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Abstract: This paper deals with the definitions of product of non-deterministic
finite automaton, non-deterministic digraph, non-deterministic matrix, com-
plexity metric and structural measure on the class of non-deterministic ma-
trices. These definitions are used to establish the relation between structural
measure and the complexity metric on the class of non-deterministic matrices.
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1. Introduction

A graph based structural measure and complexity metric is established in [3].
Product of finite automata, deterministic digraph, deterministic matrix, com-
plexity metric and structural measure on the class of deterministic matrices
are developed in [6]. In this paper, we extend the theory to non-deterministic
digraphs and non-deterministic matrices.

In Section 2, we present preliminaries on product of digraphs of automata.
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For the general theory on automata one can refer [2] and the references cited
therein. In Section 3, we present the conversion of non-deterministic digraphs
into deterministic digraphs, the product of non-deterministic digraphs, prop-
erties of product graphs. In Section 4, we establish the relation between the
non-deterministic matrix and the corresponding deterministic matrix with the
relation between the complexity metric and structural measure on the class of
non-deterministic matrices.

Throughout this paper we use the following notations.

(i) (ai)
m
1 = (a1, a2, . . . , am).

(ii)
m
∏

1

Ai = {(a1, a2, . . . , am) : ai ∈ Ai, i = 1, 2, . . . ,m} for sets Ai.

(iii)
m
∏

1

ni = n1 × n2 × . . . × nm for non-negative integers ni.

(iv) |X| denotes the number of elements in the set X.

(v) DG = Deterministic digraph.

(vi) NG = Non-deterministic digraph.

(vii) 2Q = Set of all subsets of Q.

2. Preliminaries

In this section, we present some basic definitions and results on deterministic
and non-deterministic finite automata.

Definition 2.1. (see [2]) A Deterministic Finite Automata (DFA) is a
5 - tuple M = (Q,

∑

, δ, q0, F ), where Q is a finite set of states,
∑

is a finite
set of input alphabets, q0 ∈ Q is the initial state, F ⊂ Q is the set of final
states and δ : Q ×

∑

→ Q is a transition function. If there exists a function
δ′ : Q ×

∑

→ 2Q, then M = (Q,
∑

, δ′, q0, F ) is a non-deterministic Finite
Automata (NFA) and δ′ is called the transition function.

A directed graph, called a transition diagram is associated with a Finite
Automaton (FA) as follows. The vertices of the graph correspond to the states
of the FA. If δ(q, a) = p, then there is an arrow labeled a from the vertex q

to the vertex p in the transition diagram. The FA accepts a string x if the
sequence of transitions corresponding to the symbols of x leads from the start
to an accepting finial state.

Definition 2.2. (see [6]) For i = 1, 2, 3, . . . m, let Mi = (Qi,
∑

i, δi, q0i, Fi)
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be any m deterministic finite automata and pi = δi(qi, ai). Product of de-
terministic finite automata (PDFA) is a 5 - tuple M = (Q,

∑

, δ, q0, F ), where

Q =
m
∏

1

Qi,
∑

=
m
∏

1

∑

i, q0 = (q0i)
m
1 , F =

m
∏

1

Fi and δ : Q×
∑

→ Q is defined as

δ((qi)
m
1 , (ai)

m
1 ) = (pi)

m
1 . By identifying (xi)

m
1 (yi)

m
1 = (xiyi)

m, the language ac-
cepted by M is defined as L(M) = {(xi)

m
1 ∈

∑∗;xi ∈
∑

i and δi(q0i, xi) ∈ Fi},
where

∑∗ is the set of all strings formed by finite elements of
∑

. The transition

digraph of M is a digraph containing
m
∏

1

|Qi| vertices with vertex label set
m
∏

1

Qi

and for each δ((qi)
m
1 , (ai)

m
1 ) = (pi)

m
1 there is an arrow from the vertex (qi)

m
1 to

(pi)
m
1 with edge label (ai)

m
1 .

