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1. Introduction

My work will center on some problems arising from the question of how the rate
of change of a generalized temperature function or of a solution to an elliptic
equation, can be shown to depend on the temperature at which the boundary
of a domain is kept (specified boundary data) and/or by external heat sources
within the domain. For the steady state heat equation with no external sources
this means examining ∇u(x), where u is a harmonic function, i.e. ∆u(x) = 0
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in Ω and u |∂Ω (x′) = g(x′).

With external sources the model can be given as ∆u(x) = div
−→
f (x) in Ω

and u |∂Ω = g(x′).

There are two generalizations that I will be dealing with; the first is to have

a time-dependent temperature, i.e. a solution to (∂/∂t−∆)u(x, t) = div
−→
f (x, t),

with boundary values for u being specified on the parabolic boundary of the
domain. The second generalization is to replace ∆ by L, a divergence form
operator which is symmetric and strictly elliptic (or strictly parabolic for ∂/∂t−
L). This means that

L =

n∑

i,j=1

∂

∂xi
(ai,j(x)

∂

∂xj
) or L =

n∑

i,j=1

∂

∂xi
(ai,j(x, t)

∂

∂xj
),

with ai,j(x) = aj,i(x), ai,j(x) bounded and measurable on Ω, and there ex-

ists a constant λ > 0 such that 1
λ |ξ|2 ≤

n∑
i,j=1

ξiai,j(x)ξj ≤ λ |ξ|2 (or 1
λ |ξ|2 ≤

n∑
i,j=1

ξiai,j(x, t)ξj ≤ λ |ξ|2 for the time-dependent equation).

In sum I am concerned with solutions to

Lu(x) = div
−→
f (x) in Ω and u |∂Ω (x′) = g(x′)

and to

(∂/∂t − L)u(x, t) = div
−→
f (x, t) in ΩT

with u
∣∣
∂pΩT

(X ′) = g(X ′), X ′ ∈ ∂pΩT

if X ′ = (x′, t), a point on the lateral boundary of ΩT , or if X ′ = (x, 0), a point on
the bottom of the domain ΩT . Usually the domain Ω ⊂ R

n or ΩT ⊂ R
n+1 will

be bounded, although occasionally I will refer to results for Ω being the upper
half space {(x′, xn) : xn > 0}, or the right half space for ΩT , {(x, t) : xn > 0}.

One way to investigate the full problem is to break it into two separate
problems; then superposition gives a solution to the full problem. The first is
the Dirichlet problem mentioned above, namely

Lu(x) = 0 in Ω and u |∂Ω (x′) = g(x′).

The second problem is Poisson’s equation

Lu(x) = div
−→
f (x) in Ω and u |∂Ω (x′) = 0.

Specifically, for the Dirichlet problem I am interested in finding conditions
on two measures µ a Borel measure on Ω (or on ΩT ), and a second measure
νdω, a measure on ∂Ω composed of a non-negative weight ν(x′) multiplied by
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the “harmonic” measure of the domain dω(x′), so that
(∫

Ω
|∇u(x)|q dµ(x)

)1/q

≤ C

(∫

∂Ω

∣∣g(x′)
∣∣p ν(x′)dω(x′)

)1/p

. (1)

For Poisson’s equation the question is: what measures µ and η, both Borel
measures on Ω, can give the norm inequality
(∫

Ω
|∇u(x, t)|q dµ(x, t)

)1/q

≤ C

(∫

Ω

(∣∣∣div
−→
f (x)

∣∣∣
p
+
∣∣∣
−→
f (x)

∣∣∣
p)

dη(x)

)1/p

?

Of course we want these norm bounds to be valid for as large a range of q and
p as possible.

Last summer at this conference I announced the following theorem for the
elliptic version of Poisson’s equation.

Theorem 1. (see [12]) For 3 ≤ n < s < p ≤ q < ∞, if for any Qj ∈ W,

µ(Qj)
1/qM(Qj)l(Qj)

−n−α ≤ C0

then for any u, a solution to Lu = div
−→
f in Ω, u |∂Ω = 0, there is a constant

C independent of u,
−→
f , µ and η so that

(∫

Ω
(‖u‖Hα (x))q dµ(x)

)1/q

≤ C

(∫

Ω

(∣∣∣
−→
f (x)

∣∣∣
p
+
∣∣∣div

−→
f (x)

∣∣∣
p)

dη(x)

)1/p

. (2)

Remark. By allowing C to depend on µ(Ω), on η(Ω) and on q0 and p0,
the range of p and of q can be extended to 0 < q ≤ q0 and n < s < p0 ≤ p < ∞
for any fixed pair of indices p0 and q0 having s < p0 ≤ q0. This follows using
Hölder’s inequality on both integrals in (2).

