UNBALANCED RANK TWO VECTOR BUNDLES
ON SCROLLS WITHOUT INTERMEDIATE COHOMOLOGY

E. Ballico
Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Let C be a smooth curve of genus $g \geq 2$, and E a rank n ample and
spanned vector bundle on C such that $h^1(C, E) = 0$. Set $X := \mathbb{P}(E)$. Here we
study the “unbalanced” rank 2 vector bundles F on X such that $h^i(X, F(t)) = 0$
for all $1 \leq i \leq n-1$ and all $t \in \mathbb{Z}$. We show that they are an extension of two
line bundles.

AMS Subject Classification: 14H60, 14J60, 14J26
Key Words: scroll, vector bundles on curves, vector bundles on scrolls

* Let Y be an integral projective variety and $\mathcal{O}_Y(1)$ an ample line bundle on Y. A vector
bundle on Y is said to be arithmetically Cohen-Macaulay with respect to $\mathcal{O}_Y(1)$ if $h^i(Y, E \otimes \mathcal{O}_Y(t)) = 0$ for all $t \in \mathbb{Z}$ and all $1 \leq i < \dim(Y)$. If Y is a
smooth hypersurface and $\dim(Y) \geq 3$, every arithmetically Cohen-Macaulay a
vector bundle is a direct sum of line bundles (see [2], [3], [10]). Several papers
are devoted to the study of arithmetically Cohen-Macaulay vector bundles on
other varieties (see [1], [4], [5], [6], [7], and the list is growing). Here we explore
a similar notion in a case with $h^1(Y, \mathcal{O}_Y) > 0$. Fix an integer $g > 0$, a smooth
curve with genus g, an integer $n \geq 0$ and a rank n vector bundle E on C
such that $h^1(C, S^t(E)) = 0$ for all $t \geq 1$. We will call \diamond this condition on E.
Condition \diamond is satisfied if either $\mu_-(E) > 2g - 2$ or $\mu(E) > 2g - 2$ and E is
semistable or $\mu(E) \geq 2g - 2$ and E is stable or if $g \geq 2$, E is a general stable
bundle on C with its degree and rank and $\mu(E) \geq g - 1$. By Riemann-Roch
Condition \(\diamond \) implies \(\mu_-(E) \geq g - 1 \). Set \(X := \mathbf{P}(E) \) and let \(\pi : X \to C \) denote the ruling. Let \(\mathcal{O}_X(1) \) denote the tautological line bundle on \(X \). Hence \(\pi_*\mathcal{O}_X(t) \cong S^t(E) \) for all integers \(t \geq 1 \). Hence Condition \(\diamond \) is equivalent to the condition \(h^i(X, \mathcal{O}_X(t)) = 0 \) for all \(t \geq 1 \). We have \(h^i(X, \mathcal{O}_X) = g > 0 \). We have \(h^i(X, \mathcal{O}_X(t)) = 0 \) for all \(1 \leq i \leq n - 1 \) and all \(t < 0 \) (Remark 1). For any coherent sheaf \(F \) on \(X \) and any \(t \in \mathbb{Z} \) set \(F(t) := F \otimes \mathcal{O}_X \mathcal{O}_X(t) \). For any integer \(r \geq 1 \) let \(A(r) \) denote the set of the isomorphism classes of all rank \(r \) vector bundles on \(X \) such that \(h^i(X, F(t)) = 0 \) for all \(1 \leq i \leq n - 1 \) and all \(t < 0 \). Fix any torsion free sheaf \(F \) on \(X \). Let \(s(F) \) be the maximal integer \(t \) such that there is \(M \in \text{Pic}(C) \) with \(h^0(X, F(-t) \otimes M^*) > 0 \). Now assume that \(E \in A(2) \). For that integer \(t := s(F) \) take \(M \) with maximal degree. The maximality of \(\text{deg}(M) \) and of \(t \) implies that any non-zero map \(\pi^*(M)(t) \to F \) drops rank at most in codimension 2. Hence \(F \) fits in an exact sequence

\[
0 \to \pi^*(M)(t) \to F \to \mathcal{I}_Z \otimes \det(F)(-t) \otimes \pi^*(M^*) \to 0 \tag{1}
\]

in which either \(Z = \emptyset \) or \(Z \) is a locally complete intersection closed subscheme of \(X \) with pure codimension 2. We have \(c_2(F) = Z - \pi^*(M)(t) \cdot \det(F)(-t) \otimes \pi^*(M^*) \) in the Chow ring of \(X \). Set \(z(F) := Z \cdot \text{Pic}(1)^{n-2} \). The integer \(z(F) \) is well-defined, i.e. it does not depend from the choice of \(M \) and the injection in (1), because we took \(M \) with maximal degree. If either \(n = 2 \) or \(E \) is ample, then the integer \(z(F) \) is non-negative and \(z(F) = 0 \) if and only if \(Z = \emptyset \). We will say that a rank \(r \geq 2 \) torsion free \(F \) on \(X \) is \textit{balanced} (resp. \textit{semibalanced}) if \(s(G)/s \leq s(F)/r \) (resp. \(s(G)/s \leq s(F)/r \)) for all integers \(1 \leq s \leq r - 1 \) and all rank \(s \) subsheaves \(G \) of \(F \). Obviously, in the previous definition it is sufficient to test the saturated torsion free sheaves \(G \) of \(F \), i.e. the subsheaves \(G \) such that \(F/G \) has no torsion. Here we prove the following result.

Theorem 1. Assume that \(E \) satisfies Condition \(\diamond \). Fix \(F \in A(2) \) which is not balanced. If \(n \geq 3 \) assume that \(E \) is spanned. Then \(z(F) = 0 \) and \(F \) is an extension of two line bundles.