Definition 2.3. Consider a digraph G = (V,E). If all the vertices and
edges of the digraph G are labeled in such a way that no two vertices have same
label (many edges can have same label), then the digraph G is called a labeled
digraph. Denote the set of all labels of vertices of G as Q and edges as

∑

. If
there exists a transition function δ : Q×

∑

→ Q in G, then the labeled digraph
G is called a deterministic digraph (DG) and is denoted as (Q,

∑

, δ). If there
exists a function δ′ : Q ×

∑

→ 2Q in G, then the labeled digraph G is called
non-deterministic digraph (NG) and is denoted by (Q,

∑

, δ′).

Definition 2.4. (see [6]) Let (Qi,
∑

i, δi), i = 1, 2, 3, . . . m be any m deter-

ministic digraphs as defined in Definition 2.3. Define Q =
m
∏

1

Qi,
∑

=
m
∏

1

∑

i and

define a function δ : Q×
∑

→ Q as δ((qi)
m
1 , (ai)

m
1 ) = (pi)

m
1 , where pi = δi(qi, ai)

for all qi ∈ Qi and ai ∈
∑

i. The deterministic digraph G = (Q,
∑

, δ) is called
product deterministic digraph (PDG) of the given deterministic digraphs.

Definition 2.5. (see [6]) Consider a deterministic digraph DG = (Q,
∑

, δ).
Rename the elements of Q as 1, 2, . . . , |Q|. If aij denotes the number of arrows
from i to j in DG, then the matrix A(DG) = (aij) is called the adjacency ma-
trix of DG. A square matrix M is said to be a deterministic matrix if it is the
adjacent matrix of some DG. ie; M = A(DG).

Lemma 2.6. (see [6]) Let A(DG) = (aij) be the deterministic matrix of
DG = (Q,

∑

, δ). kij is the (i, j)-th entry of the matrix Ak(DG) if and only if
kij = number of directed paths of length k from i to j.

Theorem 2.7. (see [6]) A square matrix A of non-negative integers is
a deterministic matrix if and only if all row sums or all column sums of the
matrix A are equal.
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3. Deterministic Matrices of Non-Deterministic Digraphs

In this section, by defining the deterministic digraphs, corresponding to the
non-deterministic digraphs, we establish some relations between deterministic
and non-deterministic matrices.

Definition 3.1. Let NG = (Q,
∑

, δ′) be a non-deterministic digraph de-
fined as in Definition 2.3. Construct a deterministic digraph DG = (2Q,

∑

, δ) as
follows. The set of labels of vertices of DG is the set of all subsets of Q and set of
labels of edges of DG is

∑

. A vertex of DG will be denoted by [q1q2 . . . qi] where
q1, q2, . . . , qi are in Q. Observe that [q1q2 . . . qi] is a single vertex of DG. We de-
fine the transition function δ : 2Q ×

∑

→ 2Q by δ ([q1q2 . . . qi] , a) = [p1p2 . . . pr]
if and only if δ′ ({q1, q2, ...qi} , a) = {p1, p2, . . . , pr} where δ′ ({q1, q2, ...qi} , a) =

i
⋃

j=1

δ′(qj , a) and δ(φ, a) = φ for the empty set φ. By relabeling the vertices of

DG as 1, 2, 3, . . . , 2|Q| the adjacency matrix of the DG is called a deterministic
matrix of the corresponding NG.

Remark 3.2. Every DG is a NG but every NG need not be a DG.

Example 3.3. Consider the non-deterministic digraph NG = (Q,
∑

, δ′)
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where Q = {q0, q1, q2},
∑

= {0, 1, 2} and δ′ : Q ×
∑

→ 2Q given by

δ′ 0 1 2

q0 {q0, q1, q2} {q1, q2} {q2}
q1 φ {q1, q2} {q2}
q2 φ φ {q2}

Table 1:

Figure 1 is the transition diagram of the NG given in Table 1.