The relevant definitions are:

i. W is a collection of dyadic cubes that are Whitney-type with respect to
Ω, i.e. if Q ∈ W, then Q ⊂ Ω, and diam(Q) ∼ l(Q) ∼distance(Q, ∂Ω). l(Qj) =
the side length of Qj.

ii. M(Qj) : for any dyadic cube Qj that lies inside Ω, and for dσ(y) =(
dη
dy (y)

)1−p′

dy,

M(Qj) = max{
(

1

|Qj|

∫

4Qj

(
dη

dx
(x)

)s/(s−p)

dx

)1/s−1/p

· l(Qj)
n/p′+1,
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∫

Q0

(
1 +

∣∣y − xQj

∣∣
l(Qj)

)−(n−ǫ)p′/2

dσ(y)




1/p′

}.

iii. ‖u‖Hα (x) = sup
|x−y|<.01δ(x)

( |u(y) − u(x)|
|x − y|α

)
, with δ(x) = distance (x, ∂Ω).

iv. As above, L is a strictly elliptic operator with coefficients symmetric,
bounded and measurable. Ω is a bounded domain in R

n that satisfies and
exterior cone condition. The prototypical such domain is a Lipschitz domain.

2.

I will discuss some refinements in the proof of this theorem, and progress I have
made on proving a version for this result for solutions to a parabolic equation.
Unfortunately I do not know whether the natural extension of Theorem 1 to
the time dependent situation is true.

Of course it would have been desirable to retain |∇u(x)| instead of the
Hölder norm ‖u‖Hα (x) as the integrand on the left hand side of (2); for a
general elliptic function, however, one must add too many new restrictions on
the measures and on the range of indices to prove the norm inequality. The
result is much better for a local Hölder norm. One would also have liked to have
Lebesgue surface measure in the integral on the right in (1) instead of elliptic
measure; again, this is not feasible unless ∂Ω is so smooth that it satisfies an
A∞ condition with respect to the harmonic/elliptic measure (this depends on
the smoothness of L as well). Since I want to investigate non-smooth domains,
dω is the natural measure to use.

When L = ∆, the author and J. M. Wilson, building on the work of Whee-
den and Wilson [17], have proved sufficient conditions so that (1) is valid for Ω
being a bounded Lipschitz domain. They used the dual operator method with
a square function inequality; this was the method employed by Wheeden and
Wilson when they found necessary and sufficient conditions on measure so that
(1) is valid for harmonic u in the upper half plane.

It turns out that one can use the same general approach to proving Theo-
rem 1 that Wheeden and Wilson [17], and later Sweezy and Wilson [16] used
to obtain (1) ; i.e. a dual operator inequality coupled with a square function
theorem. And, for both the Dirichlet problem solutions and solutions to Pois-
son’s equation, most of the work comes in proving the right square function
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inequality. The groundwork for these results was done by Wilson in [18].

In fact, I might mention here that there is a completely separate question of
weighted square function inequalities. J. M. Wilson [19] has recently published a
book that gives thorough treatment of this subject However, for the purpose of
proving Theorem 1, we do not need weights in the square function inequalities.

The square function theorem which I state below, is independent of the
theorems on the pde solutions; however, to have a result that is useful in proving
inequalities such as (1) and (2), one needs to make sure that theorem will apply
to the particular kind of function that arises from using the dual operator
method. These functions have the form f(x) =

∑
J∈F

λJϕ(J)(x), with the J being

dyadic cubes, F being a finite family of such cubes. The ϕ(J)(x) are functions
that satisfy certain decay, smoothness and cancellation conditions. In fact, it
is in verifying the degree of smoothness for the ϕ(J)(x) that the refinement of
the proof for (2) and the barrier to proving an equivalent result for parabolic
solutions arises, so, after stating the square function theorem for Ω ⊂ R

n, I will
discuss these topics.

When f(x) =
∑

J∈F

λJϕ(J)(x), let

g∗(x) =

(
∑

J∈F

λ2
J

|J |

(
1 +

|x − xJ |
l(J)

)−n+ǫ
)1/2

.

