International Journal of Pure and Applied Mathematics

Volume 50 No. 4 2009, 537-551

# COMPLEXITY METRIC AND STRUCTURAL MEASURE ON THE CLASS OF NON DETERMINISTIC MATRICES

M. Maria Susai Manuel<sup>1</sup><sup>§</sup>, G. Britto Antony Xavier<sup>2</sup>, L. Ravi<sup>3</sup>

<sup>1,2</sup>Department of Mathematics Sacred Heart College
Tirupattur, 635 601, Tamil Nadu, INDIA
<sup>1</sup>e-mail: manuelmsm\_03@yahoo.co.in
<sup>3</sup>Department of Computer Science Sacred Heart College
Tirupattur, 635 601, Tamil Nadu, INDIA

**Abstract:** This paper deals with the definitions of product of non-deterministic finite automaton, non-deterministic digraph, non-deterministic matrix, complexity metric and structural measure on the class of non-deterministic matrices. These definitions are used to establish the relation between structural measure and the complexity metric on the class of non-deterministic matrices.

### AMS Subject Classification: 05C

**Key Words:** non-deterministic digraph, non-deterministic matrix, complexity metric

# 1. Introduction

A graph based structural measure and complexity metric is established in [3]. Product of finite automata, deterministic digraph, deterministic matrix, complexity metric and structural measure on the class of deterministic matrices are developed in [6]. In this paper, we extend the theory to non-deterministic digraphs and non-deterministic matrices.

In Section 2, we present preliminaries on product of digraphs of automata.

Received: November 1, 2008 © 2009 Academic Publications

<sup>§</sup>Correspondence author

For the general theory on automata one can refer [2] and the references cited therein. In Section 3, we present the conversion of non-deterministic digraphs into deterministic digraphs, the product of non-deterministic digraphs, properties of product graphs. In Section 4, we establish the relation between the non-deterministic matrix and the corresponding deterministic matrix with the relation between the complexity metric and structural measure on the class of non-deterministic matrices.

Throughout this paper we use the following notations.

- (i)  $(a_i)_1^m = (a_1, a_2, ..., a_m).$ (ii)  $\prod_{i=1}^m A_i = \{(a_1, a_2, ..., a_m) : a_i \in A_i, i = 1, 2, ..., m\}$  for sets  $A_i.$ (iii)  $\prod_{i=1}^m n_i = n_1 \times n_2 \times ... \times n_m$  for non-negative integers  $n_i.$
- (iv) |X| denotes the number of elements in the set X.
- (v) DG = Deterministic digraph.
- (vi) NG = Non-deterministic digraph.
- (vii)  $2^Q = \text{Set of all subsets of } Q$ .

### 2. Preliminaries

In this section, we present some basic definitions and results on deterministic and non-deterministic finite automata.

**Definition 2.1.** (see [2]) A Deterministic Finite Automata (DFA) is a 5 - tuple  $M = (Q, \sum, \delta, q_0, F)$ , where Q is a finite set of states,  $\sum$  is a finite set of input alphabets,  $q_0 \in Q$  is the initial state,  $F \subset Q$  is the set of final states and  $\delta : Q \times \sum \to Q$  is a transition function. If there exists a function  $\delta' : Q \times \sum \to 2^Q$ , then  $M = (Q, \sum, \delta', q_0, F)$  is a non-deterministic Finite Automata (NFA) and  $\delta'$  is called the transition function.

A directed graph, called a transition diagram is associated with a Finite Automaton (FA) as follows. The vertices of the graph correspond to the states of the FA. If  $\delta(q, a) = p$ , then there is an arrow labeled a from the vertex q to the vertex p in the transition diagram. The FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads from the start to an accepting finial state.

**Definition 2.2.** (see [6]) For i = 1, 2, 3, ..., m, let  $M_i = (Q_i, \sum_i, \delta_i, q_{0i}, F_i)$ 

539

be any *m* deterministic finite automata and  $p_i = \delta_i(q_i, a_i)$ . Product of deterministic finite automata (PDFA) is a 5 - tuple  $M = (Q, \sum, \delta, q_0, F)$ , where  $Q = \prod_1^m Q_i, \sum \prod_{i=1}^m \sum_{i} q_i = (q_{0i})_1^m, F = \prod_{i=1}^m F_i \text{ and } \delta : Q \times \sum \to Q \text{ is defined as } \delta((q_i)_1^m, (a_i)_1^m) = (p_i)_1^m$ . By identifying  $(x_i)_1^m (y_i)_1^m = (x_iy_i)^m$ , the language accepted by M is defined as  $L(M) = \{(x_i)_1^m \in \sum^*; x_i \in \sum_i \text{ and } \delta_i(q_{0i}, x_i) \in F_i\}$ , where  $\sum^*$  is the set of all strings formed by finite elements of  $\sum$ . The transition digraph of M is a digraph containing  $\prod_{i=1}^m |Q_i|$  vertices with vertex label set  $\prod_{i=1}^m Q_i$  and for each  $\delta((q_i)_1^m, (a_i)_1^m) = (p_i)_1^m$  there is an arrow from the vertex  $(q_i)_1^m$  to  $(p_i)_1^m$  with edge label  $(a_i)_1^m$ .