The adjacency matrix of Figure 1 is A(NG) =





1 2 3
0 1 2
0 0 1



 which is a

non-deterministic matrix.

By Definition 3.1, the deterministic digraph of NG given in Figure 1 is DG
= (2Q,

∑

, δ) where δ : 2Q ×
∑

→ 2Q given by
δ 0 1 2

φ φ φ φ

[q0] [q0q1q2] [q1q2] [q2]
[q1] φ [q1q2] [q2]
[q2] φ φ [q2]
[q0q1] [q0q1q2] [q1q2] [q2]
[q0q2] [q0q1q2] [q1q2] [q2]
[q1q2] φ [q1q2] [q2]
[q0q1q2] [q0q1q2] [q1q2] [q2].

Table 2:

Figure 2 is the 3-regular DG of the Figure 1. By Definition 3.1, the adja-
cency matrix of Figure 2 is the deterministic matrix which is given below whose
row sums are equal.

A(DG) =

























3 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
1 0 0 1 0 0 1 0
2 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 1
1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 1

























.

Definition 3.4. Let (2Qi ,
∑

i, δi), i = 1, 2, . . . ,m be m deterministic
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digraphs corresponding to the non-deterministic digraphs (Qi,
∑

i, δ
′
i) respec-

tively. Take Q =
m
∏

1

2Qi ,
∑

=
m
∏

1

∑

i and define a function δ : Q ×
∑

→ Q

as

δ
(([

qi1qi2...qij

])m

i=1
, (ai)

m
i=1

)

= ([pi1pi2 ...pir ])
m
i=1

,

where δi(φi, ai) = φi for empty set φi and δi([qi1qi2 . . . qij ], ai) = [pi1pi2 . . . pir ],
i = 1, 2, . . . ,m. The deterministic digraph denoted by PG = (Q,

∑

, δ) is the
product graph of the given non-deterministic digraphs. By relabeling the vertices
of Q as 1, 2, . . . , |Q| the adjacency matrix of PG is called product matrix.

Example 3.5. Consider the non-deterministic digraphs NG1 = (Q1,
∑

1
,

δ′1) and NG2 = (Q2,
∑

2
, δ′2) where Q1 = {p1, p2}, Q2 = {q1, q2},

∑

1
=
∑

2
=

{0, 1} and δ′1 : Q1 ×
∑

1
→ 2Q1, δ′2 : Q2 ×

∑

2
→ 2Q2 are given as in Table 3,

Table 4 respectively.

δ′1 0 1

p1 {p2} φ1

p2 φ1 {p1}

δ′2 0 1

q1 {q2} {q2}
q2 {q1, q2} φ2

Table 3: Table 4:

(Here we denote φ1 = φ2 = φ = empty set). Figure 3 and Figure 4 are the
non-deterministic digraphs representing NG1 and NG2 respectively.
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By Definition 3.1, we obtain DG1 = (2Q1 ,
∑

1
, δ1) and DG2 = (2Q2 ,

∑

2
, δ2)

where δ1 : 2Q1 ×
∑

1
→ 2Q1 and δ2 : 2Q2 ×

∑

2
→ 2Q2 are given as in Table 5

and Table 6 respectively.
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δ1 0 1

φ1 φ1 φ1

[p1] [p2] φ1

[p2] φ1 [p1]
[p1p2] [p2] [p1]

δ2 0 1

φ2 φ2 φ2

[q1] [q2] [q2]
[q2] [q1q2] φ2

[q1q2] [q1q2] [q2]

Table 5: Table 6:

From Table 5 and Table 6, we can draw DG1 (Figure 5) and DG2 (Figure
6). Using Definition 3.4, we construct the product graph PG = (Q,

