International Journal of Pure and Applied Mathematics

Volume 49 No. 4 2008, 547-552

BASIC PROBLEMS IN q-HYPERGEOMETRIC FUNCTIONS

Kazuhiko Aomoto

Departement of Mathematics Kyoto Sangyo University Kamigamo-Motoyama, Kyoto, 603-8555, JAPAN

Abstract: Three basic problems on q-hypergeometric functions are presented using Jackson integrals. As an example they are explained in more details in the case of BC_1 -type.

AMS Subject Classification: 33D15, 33D67, 39A13Key Words: Jackson integral, *q*-difference equation, asymptotic behavior, connection relation, BC_1 -type

1. Jackson Integrals and q-Hypergeometric Functions

Assume that an element $\alpha \in \text{Hom}(\mathbf{Z}^n, \mathbf{C})$ and a finite set M in $\text{Hom}(\mathbf{Z}^n, \mathbf{Z}) - \{0\}$ are given, then we can define the q-multiplicative function of $t = (t_1, \ldots, t_n) \in X = (\mathbf{C}^*)^n$

$$\Phi(t) = t^{\alpha} \prod_{\mu \in M} \frac{(a'_{\mu}t^{\mu}; q)_{\infty}}{(a_{\mu}t^{\mu}; q)_{\infty}}$$

for arbitrary $a_{\mu}, a'_{\mu} \in \mathbf{C}^*$ ($\mu \in M$) (here we denote $t^{\alpha} = t_1^{\alpha(\chi_1)} \cdots t_n^{\alpha(\chi_n)}, t^{\mu} = t_1^{\mu(\chi_1)} \cdots t_n^{\mu(\chi_n)}$ with respect to the standard basis $\{\chi_k\}_{1 \le k \le n}$ of \mathbf{Z}^n).

In the sequel we follow the references [1], [7] about the terminologies.

Consider the sum over the orbit $[0, \xi \infty]_q = q^{\mathbf{Z}^n} \cdot \xi$ for a fixed $\xi \in X$ and an admissible $\varphi(t)$ as follows:

Received: August 14, 2008

© 2008, Academic Publications Ltd.

K. Aomoto

$$\int_{[0,\xi\infty]_q} \Phi(t)\varphi(t)\varpi_q = (1-q)^n \sum_{\chi\in\mathbf{Z}^n} \Phi(q^{\chi}\xi)\varphi(q^{\chi}\xi) \in \mathbf{C}$$
(1)
$$\varpi_q = \frac{d_q t_1}{t_1} \wedge \dots \wedge \frac{d_q t_n}{t_n}.$$

This is called "Jackson integrals" provided it is convergent and is denoted by $\langle \varphi, \xi \rangle$. If $q^{\chi}\xi$ lies in a pole of $\Phi(t)\varphi(t)$, it may be replaced by a suitable residue as its regularization. If the sum is divergent, it must be replaced by a suitable contour integral. From now on we call $[0, \xi \infty]_q$ and its regularization "*n*-dimensional cycle". (1) gives the pairing between a cohomology class of φ in $H^n(X, \Phi, \nabla_q)$ and an *n*-dimensional cycle, i.e., it gives a dual element of $H^n(X, \Phi, \nabla_q)$. (1) is a quasi-meromorphic function of ξ which is invariant under the *q*-shift. Hence it can be represented by elliptic theta functions of ξ . Our interest lies in not only *q*-periodic structures with respect to ξ , but also holonomic *q*-difference structures, asymptotic behaviors with respect to the parameters $\alpha, a_{\mu}, a'_{\mu}$, and connection relations among various asymptotics for the large parameters like $|\alpha| = \sum_{k=1}^{n} |\alpha(\chi_k)| \to \infty$, $|a_{\mu}|, |a'_{\mu}| \to 0, \infty$.

Under a suitable genericity condition, one can prove that $H^n(X, \Phi, \nabla_q)$ has a finite dimension, more precisely

$$\dim H^n(X, \Phi, \nabla_q) = \sum_{\{\mu_1, \dots, \mu_n\} \subset M} [\mu_1, \dots, \mu_n]^2$$

holds where $[\mu_1, \ldots, \mu_n]$ denotes the determinant of the matrix $(\mu_j(\chi_k))_{j,k}$. For the proof see [7], [12] and the references in them.

In the sequel we shall denote by $\kappa \dim H^n(X, \Phi, \nabla_q)$.

2. Statement of Problems

Problem 1. Finding explicitly the holonomic q-difference equations satisfied by $\langle \varphi, \xi \rangle$.