**Definition 2.3.** Consider a digraph G = (V, E). If all the vertices and edges of the digraph G are labeled in such a way that no two vertices have same label (many edges can have same label), then the digraph G is called a labeled digraph. Denote the set of all labels of vertices of G as Q and edges as  $\sum$ . If there exists a transition function  $\delta: Q \times \sum \to Q$  in G, then the labeled digraph G is called a deterministic digraph (DG) and is denoted as  $(Q, \sum, \delta)$ . If there exists a function  $\delta': Q \times \sum \to 2^Q$  in G, then the labeled digraph G is called non-deterministic digraph (NG) and is denoted by  $(Q, \sum, \delta')$ .

**Definition 2.4.** (see [6]) Let  $(Q_i, \sum_i, \delta_i), i = 1, 2, 3, ..., m$  be any m deterministic digraphs as defined in Definition 2.3. Define  $Q = \prod_{i=1}^{m} Q_i, \sum_{i=1}^{m} \prod_{i=1}^{m} \sum_i$  and define a function  $\delta : Q \times \sum \to Q$  as  $\delta((q_i)_1^m, (a_i)_1^m) = (p_i)_1^m$ , where  $p_i = \delta_i(q_i, a_i)$  for all  $q_i \in Q_i$  and  $a_i \in \sum_i$ . The deterministic digraph  $G = (Q, \sum, \delta)$  is called product deterministic digraph (PDG) of the given deterministic digraphs.

**Definition 2.5.** (see [6]) Consider a deterministic digraph  $DG = (Q, \sum, \delta)$ . Rename the elements of Q as  $1, 2, \ldots, |Q|$ . If  $a_{ij}$  denotes the number of arrows from i to j in DG, then the matrix  $A(DG) = (a_{ij})$  is called the adjacency matrix of DG. A square matrix M is said to be a deterministic matrix if it is the adjacent matrix of some DG. ie; M = A(DG).

**Lemma 2.6.** (see [6]) Let  $A(DG) = (a_{ij})$  be the deterministic matrix of  $DG = (Q, \sum, \delta)$ .  $k_{ij}$  is the (i, j)-th entry of the matrix  $A^k(DG)$  if and only if  $k_{ij}$  = number of directed paths of length k from i to j.

**Theorem 2.7.** (see [6]) A square matrix A of non-negative integers is a deterministic matrix if and only if all row sums or all column sums of the matrix A are equal.



## 3. Deterministic Matrices of Non-Deterministic Digraphs

In this section, by defining the *deterministic digraphs*, corresponding to the *non-deterministic digraphs*, we establish some relations between deterministic and non-deterministic matrices.

**Definition 3.1.** Let NG =  $(Q, \sum, \delta')$  be a non-deterministic digraph defined as in Definition 2.3. Construct a deterministic digraph DG =  $(2^Q, \sum, \delta)$  as follows. The set of labels of vertices of DG is the set of all subsets of Q and set of labels of edges of DG is  $\sum$ . A vertex of DG will be denoted by  $[q_1q_2...q_i]$  where  $q_1, q_2, ..., q_i$  are in Q. Observe that  $[q_1q_2...q_i]$  is a single vertex of DG. We define the transition function  $\delta : 2^Q \times \sum \rightarrow 2^Q$  by  $\delta([q_1q_2...q_i], a) = [p_1p_2...p_r]$  if and only if  $\delta'(\{q_1, q_2, ...q_i\}, a) = \{p_1, p_2, ..., p_r\}$  where  $\delta'(\{q_1, q_2, ...q_i\}, a) = \bigcup_{j=1}^{i} \delta'(q_j, a)$  and  $\delta(\phi, a) = \phi$  for the empty set  $\phi$ . By relabeling the vertices of DG as  $1, 2, 3, ..., 2^{|Q|}$  the adjacency matrix of the DG is called a deterministic matrix of the corresponding NG.

**Remark 3.2.** Every DG is a NG but every NG need not be a DG.

**Example 3.3.** Consider the non-deterministic digraph NG =  $(Q, \sum, \delta')$ 

where  $Q = \{q_0, q_1, q_2\}, \sum = \{0, 1, 2\}$  and  $\delta' : Q \times \sum \rightarrow 2^Q$  given by

| $\delta'$ | 0                   | 1              | 2         |
|-----------|---------------------|----------------|-----------|
| $q_0$     | $\{q_0, q_1, q_2\}$ | $\{q_1, q_2\}$ | $\{q_2\}$ |
| $q_1$     | $\phi$              | $\{q_1, q_2\}$ | $\{q_2\}$ |
| $q_2$     | $\phi$              | $\phi$         | $\{q_2\}$ |
|           |                     |                |           |

| $\mathbf{T}$ | 1   | - 1 |   |
|--------------|-----|-----|---|
| La.          | nie | ן ב | • |
| La           | 010 |     | • |

Figure 1 is the transition diagram of the NG given in Table 1.