∑

, δ) of
DG1 and DG2 where

Q = {(φ1, φ2) , (φ1, [q1]) , (φ1, [q2]) , (φ1, [q1q2]) , ([p1], φ2),

([p1], [q1]), ([p1], [q2]), ([p1], [q1q2]), ([p2], φ2), ([p2], [q1]), ([p2], [q2]),

([p2], [q2q2]), ([p1p2], φ2), ([p1p2], [q1]), ([p1p2], [q2]), ([p1p2], [q1q2])} ,
∑

= {(0, 0), (0, 1), (1, 0), (1, 1)} ,

and the transition function δ : Q ×
∑

→ Q is given as in Table 7.
δ a1(0, 0) a2(0, 1) a3(1, 0) a4(1, 1)

1 (φ1, φ2) (φ1, φ2) (φ1, φ2) (φ1, φ2) (φ1, φ2)
2 (φ1, [q1]) (φ1, [q2]) (φ1, [q2]) (φ1, [q2]) (φ1, [q2])
3 (φ1, [q2]) (φ1, [q1q2] (φ1, φ2) (φ1, [q1q2]) (φ1, φ2)
4 (φ1, [q1q2]) (φ1, [q1q2]) (φ1, [q2]) (φ1, [q1q2]) (φ1, [q2])
5 ([p1], φ2) ([p2], φ2) ([p2], φ2) (φ1, φ2) (φ1, φ2)
6 ([p1], [q1]) ([p2], [q2]) ([p2], [q2]) (φ1, [q2]) (φ1, [q2])
7 ([p1], [q2]) ([p2], [q1q2]) ([p2], φ2) (φ1, [q1q2]) (φ1, φ2)
8 ([p1], [q1q2]) ([p2], [q1q2]) ([p2], [q2]) (φ1, [q1q2]) (φ1, [q2])
9 ([p2], φ2) (φ1, φ2) (φ1, φ2) ([p1]), φ2 ([p1], φ2)
10 ([p2], [q1]) (φ1, [q2]) (φ1, [q2]) ([p1], [q2]) ([p1], [q2])
11 ([p2], [q2]) (φ1, [q1q2]) (φ1, φ2) ([p1], [q1q2]) ([p1], φ2)
12 ([p2], [q1q2]) (φ1, [q1q2]) (φ1, [q2]) ([p1], [q1q2]) ([p1], [q2])
13 ([p1p2], φ1) ([p2], φ2) ([p2], φ2) ([p1], φ2) ([p1], φ2)
14 ([p1p2], [q1]) ([p2], [q2]) ([p2], [q2]) ([p1], [q2]) ([p1], [q2])
15 ([p1p2], [q2]) ([p2], [q1q2]) ([p2], φ2) ([p1], [q1q2]) ([p1], φ2)
16 ([p1p2], [q1q2]) ([p2], [q1q2]) ([p2], [q2]) ([p1], [q1q2]) ([p1], [q2])

Table 7:

Table 7 generates the product graph (deterministic graph) of NG1 and NG2

(or DG1 and DG2), which is presented in Figure 7.
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Following are the adjacency matrices of the NG’s given in Figures 3, 4, 5,
6 and 7, respectively.

A(NG1) =

[

0 1
1 0

]

A(NG2) =

[

0 2
1 1

]

A(DG1) =









2 0 0 0
1 0 1 0
1 1 0 0
0 1 1 0









A(DG2) =









2 0 0 0
0 0 2 0
1 0 0 1
0 0 1 1








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A(PG) =



























































4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0



























































.

If row sums of A(DG1), A(DG1), . . . , A(DGn) are s1, s2, . . . , sn, then the

row sum of A(PG) is
n
∑

i=1

si, where PG is the product graph of DG1,DG2, . . .,

DGn.

Theorem 3.6. If G is a k-regular directed graph with respect to outgoing
degree if and only if G is a deterministic digraph (Q,

∑

, δ), where |
∑

| = k.