Suppose that $\varphi_k(t)$, $1 \leq k \leq \kappa$, give a basis of $H^n(X, \Phi, \nabla_q)$. The qshift operators $T_{u_k}, T_{a_\mu}, T_{a'_\mu}$ corresponding to the parameters $u_k = q^{\alpha(\chi_k)}, a_\mu, a'_\mu$ transform $H^n(X, \Phi, \nabla_q)$ into itself. As a consequence, we have the holonomic q-difference equations with the coefficients of rational functions of $u = (u_k)_k$, $a_{\nu}, a'_{\nu}, (\nu \in M)$:

$$\begin{array}{l} T_{u_k}\langle\varphi_j,\xi\rangle = \sum_{l=1}^{\kappa} y_{lj}^{(u_k)}\langle\varphi_l,\xi\rangle, \\ T_{a_\mu}\langle\varphi_j,\xi\rangle = \sum_{l=1}^{\kappa} y_{lj}^{(a_\mu)}\langle\varphi_l,\xi\rangle, \\ T_{a'_\mu}\langle\varphi_j,\xi\rangle = \sum_{l=1}^{\kappa} y_{lj}^{(a'_\mu)}\langle\varphi_l,\xi\rangle. \end{array}$$

Problem 2. We fix $\xi \in X$. When u, a_{μ}, a'_{μ} are at the infinity in the direction ω and $\{\eta_{\mu}, \eta'_{\mu}\}$ for each $\mu \in M$, namely, when

$$\alpha = \omega N + \hat{\alpha}, \ a_{\mu} = q^{\eta_{\mu}N} \hat{a}_{\mu}, \ a'_{\mu} = q^{\eta'_{\mu}N} \hat{a}'_{\mu} \quad (\omega, \eta_{\mu}, \eta'_{\mu} \in \mathbf{Z}^{n} - \{0\})$$

for fixed $\hat{\alpha}$, \hat{a}_{μ} , \hat{a}'_{μ} , the asymptotic behaviors of (1) with respect to $N \to \infty$ (N a positive integer) generally can be expressed as

$$\langle \varphi, \xi \rangle \approx C q^{rN(N-1)} \rho^N (1 + O(\frac{1}{N}))$$

for a non-zero pseudo-constant C, a constant $\rho \in \mathbb{C}^*$ and an integer r. It is an interesting problem to evaluate them.

Problem 3. Generally one can determine the κ characteristic cycles corresponding to the given direction ω , $\{\eta_{\mu}, \eta'_{\mu}\}$. If we denote them by $[0, \xi(1)\infty]_q$, \ldots , $[0, \xi(\kappa)\infty]_q$, then the Jackson integral (1) over the general $[0, \xi\infty]_q$ can be represented by a linear combination of the integrals over $[0, \xi(k)\infty]_q$ ($1 \le k \le \kappa$):

$$[0,\xi\infty]_q = \sum_{k=1}^{\kappa} ([0,\xi\infty]_q : [0,\xi(k)\infty]_q)_{\Phi} \cdot [0,\xi(k)\infty]_q,$$

where $([0, \xi \infty]_q : [0, \xi(k) \infty]_q)_{\Phi}$ are pseudo-constants with respect to $\xi, \alpha, a_{\mu}, a'_{\mu}$, and can be described by elliptic theta functions. It is an interesting problem to evaluate the connection coefficients $([0, \xi \infty]_q : [0, \xi(k) \infty]_q)_{\Phi}$.

In the next section we shall focus our argument on the case of q-hypergeometric functions of BC_1 type.

3. q-Hypergemetric Functions of BC_1 -Type

Assume n = 1 and let s be a non-negative integer. Take as $\Phi(t)$

$$\Phi(t) = \prod_{k=1}^{2s+2} t^{1/2 - \alpha_k} \frac{(qt/a_k; q)_{\infty}}{(ta_k; q)_{\infty}}, \qquad (2)$$

where we put $a_k = q^{\alpha_k}$. This function is of BC_1 -type, because $\Phi(t)$ is symmetric with respect to the inversion σ $(t \to 1/t)$:

$$b(t) = \Phi(qt)/\Phi(t) = \Phi(1/(qt))/\Phi(1/t)$$

 σ acts on $H^1(X, \Phi, \nabla_q)$ as an endomorphism. We are only interested in its skew-symmetric part $H^1_{skew}(X, \Phi, \nabla_q)$. We have the basic identity

$$\int_{[0,\xi\infty]_q} \Phi(t) \{ \nabla_q \psi(t) - \nabla_q \psi(1/t) \} \varpi_q = 0, \qquad (3)$$

where $\nabla_q \psi(t) = \psi(t) - b(t)\psi(qt)$ for an admissible rational function $\psi(t)$. The dimension of $H^1_{skew}(X, \Phi, \nabla_q)$ is equal to s and one can choose as a basis the representatives $\varphi_k = t^k - t^{-k}$ $(1 \le k \le s)$ (see [5], [6] for more details).