The adjacency matrix of Figure 1 is  $A(NG) = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$  which is a

non-deterministic matrix.

By Definition 3.1, the deterministic digraph of NG given in Figure 1 is DG  $=(2^Q, \sum, \delta)$  where  $\delta: 2^Q \times \sum \rightarrow 2^Q$  given by

|                 | 0               | v           |          |
|-----------------|-----------------|-------------|----------|
| δ               | 0               | 1           | 2        |
| $\phi$          | $\phi$          | $\phi$      | $\phi$   |
| $[q_0]$         | $[q_0 q_1 q_2]$ | $[q_1q_2]$  | $[q_2]$  |
| $[q_1]$         | $\phi$          | $[q_1 q_2]$ | $[q_2]$  |
| $[q_2]$         | $\phi$          | $\phi$      | $[q_2]$  |
| $[q_0 q_1]$     | $[q_0 q_1 q_2]$ | $[q_1 q_2]$ | $[q_2]$  |
| $[q_0 q_2]$     | $[q_0 q_1 q_2]$ | $[q_1 q_2]$ | $[q_2]$  |
| $[q_1 q_2]$     | $\phi$          | $[q_1 q_2]$ | $[q_2]$  |
| $[q_0 q_1 q_2]$ | $[q_0 q_1 q_2]$ | $[q_1 q_2]$ | $[q_2].$ |
|                 |                 |             |          |

Table 2:

Figure 2 is the 3-regular DG of the Figure 1. By Definition 3.1, the adjacency matrix of Figure 2 is the deterministic matrix which is given below whose row sums are equal.

Let  $(2^{Q_i}, \sum_i, \delta_i), i = 1, 2, \dots, m$  be *m* deterministic Definition 3.4.

digraphs corresponding to the non-deterministic digraphs  $(Q_i, \sum_i, \delta'_i)$  respectively. Take  $Q = \prod_{i=1}^{m} 2^{Q_i}, \sum_{i=1}^{m} \prod_{i=1}^{m} \sum_i$  and define a function  $\delta : Q \times \sum \to Q$  as

$$\delta\left(\left(\left[q_{i_1}q_{i_2}...q_{i_j}\right]\right)_{i=1}^m, (a_i)_{i=1}^m\right) = \left(\left[p_{i_1}p_{i_2}...p_{i_r}\right]\right)_{i=1}^m,$$

where  $\delta_i(\phi_i, a_i) = \phi_i$  for empty set  $\phi_i$  and  $\delta_i([q_{i_1}q_{i_2} \dots q_{i_j}], a_i) = [p_{i_1}p_{i_2} \dots p_{i_r}],$  $i = 1, 2, \dots, m$ . The deterministic digraph denoted by  $PG = (Q, \sum, \delta)$  is the *product graph* of the given *non-deterministic digraphs*. By relabeling the vertices of Q as  $1, 2, \dots, |Q|$  the adjacency matrix of PG is called *product matrix*.

**Example 3.5.** Consider the non-deterministic digraphs  $NG_1 = (Q_1, \sum_1, \delta'_1)$  and  $NG_2 = (Q_2, \sum_2, \delta'_2)$  where  $Q_1 = \{p_1, p_2\}, Q_2 = \{q_1, q_2\}, \sum_1 = \sum_2 = \{0, 1\}$  and  $\delta'_1 : Q_1 \times \sum_1 \to 2^{Q_1}, \delta'_2 : Q_2 \times \sum_2 \to 2^{Q_2}$  are given as in Table 3, Table 4 respectively.

| $\delta'_1$    | 0                                               | 1                                                  | $\delta_2'$                               | 0                         | 1                                                |
|----------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------|--------------------------------------------------|
| $p_1$<br>$p_2$ | $\begin{array}{c} \{p_2\}\\ \phi_1 \end{array}$ | $ \begin{array}{c} \phi_1 \\ \{p_1\} \end{array} $ | $\begin{array}{c} q_1 \\ q_2 \end{array}$ | $\{q_2\} \\ \{q_1, q_2\}$ | $\begin{array}{c} \{q_2\} \\ \phi_2 \end{array}$ |



Table 4:

(Here we denote  $\phi_1 = \phi_2 = \phi = \text{empty set}$ ). Figure 3 and Figure 4 are the non-deterministic digraphs representing  $NG_1$  and  $NG_2$  respectively.



