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Abstract: This paper deals with the definitions of product of non-deterministic
finite automaton, non-deterministic digraph, non-deterministic matrix, com-
plexity metric and structural measure on the class of non-deterministic ma-
trices. These definitions are used to establish the relation between structural
measure and the complexity metric on the class of non-deterministic matrices.
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1. Introduction

A graph based structural measure and complexity metric is established in [3].
Product of finite automata, deterministic digraph, deterministic matrix, com-
plexity metric and structural measure on the class of deterministic matrices
are developed in [6]. In this paper, we extend the theory to non-deterministic
digraphs and non-deterministic matrices.

In Section 2, we present preliminaries on product of digraphs of automata.
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For the general theory on automata one can refer [2] and the references cited
therein. In Section 3, we present the conversion of non-deterministic digraphs
into deterministic digraphs, the product of non-deterministic digraphs, prop-
erties of product graphs. In Section 4, we establish the relation between the
non-deterministic matrix and the corresponding deterministic matrix with the
relation between the complexity metric and structural measure on the class of
non-deterministic matrices.

Throughout this paper we use the following notations.

(i) (@) = (a1,a2,...,am).
m

(i) [TAi ={(a1,a2,...,am) 1 a; € A;,;i =1,2,...,m} for sets A;.
1

m
iii) [[ni = n1 X ng X ... X n,, for non-negative integers n;.
1

iv) | X| denotes the number of elements in the set X.

vi) NG = Non-deterministic digraph.

(
(
(v) DG = Deterministic digraph.
(
(vii) 29 = Set of all subsets of Q.

2. Preliminaries

In this section, we present some basic definitions and results on deterministic
and non-deterministic finite automata.

Definition 2.1. (see [2]) A Deterministic Finite Automata (DFA) is a
5 - tuple M = (Q,>_,0,q0, F), where @ is a finite set of states, > is a finite
set of input alphabets, gy € @ is the initial state, ' C @Q is the set of final
states and ¢ : @ X > — @ is a transition function. If there exists a function
§ QxS — 29 then M = (Q,3,0,q0, F) is a non-deterministic Finite
Automata (NFA) and ¢’ is called the transition function.

A directed graph, called a transition diagram is associated with a Finite
Automaton (FA) as follows. The vertices of the graph correspond to the states
of the FA. If §(¢,a) = p, then there is an arrow labeled a from the vertex ¢
to the vertex p in the transition diagram. The FA accepts a string z if the
sequence of transitions corresponding to the symbols of x leads from the start
to an accepting finial state.

Definition 2.2. (see [6]) Fori=1,2,3,...m, let M; = (Qi,>_;, %, qoi, F)
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be any m deterministic finite automata and p; = J;(¢;,a;). Product of de-
termlmstlc finite automata (PDFA) isa b - tuple M =(Q,>.,9,q,F), where

Q= HQnZ HZquO—(QOZ)l,F HFand(5 Qx> — Qis defined as

<5((ql)1 ,(a)h) = ( i) By identifying (a:l) (yi)1* = (x;y;)™, the language ac-
cepted by M is defined as L(M) = {(z;))* € > "2, € >, and 9i(qoi, zi) € Fi},

where Y_* is the set of all strings formed by finite elements of ) °. The transmon
digraph of M is a digraph containing H |Q;| vertices with vertex label set H Qi

and for each 6((¢;)T", (a:)1") = (pi)1" there is an arrow from the vertex (qz)m to
(pi)7* with edge label (a;)7"

Definition 2.3. Consider a digraph G = (V| E). If all the vertices and
edges of the digraph G are labeled in such a way that no two vertices have same
label (many edges can have same label), then the digraph G is called a labeled
digraph. Denote the set of all labels of vertices of G as @ and edges as >_. If
there exists a transition function 6 : @ x Y — @ in G, then the labeled digraph
G is called a deterministic digraph (DG) and is denoted as (Q, >, d). If there
exists a function ¢’ : Q@ x 3. — 2% in G, then the labeled digraph G is called
non-deterministic digraph (NG) and is denoted by (Q,>_,d").

Definition 2.4. (see [6]) Let (Q;,>;,9:),7 =1,2,3,...m be any m deter-
ministic digraphs as defined in Definition 2.3. Define @ = [[Q;,>_ =[[>_, and
1

1
define a function § : Q@ x> — Q as §((¢:)7", (a;){") = (pi)}", where p; = 6;(qi, a;)
for all ¢; € Q; and a; € ) ;. The deterministic digraph G = (Q,)_,0) is called
product deterministic digraph (PDG) of the given deterministic digraphs.