Proof. The proof follows by taking the vertex set as Q, edge labels by k

symbols from
∑

= {a1, a2, . . . , ak} and ai is an arrow from a vertex p to q if
and only if δ(p, ai) = q and from Definition 2.3.

Theorem 3.7. For every non-deterministic digraph NG = (Q,
∑

, δ′),
there exists a deterministic digraph DG = (2Q,

∑

, δ) with 2|Q| vertices and
2|Q||

∑

| directed edges.

Proof. The proof follows from Definition 3.1 and Theorem 3.6.

Theorem 3.8. Let (Q,
∑

, δ′) be any NG. If
∑′ is any set containing

∑

,
then there exists a DG = (2Q,

∑′, δ) with 2|Q| vertices and |
∑′ | 2|Q| directed

edges.

Proof. By defining δ′(q, b) = φ for all (q, b) ∈ Q × (
∑′ −

∑

), the digraph
(Q,

∑′, δ′) becomes a NG. Now the proof follows from Theorem 3.7.

Remark 3.9. Every DG is a regular graph with respect to outgoing
degree but the converse need not be true. NG1 and NG2 given in Figure 3
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and Figure 4 are 1-regular and 2-regular graphs, respectively, but they are not
deterministic digraphs since δ1 : Q1 ×

∑

1
→ Q1 and δ2 : Q2 ×

∑

2
→ Q2 do not

exist.

Theorem 3.10. If (Qi,
∑

i, δ
′
i), i = 1, 2, . . . ,m are non-deterministic di-

graphs, then there exists a product digraph PG = (Q,
∑

, δ) with
m
∏

1

2|Qi| ver-

tices and
m
∏

1

|
∑

i|
m
∏

1

2|Qi| directed edges.

Proof. By Theorem 3.7, there exist deterministic digraphs (2Qi ,
∑

i, δi),
i = 1, 2, . . . ,m and each DGi = (2Qi ,

∑

i, δi) has 2|Qi| vertices and |
∑

i | 2|Qi|

directed edges. Now the proof follows from Definition 3.4 (see Example 3.5).

Definition 3.11. A square matrix of non-negative integers is said to be a
non-deterministic matrix if it is an adjacency matrix of some non-deterministic
digraph (Q,

∑

, δ′).

Theorem 3.12. Every square matrix of non-negative integers is a non-
deterministic matrix.

Proof. Let A = (aij)m×m be the given square matrix of nonnegative integers
of order m. By taking

n = max
1≤i≤m







m
∑

j=1

aij







, (1)

Q = {1, 2, . . . ,m} and
∑

is any set containing n different labels {a1, a2, . . . , an},
we shall construct a non-deterministic digraph NG = (Q,

∑

, δ′) whose adja-
cency matrix is A. Take Q as the vertex set of NG and to each pair (i, j) ∈
Q×Q, select Sij ⊆

∑

containing aij labels satisfying the following conditions.

Si0 = φ, Sij ⊆
∑

−

(

j−1
⋃

k=0

Sik

)

, |Sij | = aij for i, j = 1, 2, ...,m. (2)

From (1) and (2),
m
⋃

j=1

Sij ⊆
∑

and
m
⋃

j=1

Sij =
∑

for some i, 1 ≤ i ≤ m. Now

define δ′ : Q ×
∑

→ 2Q by

δ′(i, ak) =

{

{j} if ak ∈ Sij ,

φ otherwise ,
(3)

where φ is the empty set. Since |Sij| = aij, the function δ′ generates aij arrows
from i to j labeled by the elements of Sij. Now the proof follows by taking
set of edges of the non-deterministic digraph NG as the collection of all arrows
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from i to j generated by (3) for all i, j ∈ Q.

The following example illustrates Theorem 3.12.

Example 3.13. Consider the following square matrix of nonnegative in-
tegers.

A =









1 2 3 3
0 5 3 0
6 1 1 2
7 0 0 0









.