By Definition 3.1, we obtain  $DG_1 = (2^{Q_1}, \sum_1, \delta_1)$  and  $DG_2 = (2^{Q_2}, \sum_2, \delta_2)$ where  $\delta_1 : 2^{Q_1} \times \sum_1 \to 2^{Q_1}$  and  $\delta_2 : 2^{Q_2} \times \sum_2 \to 2^{Q_2}$  are given as in Table 5 and Table 6 respectively.

| $\delta_1$  | 0        | 1        |   | $\delta_2$  | 0          | 1        |
|-------------|----------|----------|---|-------------|------------|----------|
| $\phi_1$    | $\phi_1$ | $\phi_1$ | - | $\phi_2$    | $\phi_2$   | $\phi_2$ |
| $[p_1]$     | $[p_2]$  | $\phi_1$ |   | $[q_1]$     | $[q_2]$    | $[q_2]$  |
| $[p_2]$     | $\phi_1$ | $[p_1]$  |   | $[q_2]$     | $[q_1q_2]$ | $\phi_2$ |
| $[p_1 p_2]$ | $[p_2]$  | $[p_1]$  |   | $[q_1 q_2]$ | $[q_1q_2]$ | $[q_2]$  |

Table 5:

Table 6:

From Table 5 and Table 6, we can draw  $DG_1$  (Figure 5) and  $DG_2$  (Figure 6). Using Definition 3.4, we construct the product graph  $PG = (Q, \sum, \delta)$  of  $DG_1$  and  $DG_2$  where

$$\begin{split} Q &= \{ (\phi_1, \phi_2) \,, (\phi_1, [q_1]) \,, (\phi_1, [q_2]) \,, (\phi_1, [q_1q_2]) \,, ([p_1], \phi_2), \\ & ([p_1], [q_1]) \,, ([p_1], [q_2]) \,, ([p_1], [q_1q_2]) \,, ([p_2], \phi_2) \,, ([p_2], [q_1]) \,, ([p_2], [q_2]) \,, \\ & ([p_2], [q_2q_2]) \,, ([p_1p_2], \phi_2) \,, ([p_1p_2], [q_1]) \,, ([p_1p_2], [q_2]) \,, ([p_1p_2], [q_1q_2]) \} \;, \end{split}$$

$$\sum = \{(0,0), (0,1), (1,0), (1,1)\}$$

and the transition function  $\delta: Q \times \sum \rightarrow Q$  is given as in Table 7.

|    | δ                      | $a_1(0,0)$           | $a_2(0,1)$        | $a_3(1,0)$           | $a_4(1,1)$        |
|----|------------------------|----------------------|-------------------|----------------------|-------------------|
| 1  | $(\phi_1,\phi_2)$      | $(\phi_1,\phi_2)$    | $(\phi_1,\phi_2)$ | $(\phi_1,\phi_2)$    | $(\phi_1,\phi_2)$ |
| 2  | $(\phi_1, [q_1])$      | $(\phi_1, [q_2])$    | $(\phi_1, [q_2])$ | $(\phi_1, [q_2])$    | $(\phi_1, [q_2])$ |
| 3  | $(\phi_1, [q_2])$      | $(\phi_1, [q_1q_2]$  | $(\phi_1,\phi_2)$ | $(\phi_1, [q_1q_2])$ | $(\phi_1,\phi_2)$ |
| 4  | $(\phi_1, [q_1q_2])$   | $(\phi_1, [q_1q_2])$ | $(\phi_1, [q_2])$ | $(\phi_1, [q_1q_2])$ | $(\phi_1, [q_2])$ |
| 5  | $([p_1], \phi_2)$      | $([p_2], \phi_2)$    | $([p_2], \phi_2)$ | $(\phi_1,\phi_2)$    | $(\phi_1,\phi_2)$ |
| 6  | $([p_1], [q_1])$       | $([p_2], [q_2])$     | $([p_2], [q_2])$  | $(\phi_1, [q_2])$    | $(\phi_1, [q_2])$ |
| 7  | $([p_1], [q_2])$       | $([p_2], [q_1q_2])$  | $([p_2], \phi_2)$ | $(\phi_1, [q_1q_2])$ | $(\phi_1,\phi_2)$ |
| 8  | $([p_1], [q_1q_2])$    | $([p_2], [q_1q_2])$  | $([p_2], [q_2])$  | $(\phi_1, [q_1q_2])$ | $(\phi_1, [q_2])$ |
| 9  | $([p_2], \phi_2)$      | $(\phi_1,\phi_2)$    | $(\phi_1,\phi_2)$ | $([p_1]), \phi_2$    | $([p_1], \phi_2)$ |
| 10 | $([p_2], [q_1])$       | $(\phi_1, [q_2])$    | $(\phi_1, [q_2])$ | $([p_1], [q_2])$     | $([p1], [q_2])$   |
| 11 | $([p_2], [q_2])$       | $(\phi_1, [q_1q_2])$ | $(\phi_1,\phi_2)$ | $([p_1], [q_1q_2])$  | $([p_1], \phi_2)$ |
| 12 | $([p_2], [q_1q_2])$    | $(\phi_1, [q_1q_2])$ | $(\phi_1, [q_2])$ | $([p_1], [q_1q_2])$  | $([p_1], [q_2])$  |
| 13 | $([p_1p_2],\phi_1)$    | $([p_2], \phi_2)$    | $([p_2], \phi_2)$ | $([p_1], \phi_2)$    | $([p_1], \phi_2)$ |
| 14 | $([p_1p_2], [q_1])$    | $([p_2], [q_2])$     | $([p_2], [q_2])$  | $([p_1], [q_2])$     | $([p_1], [q_2])$  |
| 15 | $([p_1p_2], [q_2])$    | $([p_2], [q_1q_2])$  | $([p_2], \phi_2)$ | $([p_1], [q_1q_2])$  | $([p_1], \phi_2)$ |
| 16 | $([p_1p_2], [q_1q_2])$ | $([p_2], [q_1q_2])$  | $([p_2], [q_2])$  | $([p_1], [q_1q_2])$  | $([p_1], [q_2])$  |