Definition 2.5. (see [6]) Consider a deterministic digraph DG = (@, >, ).
Rename the elements of Q as 1,2,...,|Q|. If a;; denotes the number of arrows
from i to j in DG, then the matrix A(DG) = (a;;) is called the adjacency ma-
trix of DG. A square matrix M is said to be a deterministic matrix if it is the
adjacent matrix of some DG. ie; M = A(DG).

Lemma 2.6. (see [6]) Let A(DG) = (a;;) be the deterministic matrix of

G = (Q,>,9). kij is the (i,7)-th entry of the matrix A¥(DG) if and only if
k;; = number of directed paths of length k from i to j.

Theorem 2.7. (see [6]) A square matrix A of non-negative integers is

a deterministic matrix if and only if all row sums or all column sums of the
matrix A are equal.
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Fig- 1

Fig-2

Figure 1: Figure 2:

3. Deterministic Matrices of Non-Deterministic Digraphs

In this section, by defining the deterministic digraphs, corresponding to the
non-deterministic digraphs, we establish some relations between deterministic
and non-deterministic matrices.

Definition 3.1. Let NG = (Q,>_,0’) be a non-deterministic digraph de-
fined as in Definition 2.3. Construct a deterministic digraph DG = (29,%",6) as
follows. The set of labels of vertices of DG is the set of all subsets of ) and set of
labels of edges of DG is . A vertex of DG will be denoted by [g1g2 . . . ¢;] where
q1,42, - -.,¢ are in Q. Observe that [g1g2 ... q;] is a single vertex of DG. We de-
fine the transition function ¢ : 2¢ x 3> — 29 by ¢ ([q1q2 ... 4] , @) = [p1p2 ... pr]

if‘and only if &' {q1,92,---Gi} ,a) = {p1,p2,...,pr} where & ({q1,q2,...q;i} ,a) =
'LZJI 8'(gj,a) and 0(¢,a) = ¢ for the empty set ¢. By relabeling the vertices of
JDG as 1,2,3,...,2l9l the adjacency matrix of the DG is called a deterministic
matrix of the corresponding NG.
Remark 3.2. Every DG is a NG but every NG need not be a DG.
Example 3.3. Consider the non-deterministic digraph NG = (Q,>_,¢")
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where Q = {qo,q1,¢2},>. = {0,1,2} and &' : Q x > — 29 given by

& | 1 2
q0 {QOthQQ} {GI1,GI2} {(12}

@)

q | ¢ {a, 2} {e}
@ |0 ¢ {a2}
Table 1:

Figure 1 is the transition diagram of the NG given in Table 1.

1 2 3
The adjacency matrix of Figure 1 is A(ING) = | 0 1 2 |, which is a
0 0 1 J
non-deterministic matrix.

By Definition 3.1, the deterministic digraph of NG given in Figure 1 is DG
= (29,37,6) where 0 : 29 x 3 — 29 given by

5 0 1 2

) ¢ )
[QO] [qom1q2]  [q1g2]  go]
[q1] o [q1q2]  q2]
[q2] ¢ ¢ [q2]
[qoq1] lqon1q2]  [n1g2]  ae]
[q0q2] [qon1a2]  [q1g2]  go]
[q142] ¢ [q1q2]  q2]
l0q162) | [a0q1a2] [@192] [g2]-

Table 2

Figure 2 is the 3-regular DG of the Figure 1. By Definition 3.1, the adja-
cency matrix of Figure 2 is the deterministic matrix which is given below whose
row sums are equal.

3 0 00 OO 0O
0001 0 0 1 1
1 0 01 0 0 1 O
2 0 01 0 0 0 O
A(DG) = 0O 0 0 1 0 0 1 1
0001 0 0 1 1
1 0 01 0 0 1 O
L0001 0 0 1 1]
Definition 3.4. Let (QQI,ZZ,@) = 1,2,...,m be m deterministic
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digraphs correspondmg to the non deterministic digraphs (Q;,>_,;,,) respec-
tively. Take @ = H2Qi,z = HZZ and define a function 0 : @ x > — @
1 1

as
4 (( [%1%2"'%;‘])21 ’ (al)?ll) = ([pilpiQ"'pi'r])?il >

where §;(¢;,a;) = ¢; for empty set ¢; and 0;([qi, @i, - - - ¢i;], @i) = [PiyPiy - - Pi )

i =1,2,...,m. The deterministic digraph denoted by PG = (Q,>_,0) is the

product graph of the given non-deterministic digraphs. By relabeling the vertices

of @ as 1,2,...,|Q| the adjacency matrix of PG is called product matriz.