We work over an algebraically closed field \(\mathbb{K} \).

Remark 1. We have \(\omega_X \cong \pi^*(\det(E) \otimes \omega_C)(-n) \). Notice that \(R^i \pi_*\mathcal{O}_X(t) \) \(= 0 \) for all \(0 \leq i \leq n - 2 \) and all \(t < 0 \). Hence the Leray spectral sequence of \(\pi \) gives \(h^i(X, \mathcal{O}_X(t)) = 0 \) for all \(0 \leq i \leq n - 2 \) and all \(t < 0 \). Now assume that \(\det(E) \otimes \omega_C \) is spanned. Since \(g > 0 \), his condition is satisfied if \(\det(E) \) is spanned. Serre duality gives \(h^i(X, \mathcal{O}_X(t)) = h^{n-i}(X, \pi^*(\det(E) \otimes \omega_C)(-t-n)) \) for all \(i, t \). Since \(\det(E) \otimes \omega_C \) is spanned, Condition \(\diamond \) gives \(h^1(C, \omega_C \otimes S^t(E)) = 0 \)
for all $t > 0$. Hence $h^{n-1}(X, \mathcal{O}_X(t)) = 0$ for all $t < 0$ and $h^n(X, \mathcal{O}_X(t)) = 0$ for all $t \geq -n + 1$.

Remark 2. Any extension of an element of $A(r)$ by an element of $A(s)$ is an element of $A(r + s)$.

Remark 3. Fix $L \in \text{Pic}(X)$, say $L \cong M(a)$ with $M \in \text{Pic}(C)$ and $a \in \mathbb{Z}$. $h^1(X, L(-a)) = 0$ if and only if $h^1(C, M) = 0$. If $h^1(C, M) = 0$, then $\deg(M) \geq g - 1$; if $g - 1 \leq \deg(M) \leq g - 2$ then $h^1(C, M)$ may vanish or not, depending on M. $h^1(X, L(t)) = 0$ for all $t > -a$ if and only if $S^m(E) \otimes M = 0$ for all $m > 0$. $h^1(X, L(-a - 1)) = 0$ for any M. Serre duality gives that $h^{n-1}(X, L(t)) = 0$ for all $t \leq -a - 2$ if and only if $h^1(C, S^m(E) \otimes M^* \otimes \det(E)) = 0$ for all $m > 0$. Now we normalize $\mathcal{O}_X(1)$ so that $0 \leq b := \deg(E) \leq n - 1$. First assume $g = 1$. If E is not semistable, then $\mu_-(E) < 0$. Hence $h^1(X, L(t)) > 0$ for $t > 0$ and any M. Now assume E semistable. We assume $h^1(C, M) = 0$ and in particular $\deg(M) \geq 0$. If $\deg(M) \geq b + 1$, then $h^1(C, L(-a - 2)) > 0$. If $b > 0$ we get $h^1(C, L(t)) = 0$ for all $t > 0$. If $b = 0$ and $\deg(M) = 0$ is sufficiently general in $\text{Pic}^0(C)$ (for a fixed E), then $h^1(X, L(t)) = 0$ for all $t \in \mathbb{Z}$.

Remark 4. Assume $g \geq 2$. Recall that $h^0(X, \mathcal{O}_X(t)) = h^0(C, S^t(E))$ and that $S^t(E)$ has rank $\binom{n+t-1}{n}$ and slope $t \cdot \mu(E)$. for all $t > 0$. Since $\mu_-(E) \geq g - 1$, E is ample if $\text{char}(\mathbb{K}) = 0$ (see [8]). In positive characteristic assume $\mu_-(E) > 2g - 1$, use the spannedness of E (see below), and then apply [9], Cor. III.1.9. Hence $h^1(C, S^t(E))$ for $t \gg 0$ (and even for $t \geq 3$ if $\text{char}(\mathbb{K}) = 0$). Riemann-Roch gives $h^0(C, S^t(E)) = \binom{n+t-1}{n} t \mu(E) + \binom{n+t-1}{n} (1 - g)$. $h^0(C, E) = h^0(X, \mathcal{O}_X(1))$. Notice that $h^0(C, E) > 0$ (i.e. $h^0(X, \mathcal{O}_X(1)) > 0$) if and only if $\mu(E) > g - 1$. E is spanned if and only if $\mathcal{O}_X(1)$ is spanned. If $\mu_-(E) > 2g - 1$, then E is spanned. Hence $\mathcal{O}_X(1)$ is spanned if $\mu(E) > 2g - 1$ and this is true in arbitrary characteristic.

Proof of Theorem 1. First assume $n = 2$. Fix an exact sequence (1) with $t = s(F)$ and twist it by $\mathcal{O}_X(-t - 1)$. Since $h^2(X, M_1(-1)) = 0$, we get $h^1(X, I_Z \otimes M_2(\det(F) - 2t - 1)) = 0$. Since $t = s(F)$ and F is not balanced, $t(\det(F)) - 2t - 1 < 0$. Hence $h^0(X, M_2(t(\det(F)) - 2t - 1)) = 0$. Since Z is zero-dimensional, and $h^1(X, I_Z \otimes M_2(t(\det(F)) - 2t - 1)) = 0$, we get $Z = \emptyset$. Now assume $n \geq 3$. By assumption $\mathcal{O}_X(1)$ is ample and spanned. Since Z has pure codimension 2, $Z = \emptyset$ if and only if it does not intersect a general intersection of $n - 2$ members of $|\mathcal{O}_X(1)|$. Using this intersection we reduce to the case $n = 2$ just proved. □

What happens if F has higher rank or if F is balanced? Even in the case $g = 1$ we do not have any result, even a very partial one.
Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