## Table 7:

Table 7 generates the product graph (deterministic graph) of  $NG_1$  and  $NG_2$  (or  $DG_1$  and  $DG_2$ ), which is presented in Figure 7.

543



Following are the adjacency matrices of the NG's given in Figures 3, 4, 5, 6 and 7, respectively.

 $A(NG_1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad A(NG_2) = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$  $A(DG_1) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad A(DG_2) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ 

If row sums of  $A(DG_1), A(DG_1), \ldots, A(DG_n)$  are  $s_1, s_2, \ldots, s_n$ , then the row sum of A(PG) is  $\sum_{i=1}^n s_i$ , where PG is the product graph of  $DG_1, DG_2, \ldots, DG_n$ .

**Theorem 3.6.** If G is a k-regular directed graph with respect to outgoing degree if and only if G is a deterministic digraph  $(Q, \sum, \delta)$ , where  $|\sum| = k$ .

*Proof.* The proof follows by taking the vertex set as Q, edge labels by k symbols from  $\sum = \{a_1, a_2, \ldots, a_k\}$  and  $a_i$  is an arrow from a vertex p to q if and only if  $\delta(p, a_i) = q$  and from Definition 2.3.

**Theorem 3.7.** For every non-deterministic digraph  $NG = (Q, \sum, \delta')$ , there exists a deterministic digraph  $DG = (2^Q, \sum, \delta)$  with  $2^{|Q|}$  vertices and  $2^{|Q|} |\sum |$  directed edges.

*Proof.* The proof follows from Definition 3.1 and Theorem 3.6.  $\Box$ 

**Theorem 3.8.** Let  $(Q, \sum, \delta')$  be any NG. If  $\sum'$  is any set containing  $\sum$ , then there exists a  $DG = (2^Q, \sum', \delta)$  with  $2^{|Q|}$  vertices and  $|\sum' |2^{|Q|}$  directed edges.

*Proof.* By defining  $\delta'(q, b) = \phi$  for all  $(q, b) \in Q \times (\sum' - \sum)$ , the digraph  $(Q, \sum', \delta')$  becomes a NG. Now the proof follows from Theorem 3.7.

**Remark 3.9.** Every DG is a regular graph with respect to outgoing degree but the converse need not be true.  $NG_1$  and  $NG_2$  given in Figure 3

and Figure 4 are 1-regular and 2-regular graphs, respectively, but they are not deterministic digraphs since  $\delta_1 : Q_1 \times \sum_1 \to Q_1$  and  $\delta_2 : Q_2 \times \sum_2 \to Q_2$  do not exist.

**Theorem 3.10.** If  $(Q_i, \sum_i, \delta'_i)$ , i = 1, 2, ..., m are non-deterministic digraphs, then there exists a product digraph  $PG = (Q, \sum, \delta)$  with  $\prod_{i=1}^{m} 2^{|Q_i|}$  vertices and  $\prod_{i=1}^{m} |\sum_i| \prod_{i=1}^{m} 2^{|Q_i|}$  directed edges.

Proof. By Theorem 3.7, there exist deterministic digraphs  $(2^{Q_i}, \sum_i, \delta_i)$ ,  $i = 1, 2, \ldots, m$  and each  $DG_i = (2^{Q_i}, \sum_i, \delta_i)$  has  $2^{|Q_i|}$  vertices and  $|\sum_i |2^{|Q_i|}$  directed edges. Now the proof follows from Definition 3.4 (see Example 3.5).

**Definition 3.11.** A square matrix of non-negative integers is said to be a non-deterministic matrix if it is an adjacency matrix of some non-deterministic digraph  $(Q, \sum, \delta')$ .