Example 3.5. Consider the non-deterministic digraphs NG = (Q1, ),

53) and NG2 - (QQ:ZQ?éé) where Ql - {plup?}u Q2 = {q17q2}721 - ZQ -
{0,1} and & : Q1 x >, — 291, 84 1 Qg x >, — 292 are given as in Table 3,
Table 4 respectively.

s o 1 | o 1
{p2} & o | {e} e}

p2| ¢ A{m} @ | {a, @} o2
Table 3: Table 4:

(Here we denote ¢1 = ¢2 = ¢ = empty set). Figure 3 and Figure 4 are the
non-deterministic digraphs representing NG1 and NG9 respectively.

1 0
1 /_\ /_\
( ). 0 >o (1). 0,1 o 2
P . P, 0 q, & 0
Fig-3(NG,) Fig-4 (NG,
3
o ® 0
/ \ .
0,1
[p.p.] Of

0, \ / m—. /—1\

(2) I \_% ol

[CA}
Fig-5(DG,) Fig - 6 (DG,)

By Definition 3.1, we obtain DG = (291,3",,61) and DGy = (292,3,,62)
where §; : 291 x > — 291 and &y : 292 x Yoo — 2@2 are given as in Table 5
and Table 6 respectively.



COMPLEXITY METRIC AND STRUCTURAL MEASURE ON... 543

s |0 1 s | 0 1
b1 ¢ 1 ®2 b2 P2
[p1] | [p2] o1 (@] | 2] g2
p2] | o1 [p1] [g2] | [q1q2] 2
[p1p2] | [p2]  [pi] [1q2] | [01q2]  [q2]

Table 5: Table 6:

From Table 5 and Table 6, we can draw DGy (Figure 5) and DG, (Figure
6). Using Definition 3.4, we construct the product graph PG = (Q,>_,6) of
DG4 and DGy where

Q = {(¢1,02), (o1, q1]), (¢1,[q2]) , (01, [q162]) , ([p1], P2),
(Ipa] [@1]), (1], [g2]), ([p1]; [q1a2)); ([p2]; @2), ([p2]; [a1]), (2], [g2]),
([p2l; la2a2]). ([p1p2l, #2). ([P1p2l, [@1]), ([p1p2], [a2]), ([p1p2): [@1g2]) }

> =1{(0,0),(0,1),(1,0),(1,1)}

and the transition function 0 : Q x > — @ is given as in Table 7.

(5 al(0,0) ag(O, 1) a3(1,0) a4(1,1)
1 (¢1,02) (¢1,¢2) (¢1,P2) (¢1,¢2) (¢1,P2)
2 (¢1, [@1]) (61, [g2]) (01,[q2])  (¢1,[q2]) (61, [q2])
3 (61, [g2]) (¢1,[q192] (¢1,P2) (01, [q1q2]) (1, 02)
4 (61, [0192]) (01, lq1q2])  (d1,]a2]) (01, [q1q2]) (o1, [q2])
5 ([p1], #2) ([p2], #2) ([p2]; ¢2)  (¢1,02) (¢1,p2)
6 ([p1], [a1]) ([p2];[g2])  (Ip2l,[a2]) (91, [q2]) (01, [q2])
7 ([p1], [g2]) ([p2]; [1g2])  (Ip2l, d2)  (91:]q1q2]) (@1, 92)
8 ([p1]>[QIQ2]) ([p2] [Q1Q2]) ([p2]; la2]) (¢1,[Q1CI2]) (61, [q2])
9 ([p2], #2) (61, ¢2) (1,02)  ([p1]): @ ([p1]; 2)
10 ([p2ls [a1]) (61, [g2]) (01,a2])  (Ip1l, g ]) ([p1], [g2])
11 ([p2l; [g2]) (1, [a2])  (91,02) (Il [arge])  ([pa]s 92)
12 ([p2], [0192]) (¢1,[Q1CI2]) (61, [g2]) ([p1]>[QIQ2]) ([p1]; [a2])
13 ([pip2], 01) ([p2], #2) ([p2],; #2)  ([p1], é2) ([p1]; ¢2)
14 ([pip2)laa]) | ([p2lsla2))  (Ip2lsla2])  (Ipilslge])  (Ipal,lg2])
15 ([pip2lla2]) | ([p2lslange])  (Ip2l¢2)  (Ipals[@rgel)  (Ipal, 02)
16 ([pip2) [qae]) | ([p2ls [arae])  ([p2lsla2])  ([pils [@1ge])  (Ipal, [g2])

