REDUCIBLE BIELLIPTIC CURVES

E. Ballico

Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Here we consider reducible bielliptic curves $u: X = X_1 \cup X_2 \to C$ with C integral and $p_a(C) = 1$. For certain bidegrees (d_1, d_2) we prove the existence or non-existence of a finite morphism $f: X \to \mathbb{P}^1$ with bidegree (d_1, d_2) such that the induced morphism $(u, f): X \to \mathbb{P}^1 \times \mathbb{P}^1$ is birational onto its image.

AMS Subject Classification: 14H20, 14H51 Key Words: reducible curve, bielliptic curve

1. Introduction

Fix an integer $g \geq 5$. Let C be a smooth elliptic curve. Fix $S \subset C$ such that $\sharp(S) = g-1$ and an ordering σ_i , say P_1, \ldots, P_{g-1} , of S. Let (X_i, S_i, σ_i) , i=1,2, be two copies of the triple (C,S,σ) . Let X be the nodal curve obtained gluing each point of $S_1 \subset X_1$ to the corresponding point of $S_2 \subset X_2$. X is a stable curve of genus g equipped with a degree 2 morphism g isomorphically onto g. We say that g is an isomorphism sending g isomorphically onto g. We say that g is a reducible bielliptic curve of type g. Let g be an integral projective curve such that g is an ordinary node. For the case in which g is an ordinary cusp, see Remark 2. Fix g is g is such that g is an ordinary cusp, see Remark 2.

Received: December 21, 2008 © 2009 Academic Publications

406 E. Ballico

i=1,2, be two copies of the triple (D,S,σ) . Let X be the nodal curve obtained gluing each point of $S_1 \subset X_1$ to the corresponding point of $S_2 \subset X_2$. X is a stable curve of genus g equipped with a degree 2 morphism $u: X \to D$ such that each $u|X_i:X_i\to D$ is an isomorphism sending S_i isomorphically onto S. We say that X is a reducible bielliptic curve of type II. Let E be a reducible, connected and nodal curve such that $p_a(E) = 1$. Hence E has two irreducible components, say E_1 and E_2 , such that $E_1 \cong E_2 \cong \mathbb{P}^1$ and $\sharp(E_1 \cap E_2) = 2$. Fix nodal projective curves Y_1, Y_2 and degree 2 finite morphisms $u_i: Y_i \to E_i$, i=1,2. We do not assume the connectedness of Y_1 or Y_2 . Let Y be the nodal curve obtained gluing some of the points of $u_1^{-1}(E_1 \cap E_2) \subset Y_1$ with some of the points of $u_2^{-1}(E_1 \cap E_2) \subset Y_2$. If Y is connected, then Y is called a bielliptic curve of type III. Y is said to be nice if u_1 and u_2 are unramified at all points mapped over $E_1 \cap E_2$ and each point of $u_1^{-1}(E_1 \cap E_2)$ is glue to a unique point of $u_2^{-1}(E_1 \cap E_2)$. Fix integer $g \geq 2q \geq 4$, an integral projective curve Y and $S \subset Y_{reg}$ such that $\sharp(S) = g+1-2q$. Fix an ordering, say P_1, \ldots, P_{q+1-2q} of S. Fix two copies (Y_i, S_i) , i = 1, 2, of the pair (Y, S) and let X be the reducible curve obtained gluing together each point of $S_1 \subset Y_1$ with the corresponding point of $S_2 \subset Y_2$ to get an ordinary node. Hence $p_a(X) = g$, X is connected and it has two irreducible components, X_1 and X_2 . X is equipped with a morphism $u: X \to Y$ such that $u|X_i: X_i \to Y$ is an isomorphism. The triple (X,Y,u) is called a reducible q-hyperelliptic curve with Y as its target. Here we prove the following results.

Theorem 1. Fix positive integers d_1, d_2 and a smooth elliptic curve C.

- (a) Assume either $d_1 = 1$ or $d_2 = 1$ or $d_1 + d_2 \leq g 2$. Then for every reducible bielliptic curve $u: X = X_1 \cup X_2 \to C$ of type I there is no degree d finite morphism $f: X \to \mathbb{P}^1$ such that the morphism $(u, f): X \to C \times \mathbb{P}^1$ is birational onto its image.
- (b) Assume $d_1 \geq 2$, $d_2 \geq 2$ and $d_1 + d_2 \geq g 1$. There exist a reducible bielliptic curve $u: X \to C$ of type I and a degree finite morphism $f: X \to \mathbb{P}^1$ such that $\deg(u|X_i) = d_i$, i = 1, 2, and the morphism $(u, f): X \to C \times \mathbb{P}^1$ is birational onto its image.

Theorem 2. Fix positive integers d_1, d_2 and an integral curve D such that $p_a(D) = 1$ and D has an ordinary node.

(a) Assume $d_1 + d_2 \leq g - 2$. Then for every reducible bielliptic curve $u: X = X_1 \cup X_2 \to D$ of type II there is no finite morphism $f: X \to \mathbb{P}^1$ such that $\deg(f|X_i) = d_i$, i = 1, 2, and the morphism $(u, f): X \to D \times \mathbb{P}^1$ is birational onto its image.

(b) Assume $d_1 \geq 2$, $d_2 \geq 2$ and $d_1 + d_2 \geq g - 1$. There exist a reducible bielliptic curve $u: X \to D$ of type II and a finite morphism $f: X \to \mathbb{P}^1$ such that the morphism $(u, f): X \to D \times \mathbb{P}^1$ is birational onto its image and $\deg(f|X_i) = d_i$, i = 1, 2.