**Theorem 3.12.** Every square matrix of non-negative integers is a nondeterministic matrix.

Proof. Let  $A = (a_{ij})_{m \times m}$  be the given square matrix of nonnegative integers of order m. By taking

$$n = \max_{1 \le i \le m} \left\{ \sum_{j=1}^{m} a_{ij} \right\},\tag{1}$$

 $Q = \{1, 2, \ldots, m\}$  and  $\sum$  is any set containing *n* different labels  $\{a_1, a_2, \ldots, a_n\}$ , we shall construct a non-deterministic digraph  $NG = (Q, \sum, \delta')$  whose adjacency matrix is *A*. Take *Q* as the vertex set of *NG* and to each pair  $(i, j) \in Q \times Q$ , select  $S_{ij} \subseteq \sum$  containing  $a_{ij}$  labels satisfying the following conditions.

$$S_{i0} = \phi, S_{ij} \subseteq \sum_{m} -\left(\bigcup_{k=0}^{j-1} S_{ik}\right), |S_{ij}| = a_{ij} \text{ for } i, j = 1, 2, ..., m.$$
(2)

From (1) and (2),  $\bigcup_{j=1}^{m} S_{ij} \subseteq \sum$  and  $\bigcup_{j=1}^{m} S_{ij} = \sum$  for some  $i, 1 \leq i \leq m$ . Now define  $\delta' : Q \times \sum \to 2^{Q}$  by

$$\delta'(i, a_k) = \begin{cases} \{j\} & \text{if } a_k \in S_{ij}, \\ \phi & \text{otherwise}, \end{cases}$$
(3)

where  $\phi$  is the empty set. Since  $|S_{ij}| = a_{ij}$ , the function  $\delta'$  generates  $a_{ij}$  arrows from *i* to *j* labeled by the elements of  $S_{ij}$ . Now the proof follows by taking set of edges of the non-deterministic digraph NG as the collection of all arrows from i to j generated by (3) for all  $i, j \in Q$ .

The following example illustrates Theorem 3.12.

**Example 3.13.** Consider the following square matrix of nonnegative integers.

$$A = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 5 & 3 & 0 \\ 6 & 1 & 1 & 2 \\ 7 & 0 & 0 & 0 \end{bmatrix}.$$

Since  $\max_{1 \le i \le 4} \left\{ \sum_{j=1}^{4} a_{ij} \right\} = \max\{9, 8, 10, 7\} = 10$ , as in Theorem 3.12, take  $\sum = \left\{a_{1}, a_{2}, \dots, a_{n}\right\}$  as the set of edge labels and  $Q = \left\{1, 2, 3, 4\right\}$  as the set of vertex

 $\{a_1, a_2, \ldots, a_{10}\}$  as the set of edge labels and  $Q = \{1, 2, 3, 4\}$  as the set of vertex labels of the required non-deterministic digraph  $NG = (Q, \sum, \delta')$ .

From (2) and (3), if we take  $S_{11} = \{a_1\}, S_{12} = \{a_2, a_3\}, S_{13} = \{a_4, a_5, a_6\}, S_{14} = \{a_7, a_8, a_9\}, S_{21} = \{\phi\}, S_{22} = \{a_1, a_3, a_5, a_7, a_9\}, S_{23} = \{a_2, a_4, a_6\}, S_{24} = \{\phi\}, S_{31} = \{a_1, a_2, a_3, a_4, a_5, a_6\}, S_{32} = \{a_{10}\}, S_{33} = \{a_9\}, S_{34} = \{a_2, a_8\}, S_{41} = \{a_4, a_5, a_6, a_7, a_8, a_9, a_{10}\}, S_{42} = S_{43} = S_{44} = \phi$ , then  $\delta' : Q \times \sum \to 2^Q$  can be taken as in Table 8.

|   | $a_1$  | $a_2$  | $a_3$  | $a_4$ | $a_5$ | $a_6$ | $a_7$ | $a_8$  | $a_9$ | $a_{10}$ |
|---|--------|--------|--------|-------|-------|-------|-------|--------|-------|----------|
| 1 | (1)    | (2)    | (2)    | (3)   | (3)   | (3)   | (4)   | (4)    | (4)   | $\phi$   |
| 2 | (2)    | (3)    | (2)    | (3)   | (2)   | (3)   | (2)   | $\phi$ | (2)   | $\phi$   |
| 3 | (1)    | (1)    | (1)    | (1)   | (1)   | (1)   | (4)   | (4)    | (3)   | (2)      |
| 4 | $\phi$ | $\phi$ | $\phi$ | (1)   | (1)   | (1)   | (1)   | (1)    | (1)   | (1)      |

Table 8:

Figure 8 is the NG of the matrix A, and hence A is a non-deterministic matrix.

**Theorem 3.14.** Let k be any positive integer. If  $A = (a_{ij})_{m \times m}$  is any non-deterministic matrix of order m with maximum row sum n, then there exists deterministic matrix  $B = (b_{ij})_{2^m \times 2^m}$  of order  $2^m$  whose row sums are equal to n, i.e. RS(B) = n and also  $B^k$  is a deterministic matrix whose row sum =  $n^k$ .