Table 7:

Table 7 generates the product graph (deterministic graph) of NG1 and NGy
(or DGy and DGsy), which is presented in Figure 7.
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(p.l.la.])
l¢

(@n[a.])
[

e,
%3,
> N
S0
K
.
;

6 [ ]
([

o
(pJLaD

([p.p.].[a,,9:1)

°
([p.p.).a.])
Fig-7

Figure 7:

Following are the adjacency matrices of the NG’s given in Figures 3, 4, 5,
6 and 7, respectively.

0 1 0 2
ANe) = | | O] A(NGQ):[l 1}

2 0 0 0 20 0 0

1 0 1 0 00 2 0
ADGY) = | | 0 0 ADGy) = | 0 0 1

001 1 0 00 1 1
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O O OO ONOFONONO
O O DD DD DD DD DD DODDODO OO oo o
OO OO ONOHFONONO RO
OO OO FEF OO RFEFOONINOO
O R ONOFONOO OO oo oo
OO DO DD DD OO O OO o oo
R ON O, ONOOOOOOoO o oo
R, OO, P, OOOOoOOoOOoOoo oo
O R O NODODODODO R, ONOOOO
OO DO DD DD OO DODO OO OO0 o000
ON O OO OO, ONOO O OO
_ O OO 00O 00O R R OOOOOOo
OO O DD DD DD DO OO OO o oo
OO DD DD DD DODDODDODO OO OO0 o oo
O OO DD DD DD DO OO OO0 o oo
OO DD DD DD DO DO DODO OO OO0 o oo

0 0 1 1
If row sums of A(DG,), A(DG1),...,A(DG,) are si,Sa,...,5Sy, then the
n
row sum of A(PG) is )_ s;, where PG is the product graph of DGy, DGo,.. .,
i=1
DG,,.

Theorem 3.6. IfG is a k-regular directed graph with respect to outgoing
degree if and only if G is a deterministic digraph (Q,), ), where || = k.

o

Proof. The proof follows by taking the vertex set as (), edge labels by k
symbols from Y = {aj,a9,...,a;} and a; is an arrow from a vertex p to ¢ if
and only if 0(p, a;) = ¢ and from Definition 2.3. O

Theorem 3.7. For every non-deterministic digraph NG = (Q,>.,¢),
there exists a deterministic digraph DG = (29,37,6) with 2|9l vertices and
2191 S| directed edges.

Proof. The proof follows from Definition 3.1 and Theorem 3.6. U

Theorem 3.8. Let (Q,>.,0') be any NG. If Y is any set containing Y,
then there exists a DG = (29,5, 6) with 2/9l vertices and | 3| 219! directed
edges.

Proof. By defining ¢'(q,b) = ¢ for all (¢,b) € Q x (3>.' =), the digraph
(Q,>, &) becomes a NG. Now the proof follows from Theorem 3.7. O

Remark 3.9. Every DG is a regular graph with respect to outgoing
degree but the converse need not be true. NG; and NGy given in Figure 3
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and Figure 4 are 1-regular and 2-regular graphs, respectively, but they are not
deterministic digraphs since d1 : Q1 x>, — Q1 and 02 : Q2 X Y 5 — Q2 do not
exist,.

Theorem 3.10. If (Q;,>;,0!), i = 1,2,...,m are non-deterministic di-
m

graphs, then there exists a product digraph PG = (Q,Y.,6) with [] 219l ver-
1

m m
tices and [[|>",| [[2/%! directed edges.
1 1

Proof. By Theorem 3.7, there exist deterministic digraphs (2Qi,2i,5i),
i=1,2,...,m and each DG; = (297,3".,6;) has 219 vertices and |}, | 2/
directed edges. Now the proof follows from Definition 3.4 (see Example 3.5). O

Definition 3.11. A square matrix of non-negative integers is said to be a
non-deterministic matrix if it is an adjacency matrix of some non-deterministic

digraph (Q,>,¢").