Since max
1≤i≤4

{

4
∑

j=1

aij

}

= max{9, 8, 10, 7} = 10, as in Theorem 3.12, take
∑

=

{a1, a2, . . . , a10} as the set of edge labels and Q = {1, 2, 3, 4} as the set of vertex
labels of the required non-deterministic digraph NG = (Q,

∑

, δ′).

From (2) and (3), if we take S11 = {a1}, S12 = {a2, a3}, S13 = {a4, a5, a6},
S14 = {a7, a8, a9}, S21 = {φ}, S22 = {a1, a3, a5, a7, a9}, S23 = {a2, a4, a6}, S24 =
{φ}, S31 = {a1, a2, a3, a4, a5, a6}, S32 = {a10}, S33 = {a9}, S34 = {a2, a8}, S41 =
{a4, a5, a6, a7, a8, a9, a10}, S42 = S43 = S44 = φ, then δ′ : Q ×

∑

→ 2Q can be
taken as in Table 8.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 (1) (2) (2) (3) (3) (3) (4) (4) (4) φ

2 (2) (3) (2) (3) (2) (3) (2) φ (2) φ

3 (1) (1) (1) (1) (1) (1) (4) (4) (3) (2)
4 φ φ φ (1) (1) (1) (1) (1) (1) (1)

Table 8:

Figure 8 is the NG of the matrix A, and hence A is a non-deterministic
matrix.

Theorem 3.14. Let k be any positive integer. If A = (aij)m×m is any
non-deterministic matrix of order m with maximum row sum n, then there
exists deterministic matrix B = (bij)2m×2m of order 2m whose row sums are
equal to n, i.e. RS(B) = n and also Bk is a deterministic matrix whose row
sum = nk.

Proof. By Theorem 3.12, there exists a non-deterministic digraph NG =
(Q,

∑

, δ′) where Q = {1, 2, 3, . . . ,m},
∑

contains n symbols and δ′ : Q×
∑

→
2Q whose adjacency matrix is A. By Theorem 3.7, there exists a deterministic
digraph DG = (2Q,

∑

, δ) with 2|Q| vertices and 2|Q| |
∑

| directed edges. Now,
the proof follows by taking B as the adjacency matrix of the deterministic
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digraph DG = (2Q,
∑

, δ) and Theorem 3.6 in [6].

Theorem 3.15. Let (Qi,
∑

i, δ
′
i), i = 1, 2, . . . , n be any n non-deterministic

digraphs. Then, the deterministic matrix A of the product digraph
(

n
∏

1

2Qi ,

n
∏

1

∑

i

, δ

)

of the deterministic digraphs (2Qi ,
∑

i, δi) is a square matrix of order
n
∏

1

2|Qi|

with common row sum
n
∏

1

|
∑

i |.

Proof. The proof follows by Theorems 3.7, 3.10 and Theorem 3.8 of [6].

Theorem 3.16. Let A = (aij)m×m be a non-deterministic matrix of order

m and n = max
1≤i≤m

{

m
∑

1

aij

}

. Then the number of distinct deterministic matrices

of order 2m with common row sum n generated by A is

m
∏

i=1





m
∏

j=1

δij





n −
j−1
∑

k=0

aik

aij







 , (4)

where

(

n

r

)

=
n!

(n − r)!r!
and δij =

{

1, if, aij 6= 0 ,

0, otherwise .

Proof. Let (Q,
∑

, δ′) and Sij be defined as in Theorem 3.12. From (3), dis-
tinct selections of Sij ⊂

∑

defined in (2) generate distinct transition functions
δ′. Hence, the number of distinct non-deterministic digraphs generated by A is
the number of distinct selections of Sij from

∑

. Since |
∑

| = n, for each pair,

(i, j) ∈ Q × Q, we can select Sij in





n −
j−1
∑

k=0

aik

aij



 ways if aij 6= 0. Now the

proof follows from Theorem 3.7, Definition 2.5 and by taking Si0 = φ.