Proof. By Theorem 3.12, there exists a non-deterministic digraph  $NG = (Q, \sum, \delta')$  where  $Q = \{1, 2, 3, \ldots, m\}$ ,  $\sum$  contains n symbols and  $\delta' : Q \times \sum \rightarrow 2^Q$  whose adjacency matrix is A. By Theorem 3.7, there exists a deterministic digraph  $DG = (2^Q, \sum, \delta)$  with  $2^{|Q|}$  vertices and  $2^{|Q|} |\sum |$  directed edges. Now, the proof follows by taking B as the adjacency matrix of the deterministic

547

digraph  $DG = (2^Q, \sum, \delta)$  and Theorem 3.6 in [6].

**Theorem 3.15.** Let  $(Q_i, \sum_i, \delta'_i), i = 1, 2, ..., n$  be any *n* non-deterministic digraphs. Then, the deterministic matrix *A* of the product digraph

$$\left(\prod_{1}^{n} 2^{Q_{i}}, \prod_{1}^{n} \sum_{i}, \delta\right)$$

of the deterministic digraphs  $(2^{Q_i}, \sum_i, \delta_i)$  is a square matrix of order  $\prod_{i=1}^{n} 2^{|Q_i|}$ with common row sum  $\prod_{i=1}^{n} |\sum_i|$ .

Proof. The proof follows by Theorems 3.7, 3.10 and Theorem 3.8 of [6]. **Theorem 3.16.** Let  $A = (a_{ij})_{m \times m}$  be a non-deterministic matrix of order m and  $n = \max_{1 \le i \le m} \left\{ \sum_{1}^{m} a_{ij} \right\}$ . Then the number of distinct deterministic matrices of order  $2^m$  with common row sum n generated by A is

$$\prod_{i=1}^{m} \left[ \prod_{j=1}^{m} \delta_{ij} \left( \begin{array}{c} n - \sum_{k=0}^{j-1} a_{ik} \\ a_{ij} \end{array} \right) \right],$$

$$\operatorname{ere} \left( \begin{array}{c} n \\ r \end{array} \right) = \frac{n!}{(n-r)!r!} \text{ and } \delta_{ij} = \left\{ \begin{array}{c} 1, \ if, \ a_{ij} \neq 0, \\ 0, \ otherwise. \end{array} \right.$$

$$(4)$$

Proof. Let  $(Q, \sum, \delta')$  and  $S_{ij}$  be defined as in Theorem 3.12. From (3), distinct selections of  $S_{ij} \subset \sum$  defined in (2) generate distinct transition functions  $\delta'$ . Hence, the number of distinct non-deterministic digraphs generated by A is the number of distinct selections of  $S_{ij}$  from  $\sum$ . Since  $|\sum| = n$ , for each pair,  $(i, j) \in Q \times Q$ , we can select  $S_{ij}$  in  $\begin{pmatrix} n - \sum_{k=0}^{j-1} a_{ik} \\ a_{ij} \end{pmatrix}$  ways if  $a_{ij} \neq 0$ . Now the

proof follows from Theorem 3.7, Definition 2.5 and by taking  $S_{i0} = \phi$ .

#### 4. Complexity Metric on the Class of Non-Deterministic Matrices

In [3], Hirohisa Aman, H. Yamada, M.T. Noda and Y. Yanarau studied a graph – based class structural complexity metric and its evaluation. In [6], the authors established complexity metric and structural measure on the class of deterministic matrices. Hence, in this section we develop complexity metric and structural measure on the class of non-deterministic matrices.

wh

**Definition 4.1.** Let  $\mathbb{N}$  be the class of all non-deterministic matrices,  $\mathbb{D}$  be the class of all deterministic matrices generated by the non-deterministic matrices of  $\mathbb{N}$  and let  $\mathbb{R}$  be the set of all real numbers. A complexity metric on  $\mathbb{D}$  is a function  $\mu : \mathbb{D} \to \mathbb{R}$  satisfying the following five properties.

(i) Non-negativity:  $\mu(B) \ge 0$  for all  $B \in \mathbb{D}$ .

(ii) Null value:  $\mu(B) = 0$  if B is the zero matrix in  $\mathbb{D}$ .

(iii) Similarity:  $\mu(B) = \mu(C)$  if B and C are of the same order and RS(B) = RS(C).

(iv) Super additivity: If  $B_1, B_2$  and B are matrices of same order in  $\mathbb{D}$  such that  $RS(B_1) + RS(B_2) \leq RS(B)$ , then  $\mu(B_1) + \mu(B_2) \leq \mu(B)$ .

(v) Additivity: If  $B_1, B_2$  and B are in  $\mathbb{D}$  such that  $B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}$ , then  $\mu(B_1) + \mu(B_2) = \mu(B)$ .