Theorem 3.12. FEvery square matrix of non-negative integers is a non-
deterministic matrix.

Proof. Let A = (a;j)mxm be the given square matrix of nonnegative integers
of order m. By taking

m
_ . 1
n = max Zam}a (1)

j=1
Q =1{1,2,...,m}and ) is any set containing n different labels {a1, as, ..., ay},
we shall construct a non-deterministic digraph NG = (Q,>_, ") whose adja-
cency matrix is A. Take @ as the vertex set of NG and to each pair (i,7) €
Q x @, select S;; C )" containing a,; labels satisfying the following conditions.

7—1
SZ'() = gf), Sij g Z — (U Szk) ,‘Sij‘ = aij for i,j = 1,2, e, M. (2)
k=0

From (1) and (2), U Si; € > and |J Sij = > for some 4, 1 < i < m. Now
j=1 j=1
define &' : Q x 3. — 29 by
10 _ U i a €Sy,
0, ax) = { ¢ otherwise, (3)

where ¢ is the empty set. Since |S;;| = a;j, the function ¢’ generates a;; arrows
from i to j labeled by the elements of S;;. Now the proof follows by taking
set of edges of the non-deterministic digraph NG as the collection of all arrows
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from i to j generated by (3) for all 7,5 € Q.
The following example illustrates Theorem 3.12. U

Example 3.13. Consider the following square matrix of nonnegative in-
tegers.

12 3 3
05 30
A_6112
70 00

1<i<4

4
Since max {Z ai]} = max{9,8,10,7} = 10, as in Theorem 3.12, take ) =
< =1
{a1,a9,...,a10} as the set of edge labels and @ = {1, 2, 3,4} as the set of vertex

labels of the required non-deterministic digraph NG = (Q,>,d").

FI"OIH (2) and (3), if we take 511 = {al},Slg = {ag,ag},slg = {a4,a5,a6},
S ={ar,as,a9}, So1 = {@}, So2 = {a1,a3,a5,a7,a9}, So3 = {az, a4, a6}, So4 =
{0}, S31 = {a1,a2,a3,a4, 05, a6}, S32 = {a10}, S33 = {ag}, S34 = {az,as}, Sy =
{ay,as,a¢,ar,as,a9,a10}, S4o = Si3 = Sya = ¢, then & : Q x 3 — 2% can be
taken as in Table 8.

ap a2 a3z a4 4z A ay ag A9 A0
L@ @2 @2 6 6 6 @4 @ @ ¢
212 3 2 3 @2 B 2) ¢ (2 ¢
3@ @O @O @O @O G @ @ 6B (2
419 ¢ o (1) 1) 1) @O @) @) (@)
Table &:

Figure 8 is the NG of the matrix A, and hence A is a non-deterministic
matrix.

Theorem 3.14. Let k be any positive integer. If A = (a;j)mxm is any
non-deterministic matrix of order m with maximum row sum n, then there
exists deterministic matrix B = (b;j)amxom of order 2™ whose row sums are

equal to n, i.e. RS(B) = n and also B¥ is a deterministic matrix whose row
k
sum = n".

Proof. By Theorem 3.12, there exists a non-deterministic digraph NG =
(Q,>°,0") where Q = {1,2,3,...,m}, > contains n symbols and §' : Q@ x > —
2% whose adjacency matrix is A. By Theorem 3.7, there exists a deterministic
digraph DG = (29,3, 6) with 2/9l vertices and 219! | 3| directed edges. Now,
the proof follows by taking B as the adjacency matrix of the deterministic
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digraph DG = (29,3>,6) and Theorem 3.6 in [6]. O

Theorem 3.15. Let (Q;,) ;,9;),i=1,2,...,n be any n non-deterministic
digraphs. Then, the deterministic matrix A of the product digraph

(112 115)

of the deterministic digraphs (29¢,3".,6;) is a square matrix of order [] 2!%l
1

n
with common row sum [[ |, ]
1

Proof. The proof follows by Theorems 3.7, 3.10 and Theorem 3.8 of [6]. O

Theorem 3.16. Let A = (a;j)mxm be a non-deterministic matrix of order
m
m andn = max {Z ai; ¢. Then the number of distinct deterministic matrices
Stsm 1
of order 2™ with common row sum n generated by A is

j—1
n — (IZ'
5ij kZ::O g ) (4)
=1 =t aij }J
' 7 ..
where < ’: > — (ni and 5” _ { ].7 -lfu Qi #07

n—r)lr! 0, otherwise.