Theorem 2. (see [12]) Suppose that f(x) =
∑

J∈F
λJϕ(J)(x) is a function

defined on Ω, where F is a finite set of dyadic cubes from W, and the
{
ϕ(J)

}
J∈F

are a family of functions that satisfy conditions a), a′), b), and c), and such

that ϕ(J)(x) = 0 if x ∈ Q0 \ Ω. Then, if dσ ∈ A∞(Q0, dx), there is a constant

C = C(n, α, p,Ω, κ, C0) such that, for any 0 < p < ∞,

‖f‖Lp(Q0,dσ) ≤ C ‖g∗‖Lp(Q0,dσ) . (3)

The conditions mentioned in the theorem are:

a)
∣∣ϕ(J)(x)

∣∣ ≤ Cl(J)2−n/2

(
1 +

|x − xJ |
l(J)

)2−n

for all x ∈ Ω.

a′)
∣∣ϕ(J)(x)

∣∣ ≤ Cδ(x)αl(J)2−n/2−α

(
1 +

|x − xJ |
l(J)

)2−n−α

for all x ∈ Ω.

b)
∣∣ϕ(J)(x) − ϕJ (y)

∣∣ ≤ C |x − y|α l(J)2−n/2−α·
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(
1 +

|x − xJ |
l(J)

+
|y − xJ |

l(J)

)2−n−α

for all x, y in ηQj and J ∈ S(Qj), Qj ∈ D.

c)

∫ ∣∣∣∣∣
∑

J∈F

λJϕ(J)(x)

∣∣∣∣∣

2

dx ≤ C
∑

J∈F

λ2
J .

For the parabolic version we need:

i)
∣∣ϕ(J)(x, t)

∣∣ ≤ Cl(J)1−n/2

(
1 +

dp(x, t;xJ , tJ)

l(J)

)−n

for all x, t ∈ ΩT .

ii)
∣∣ϕ(J)(x, t)

∣∣ ≤ Cδ(x, t)αl(J)1−n/2−α

(
1 +

dp(x, t;xJ , tJ )

l(J)

)−n−α

for

all x, t in a neighborhood of ST .

iii)
∣∣ϕ(J)(x, t) − ϕJ(y, s)

∣∣ ≤ Cdp(x, t; y, s)αl(J)1−n/2−α·
(

1 +
dp(x, t;xJ , tJ)

l(J)
+

dp(y, s;xJ , tJ)

l(J)

)−n−α

for certain x, t and y, s.

iv)

∫ ∣∣∣∣∣
∑

J∈F

λJϕ(J)(x, t)

∣∣∣∣∣

2

dxdt ≤ C
∑

J∈F

λ2
J .

These conditions are used to prove a series of local inequalities for functions
that “stand in” for f(x) and g∗(x); the inequalities then give a good-λ inequality
that translates to be 3) by a standard argument.

The ϕJ are, in the case of Lu = 0, ϕ(Q)(y
′) = l(Q)1−α/2

√
ω(Q)K(XT (Q), y

′)
(if u is harmonic, then α = 0). K(x, y′) is a kernel function for L on Ω. The
existence, uniqueness and geometric properties of K(x, y′) were proved by [2]
and [8] quite some time ago (see [9]). These are sufficient to obtain properties

a), a′), b), and c) for these ϕ(Q). In the case of Lu = div
−→
f , the ϕ(J) have a

different form: ϕ(J)(y) = 1√
|J |

∫
(3/2)J (G(x, y)−G̃(x, y))dx, where G(x, y) is the

Green’s function generated by L on the domain Ω, and G̃(x, y) is the Green’s
function of the cube 4J , also generated by L. Estimates of Grüter and Widman
[7] on the Green’s function of a bounded domain that satisfies an exterior cone
condition, along with the maximum principle, Harnack’s inequality and the
standard interior Hölder continuity for non-negative solutions to any strictly
elliptic pde, are sufficient to prove a), a′), b), and c). There is a technical hitch
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that occurs because the cube 4J is not one of the dyadic cubes in the family
D, however, a case by case analysis shows that the necessary estimates hold.

For the parabolic equation (∂/∂t−L)u(x, t) = div
−→
f (x, t) in ΩT , ϕ(J)(y, s) =

1√
|J |

∫
(3/2)J (G(x, t; y, s)− G̃(x, t; y, s))dxdt. Here J is a parabolic dyadic cube:

its time dimension is l(J)2 when the space dimension is l(J). This time the
Green’s function satisfies geometric decay so i) follows easily. iv) is also not
hard to verify. The problem is with ii) and iii); as long as the two cubes in
question, J and Q have a certain distance from each other as far as the time
variable goes, one can obtain the required estimates from interior Hölder con-
tinuity and Hölder continuity at the boundary. If they are very close together
- almost on top of each other, one can also use the same kind of argument that
works in the elliptic case. However, for the centers of Q and J separated, but
almost identical in the time variable, the available version of Hölder continuity
[1], [9] is not strong enough to prove either ii) and iii). Every other part of the
proof, based on duality and the square function theorem, goes through without
any more than the usual technical difficulties that occur in dealing with the
parabolic setting.
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