By Theorem 3.14, for each  $A \in \mathbb{N}$ , there exists a deterministic matrix B generated by A, say  $d(A) \in \mathbb{D}$ . The function  $\mu' : \mathbb{N} \to \mathbb{R}$  defined by  $\mu'(A) = \mu(d(A))$  (by (iii)  $\mu'$  is well defined) is called a complexity metric on the class of non-deterministic matrices.

**Example 4.2.** To each  $r \in \mathbb{R}^+$ ,  $\mu' : \mathbb{N} \to \mathbb{R}$  defined by  $\mu'(A) = rRS(d(A))$  is a complexity metric on  $\mathbb{N}$ .

**Definition 4.3.** (see [6]) Let  $A_{m \times m}$  be any non-deterministic matrix of order m and  $NG = (Q, \sum, \delta')$  be a non-deterministic digraph generated by A, constructed by Theorem 3.12. Let  $DG = (2^Q, \sum, \delta)$  be the deterministic digraph for the NG constructed by Theorem 3.7. Let  $B_{2^m \times 2^m}$  be the deterministic matrix obtained by DG and  $\sum_{k=1}^{\infty} w_k > 0$ . Then the matrix

$$B_w^* = \sum_{k=1}^\infty w_k \ B^k \tag{5}$$

is called the weighted closure of B. Let  $\mathbb{P} = (B_w^*)'$ , which is the transpose of  $B_w^*$ . Then  $\mathbb{P}$  is called the dependence matrix of B. If  $\mathbb{P} = (p_{ij})$  is a dependence matrix of order  $2^m$ , then the vector

$$p_{k} = \left(\sum_{i=1}^{2^{m}} p_{ik}, \sum_{j=1}^{2^{m}} p_{kj}\right)$$
(6)

is called the dependency vector of the k-th vertex of the deterministic digraph  $(2^Q, \sum, \delta)$ . If  $p = (p_1, p_2)$  is any dependency vector, then the norm of p is

defined as

$$\|p\| = p_1 + p_2 \,. \tag{7}$$

Let  $c: \{1, 2, \dots, 2^m\} \to [0, \infty)$  be a non-negative real valued function. Define a function  $SM: \mathbb{N} \to \mathbb{R}$  defined by

$$SM(A) = \sum_{k=1}^{2^{m}} \|p_{k}\| c(k) = SM(d(A)), \qquad (8)$$

where  $||p_k||$  is obtained by (6) and (7) with B = d(A). By Theorems 2.7 and 3.14, (8) is well defined and is called the structural measure of the non-deterministic matrix A.

**Lemma 4.4.** If  $A_1$  and  $A_2$  are two non-deterministic matrices of the same order, then  $SM(A_1 + A_2) \ge SM(A_1) + SM(A_2)$ . Also if maximum row sum  $n_1$  of  $A_1$  = maximum row sum  $n_2$  of  $A_2$ , then  $SM(A_1) = SM(A_2)$ .

*Proof.* The proof follows from Theorem 3.14 and the equations (5)-(8).

**Theorem 4.5.** Let  $\mathbb{N}$  be the class of all non-deterministic matrices and  $\mathbb{R}$  be the set of all real numbers. Then the function  $\mu' : \mathbb{N} \to \mathbb{R}$  defined by  $\mu'(A) = SM(A)$  for all  $A \in \mathbb{N}$  is a complexity metric.

*Proof.* The proof follows by Lemma 4.4, replacing A by B = d(A), Q by  $2^Q = \{1, 2, \ldots, 2^m\}$ ,  $A_1, A_2$  by  $d(A_1), d(A_2)$  in Theorem 4.6 of [6].

### Acknowledgements

The research is supported by University Grants Commission, New Delhi.

#### References

- G. Chartrand, Lesnik, *Graphs and Digraphs*, Montercy, CA, Third Edition (1996).
- [2] J.E. Hopcropt, J.D. Ullman, *Introduction to Automata Theory*, Languages and Computations, Addison Wesly (1979).
- [3] Aman Hirohisa, H. Yamada, M.T. Noda, T.Yanaru, A graph based class structured complexity metric and its evaluation, *IEIEE Trans. Inf and Syst.*, 85, No. 4 (2002), 674-684.

- [4] Aman Hirohisa, T. Yanaru, M. Nagamastu, K. Miyamoto, A study of class structured complexity in oriented software through fuzzy graph connectivity analysis, J. Japan Society for Fuzzy Theory and Systems, 11, No. 4 (1999), 521-527.
- [5] Aman Hirohisa, T. Yanaru, M. Nagamastu, K. Miyamoto, A metric for class structured complexity focusing on relationships among class members, *IEICE Trans. Inf and Syst.*, 81, No. 12 (1998), 1364-1373.
- [6] M. Maria Susai Manuel, G. Britto Antony Xavier, L. Ravi, Complexity metric and structured measure on the class of deterministic matrices, *In*ternational Review of Pure and Applied Mathematics, 3, No. 1 (2007), 145-155.