m m

Proof. Let (Q,)",0") and S;; be defined as in Theorem 3.12. From (3), dis-
tinct selections of Sj; C > defined in (2) generate distinct transition functions
0’. Hence, the number of distinct non-deterministic digraphs generated by A is

the number of distinct selections of S;; from ). Since |} | = n, for each pair,
j—1

(1,7) € Q x @, we can select S;; in " ,go“““ / ways if a;; # 0. Now the
Ajj
proof follows from Theorem 3.7, Definition 2.5 and by taking S;g = ¢. U

4. Complexity Metric on the Class of Non-Deterministic Matrices

In [3], Hirohisa Aman, H. Yamada, M.T. Noda and Y. Yanarau studied a
graph — based class structural complexity metric and its evaluation. In [6], the
authors established complexity metric and structural measure on the class of
deterministic matrices. Hence, in this section we develop complexity metric
and structural measure on the class of non-deterministic matrices.
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Definition 4.1. Let N be the class of all non-deterministic matrices, D
be the class of all deterministic matrices generated by the non-deterministic
matrices of N and let R be the set of all real numbers. A complexity metric on
D is a function p : D — R satisfying the following five properties.

i) Non-negativity: u(B) > 0 for all B € D.

(

(ii) Null value: p(B) = 0 if B is the zero matrix in D.

(iii) Similarity: p(B) = pu(C) if B and C' are of the same order and RS(B) =
RS(C).

(iv) Super additivity: If By, By and B are matrices of same order in D such
that RS(B1) + RS(B2) < RS(B), then u(B1) + pu(B2) < u(B).

(v) Additivity: If By, By and B are in D such that B = [ E(’;l g

2
1(B1) + p(B2) = pu(B).

By Theorem 3.14, for each A € N, there exists a deterministic matrix B
generated by A, say d(A) € D. The function g/ : N — R defined by p/(A) =
p(d(A)) (by (iii) ' is well defined) is called a complexity metric on the class of
non-deterministic matrices.

Example 4.2. Toeach r € RT, i/ : N — R defined by p/(A) = rRS(d(A))
is a complexity metric on N.

} , then

Definition 4.3. (see [6]) Let A,,xm be any non-deterministic matrix of
order m and NG = (Q,>,d') be a non-deterministic digraph generated by
A, constructed by Theorem 3.12. Let DG = (29,5,6) be the deterministic
digraph for the NG constructed by Theorem 3.7. Let Bomyxom be the determin-

[e.e]

istic matrix obtained by DG and ) wy > 0. Then the matrix
k=1

[o¢]
B, =Y wy B (5)
k=1

is called the weighted closure of B. Let P = (B})’, which is the transpose of
By, Then P is called the dependence matrix of B. If P = (p;;) is a dependence
matrix of order 2", then the vector

2m 2m
pr=| Y _pit: Y Pk (6)
=1 j=1 /

is called the dependency vector of the k-th vertex of the deterministic digraph
(29,52,6). If p = (p1,p2) is any dependency vector, then the norm of p is
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defined as

[Pl =p1+p2. (7)
Let ¢:{1,2,...,2™} — [0,00) be a non-negative real valued function. Define a
function SM : N — R defined by

om
SM(A) =) Ipxll (k) = SM(d(4)), (8)
k=1

where ||pg| is obtained by (6) and (7) with B = d(A). By Theorems 2.7
and 3.14, (8) is well defined and is called the structural measure of the non-
deterministic matrix A.

Lemma 4.4. If A; and Ay are two non-deterministic matrices of the same
order, then SM(A; + As) > SM (A1) + SM(Ay). Also if maximum row sum
ny of Ay = maximum row sum ny of Ay, then SM(A;) = SM(A3).

Proof. The proof follows from Theorem 3.14 and the equations (5)-(8). O

Theorem 4.5. Let N be the class of all non-deterministic matrices and
R be the set of all real numbers. Then the function i/ : N — R defined by
W (A) = SM(A) for all A € N is a complexity metric.

Proof. The proof follows by Lemma 4.4, replacing A by B = d(A), Q by
20 = {1,2,...,2™}, Ay, Ay by d(A}),d(A3) in Theorem 4.6 of [6]. O
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