4. Complexity Metric on the Class of Non-Deterministic Matrices

In [3], Hirohisa Aman, H. Yamada, M.T. Noda and Y. Yanarau studied a
graph – based class structural complexity metric and its evaluation. In [6], the
authors established complexity metric and structural measure on the class of
deterministic matrices. Hence, in this section we develop complexity metric
and structural measure on the class of non-deterministic matrices.
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Definition 4.1. Let N be the class of all non-deterministic matrices, D

be the class of all deterministic matrices generated by the non-deterministic
matrices of N and let R be the set of all real numbers. A complexity metric on
D is a function µ : D → R satisfying the following five properties.

(i) Non-negativity: µ(B) ≥ 0 for all B ∈ D.

(ii) Null value: µ(B) = 0 if B is the zero matrix in D.

(iii) Similarity: µ(B) = µ(C) if B and C are of the same order and RS(B) =
RS(C).

(iv) Super additivity: If B1, B2 and B are matrices of same order in D such
that RS(B1) + RS(B2) ≤ RS(B), then µ(B1) + µ(B2) ≤ µ(B).

(v) Additivity: If B1, B2 and B are in D such that B =

[

B1 0
0 B2

]

, then

µ(B1) + µ(B2) = µ(B).

By Theorem 3.14, for each A ∈ N, there exists a deterministic matrix B

generated by A, say d(A) ∈ D. The function µ′ : N → R defined by µ′(A) =
µ(d(A)) (by (iii) µ′ is well defined) is called a complexity metric on the class of
non-deterministic matrices.

Example 4.2. To each r ∈ R
+, µ′ : N → R defined by µ′(A) = rRS(d(A))

is a complexity metric on N.

Definition 4.3. (see [6]) Let Am×m be any non-deterministic matrix of
order m and NG = (Q,

∑

, δ′) be a non-deterministic digraph generated by
A, constructed by Theorem 3.12. Let DG = (2Q,

∑

, δ) be the deterministic
digraph for the NG constructed by Theorem 3.7. Let B2m×2m be the determin-

istic matrix obtained by DG and
∞
∑

k=1

wk > 0. Then the matrix

B∗
w =

∞
∑

k=1

wk Bk (5)

is called the weighted closure of B. Let P = (B∗
w)′, which is the transpose of

B∗
w. Then P is called the dependence matrix of B. If P = (pij) is a dependence

matrix of order 2m, then the vector

pk =





2m
∑

i=1

pik,

2m
∑

j=1

pkj



 (6)

is called the dependency vector of the k-th vertex of the deterministic digraph
(2Q,

∑

, δ). If p = (p1, p2) is any dependency vector, then the norm of p is
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defined as

‖p‖ = p1 + p2 . (7)

Let c : {1, 2, . . . , 2m} → [0,∞) be a non-negative real valued function. Define a
function SM : N → R defined by

SM(A) =

2m
∑

k=1

‖pk‖ c(k) = SM(d(A)) , (8)

where ‖pk‖ is obtained by (6) and (7) with B = d(A). By Theorems 2.7
and 3.14, (8) is well defined and is called the structural measure of the non-
deterministic matrix A.

Lemma 4.4. If A1 and A2 are two non-deterministic matrices of the same
order, then SM(A1 + A2) ≥ SM(A1) + SM(A2). Also if maximum row sum
n1 of A1 = maximum row sum n2 of A2, then SM(A1) = SM(A2).

Proof. The proof follows from Theorem 3.14 and the equations (5)-(8).

Theorem 4.5. Let N be the class of all non-deterministic matrices and
R be the set of all real numbers. Then the function µ′ : N → R defined by
µ′(A) = SM(A) for all A ∈ N is a complexity metric.

Proof. The proof follows by Lemma 4.4, replacing A by B = d(A), Q by
2Q = {1, 2, . . . , 2m}, A1, A2 by d(A1), d(A2) in Theorem 4.6 of [6].
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