The holonomic q-difference equations with respect to a_1, \ldots, a_{2s+2} are given as follows (see [3],[6]):

$$T_{a_k}(J_j) = -\left(a_k + \frac{1}{a_k}\right)J_j + J_{j+1} + J_{j-1} \quad (1 \le j \le s-1),$$

$$T_{a_k}(J_s) = -\left(a_k + \frac{1}{a_k}\right)J_s + J_{s-1} + \sum_{r=1}^s (-1)^{s-r} \frac{\varepsilon_{s-r+1} - \varepsilon_{s+r+1}}{1 - \varepsilon_{2s+2}}J_r,$$

where J_k denotes $\langle \varphi_k, \xi \rangle$, $J_0 = 0$ and ε_k denotes the elementary symmetric polynomial of degree k in a_1, \ldots, a_{2s+2} . One can prove that the above q-difference equations have the fundamental matrix solution $Y = Y(a_1, \ldots, a_m)$ such that $Y/\prod_{k=1}^m \vartheta(a_k;q)$ is holomorphic at its origin, where $\vartheta(x;q)$ denotes the elliptic theta function $(x;q)_{\infty}(q/x;q)_{\infty}(q;q)_{\infty}$ (see [3]).

One can choose as a dual basis of $H^1_{skew}(X, \Phi, \nabla_q)$ the cycles $[0, a_k \infty]_q$, where k moves over a subset of s indices $K \subset \{1, 2, \ldots, 2s + 2\}$. As for the connection formula among a general $[0, \xi \infty]_q$ and $[0, a_k \infty]_q$ we have (see [10])

$$([0,\xi\infty]_q:[0,a_k\infty]_q)_{\Phi} = \frac{\Theta(\xi)}{\Theta(a_k)} \prod_{\substack{j \in K\\ j \neq k}} \frac{\vartheta(a_j\xi;q)\vartheta(a_j/\xi;q)}{\vartheta(a_ja_k;q)\vartheta(a_j/a_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/a_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/a_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)\vartheta(a_j/g)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_j/g)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_j\xi;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja_k;q)} + \frac{\vartheta(a_ja_k;q)}{\vartheta(a_ja$$

where

$$\Theta(\xi) = \xi^{s - \sum_{k=1}^{2s+2} \alpha_k} \frac{\vartheta(\xi^2; q)}{\prod_{k=1}^{2s+2} \vartheta(a_k\xi; q)}$$

In case where s = 1, (1) reduces to Bailey's $_6\psi_6$ - formula (see [8], [9], [13]). In case where s = 2, it reduces to Askey-Wilson polynomials and their Stieltjes transforms with respect to the variable z by taking $a_jq^{n/2}$ ($1 \le j \le 4$), $a_5 = zq^{-n/2}$, $a_6 = z^{-1}q^{-n/2}$ (n = 0, 1, 2, ...) instead of a_j ($1 \le j \le 6$) respectively (see [4]).

Remark. The Jackson integrals corresponding to (2) can also be generalized to multivariable cases. They satisfy holonomic q-difference equations. However we have not yet succeeded in getting explicit formulae (see [5], [6]).

References

- K. Aomoto, q-analogue of de Rham cohomology associated with Jackson integrals I, II. Proc. Japan Acad. Ser. A Math. Sci., 66 (1990), 161-164; 240-244.
- [2] K. Aomoto, Connection formulas in the q-analogue de Rham cohomology, In: Functional Analysis on the Eve of the 21-st Century, Volume 1, New Brunswick, NJ (1993), Progr. Math., 131, Birlhäuser Boston, Boston, MA (1995), 1-12.
- [3] K. Aomoto, A normal form of a holonomic q-difference system and its application to BC_1 -type, IJPAM, To Appear.
- [4] K. Aomoto, On the structure of holonomic q-difference equations of q-hypergeometric functions of BC_1 -type, *Preprint* (2008).
- [5] K. Aomoto, M. Ito, On the structure of Jackson integrals of BC_n -type and holonomic q-difference equations, *Proc. Japan Acad. Ser. A*, **81** (2005), 146-150.
- [6] K. Aomoto, M. Ito, Structure of Jackson integrals of BC_n -type, Tokyo J. Math., To Appear.
- [7] K. Aomoto, Y. Kato, A q-analogue of de Rham cohomology associated with Jackson integrals, In: Special Functions (Okayama 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo (1991), 30-62.
- [8] G. Gasper, M. Rahman, *Basic Hyper-Geometric Series*, Cambridge University Press, Cambridge (1990).
- [9] M. Ito, q-difference shift for a BC_n type Jackson integrals arising from 'elementary' symmetric polynomials, Adv. in Math., **204** (2006), 619-646.

- [10] M. Ito, Y. Sanada, On the Sears-Slater basic hypergeometric transformations, *Ramanujan J.*, To Appear.
- [11] J.P. Ramis, J. Sauloy, Ch. Zhang, Développement asymptotiques et sommabilité des solutions des équations linéares aux q-différences, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 515-518.
- [12] C. Sabbah, Systèmes holonomes d'équations aux q-différences, In: Dmodules and Microlocal Geometry, Lisbon, 1990, de Gruyter, Berlin (1993), 125-147.
- [13] J.F. Van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas, *Publ. Res. Inst. Math. Sci.*, **33** (1997), 483-508.