvij have size l, for some v, i. The
sum of all the vectors in the two classes has weight at most 2t in the positions
of vc, and weight 2 in the positions of v. For the second claim, suppose all four
νvij have size l. Let a denote the number of weight 3 columns. Counting flags,
12 l = 4(3 l + 1 − a) + 3 a, whence a = 4. The sum of all the rows has weight 0
in v, and weight 4 in vc.

We conjecture that in fact, Theorem 3 is a weak bound, and that N1L(n)
is ≤ c1(n − 5) almost everywhere, for a constant c1 smaller than 4/3. By
Theorem 2, this conjecture would yield an upper bound on AL(n), better by
a constant factor than the bound for arbitrary A configurations. This in turn
would yield an upper bound on the length of a linear double error correcting
code of redundancy r, better by a constant factor than the sphere packing
bound.

We define a partial linear space to be an incidence matrix (matrix over
F2), where two columns are incident to at most one row (no “rectangle” of
1’s occurs). In the full manuscript it is shown that an N ′

1 configuration is a
partial linear space, of constant row weight 3, together with a partition of the
rows into 4 or fewer parts, such that in each part the rows are disjoint. It is
also shown that an N ′

1 configuration is an N ′
1L configuration iff the following

holds. If S is a subset of the rows, let sj be the number of rows of S in part j,
for 1 ≤ j ≤ 4. Then the weight of

∑

S must be at least 3,3,4,4, according to
whether the number of odd sj is 1,2,3,4 respectively; and if all sj are even the
weight must be either 0 or at least 5.
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