Theorem 3. Let Y be an integral projective curve such that $q:=p_a(Y)\geq 2$. Fix integers $d_1\geq 3$ and $d_2\geq 3$ such that there are very ample $M_i\in \operatorname{Pic}^{d_i}(Y)$, i=1,2. Assume $d_1+d_2\geq 2q-1$ and fix an integer g such that $d_1+d_2\geq g+1-2q$. Then there exist a q-hyperelliptic reducible curve $(X=X_1\cup X_2,Y,u)$ with Y as its target and a finite morphism $f:X\to \mathbb{P}^1$ such that $p_a(X)=g$ and $\deg(f|X_i)=d_i,\ i=1,2$.

We do not have general results concerning reducible bielliptic curves of type III.

2. The Proofs

Remark 1. Set $W := C \times \mathbb{P}^1$. Let $p_1 : W \to C$ and $p_2 : W \to \mathbb{P}^1$ denote the projections. For any $M \in \operatorname{Pic}(C)$ and any integer t set $(M,t) := p_1^*(M) \otimes p_2^*(\mathcal{O}_{\mathbb{P}^1}(t))$. Every line bundle on W is isomorphic to a line bundle (M,t) for some uniquely determined M,t. Fix $M \in \operatorname{Pic}^a(C)$. If $N \in \operatorname{Pic}^b(C)$, then $(M,t) \cdot (N,t') = at' + bt$. In the next few sentences we apply Künneth formula. If either a < 0 or t < 0, then $h^0(W,(M,t)) = 0$. If a > 0 and $t \ge 0$, then $h^1(W,(M,t)) = 0$ and $h^0(W,(M,t)) = a(t+1)$. If $a \ge 2$ and $t \ge 0$, then (M,t) is spanned. If $a \ge 3$ and t > 0, then (M,t) is very ample. Assume $a \ge 2$; every integral curve in |(M,1)| is mapped isomorphically by p_1 onto C; any non-integral curve in |(M,1)| is the union of a curve mapped isomorphically by p_1 onto C and some fibers of p_1 ; hence a dimensional computation shows that a general element of |(M,1)| is integral.

(i) Fix integers $d_i \geq 2$ and $M_i \in \operatorname{Pic}^{d_i}(C)$, i = 1, 2. We saw that $|(M_i, 1)| \neq \emptyset$ and that a general member of it is isomorphic to C. We have $(M_1, 1) \cdot (M_2, 1) = d_1 + d_2$. Take a general pair $(T_1, T_2) \in |(M_1, 1)| \times |(M_2, 1)|$ such that T_1 intersects transversally T_2 , i.e. $\sharp (T_1 \cap T_2) = d_1 + d_2$. First assume $d_2 \geq 3$. Fix a smooth $T_1 \in |(M_1, 1)|$. Since $d_2 \geq 3$, $(M_2, 1)$ is very ample. Hence Bertini's theorem implies the existence of a smooth $T_2 \in |(M_2, 1)|$ transversal to T_1 . Obviously, the same proof works if $d_1 \geq 3$. Now assume $d_1 = d_2 = 2$. There is a finite set $V_i \subset C$ such that $(M_i, 1)$ is very ample outside $U_i := p_1^{-1}(V_i)$, it has no base point and at each point P of U_i the kernel of the differential of the morphism associated to $(M_i, 1)$ is the tangent space of $p_1^{-1}(p_1(P))$ at P.

408 E. Ballico

Indeed, in characteristic $\neq 2$ we have $\sharp(V_i) = 4$, while in characteristic 2 either $\sharp(V_i) = 2$ or $\sharp(V_i) = 1$. Fix M_1 and then take a general M_2 . The generality of M_2 implies $V_1 \cap V_2 = \emptyset$. Hence $U_1 \cap U_2 = \emptyset$. Hence a dimensional count gives the existence of smooth T_1, T_2 such that T_2 is transversal to T_1 .

Proof of Theorem 1. Use the set-up of Remark 1. Let $u: X = X_1 \cup X_2 \to C$ be a reducible bielliptic curve of type I. Assume the existence of a finite morphism $f: X = X_1 \cup X_2 \to \mathbb{P}^1$ such that the morphism (u, f) is birational onto its image. Set $d_i := \deg(f|X_i)$. Obviously, $d_1 > 0$ and $d_2 > 0$. Since X_1 and X_2 are not rational, $d_1 \geq 2$ and $d_2 \geq 2$. Set $T_i := \operatorname{Im}((u, f)(X_i))$, i = 1, 2. T_i is an integral curve contained in W and in a linear system $(M_i, 1)$ for some $M_i \in \operatorname{Pic}^{d_i}(C)$. Since $\sharp(X_1 \cap X_2) = g - 1$, we have $T_1 \cdot T_2 \geq g - 1$, concluding the proof of part (a). Part (b) follows from part (i) of Remark 1.

Proof of Theorem 2. Take $W' := D \times \mathbb{P}^1$ instead of $W := C \times \mathbb{P}^1$ and copy the proofs of Remark 1 and Theorem 1, except that in part (a) the rationality of X_1 and X_2 only gives the inequality $d_i \geq 1$, i = 1, 2.

Remark 2. Let D' be an integral curve such that $p_a(D') = 1$ and D' has an ordinary cusp. Taking D' instead of either C or D in the proofs of Theorem 1 and 2 we get that the statement of Theorem 2 is true for D'.

Proof of Theorem 3. Set $W := Y \times \mathbb{P}^1$ and adapt Remark 1 and the proof of Theorem 1, because $d_1 + d_2 = (M_1, 1) \cdot (M_2, 1)$.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).