VARIANCE OF SAMPLE VARIANCE WITH REPLACEMENT

Eungchun Cho¹‡, Moon Jung Cho²

¹Department of Mathematics
 Seoul National University
 Seoul, KOREA
 e-mail: eccho@math.snu.ac.kr
²U.S. Bureau of Labor Statistics
 Seoul, KOREA

Abstract: The variance of variance of finite samples taken from a finite population with replacement is expressed in terms of the sample size and the second and fourth order moments of population.

AMS Subject Classification: 92D25
Key Words: sample variance, sample with replacement, randomization variance, moments, finite population

1. Introduction

We give a formula of the variance of with-replacement sample variance in terms of the sample size and the second and fourth moments of the population about the mean. The derivation of the formula does not require working with the more elaborate “polykay” approach of Tukey [4], [5], [6], [7]. Formula for the variance of the variance of without-replacement samples from a finite population given in Cho et al [1] is quoted for comparison at the end of this paper.

2. Main Theorem

Let #A# be a finite set \{a₁, …, a₆\} and #s# a sample of #n# elements \{x₁, …, xₙ\}
taken from A with replacement. \(n \) is not bounded by the population size \(N \), though often in practice \(n \ll N \). The sample \(s \) is viewed as a realization of independent identically distributed random variables \(X_1, \ldots, X_n \) on \(A \). Following notation will be used.

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}, \quad \mu = \frac{\sum_{i=1}^{N} a_i}{N}, \quad \mu_k = \frac{\sum_{i=1}^{N} (a_i - \mu)^k}{N}, \quad \mu'_k = \frac{\sum_{i=1}^{N} a_i^k}{N}.
\]

Theorem 1. Let \(S^2 \) be the variance of with-replacement samples of size \(n \) from a set \(A \) of real numbers \(a_1, a_2, \ldots, a_N \). The variance of \(S^2 \)

\[
\text{Var}(S^2) = \frac{1}{n} \left(\mu_4 - \frac{n - 3}{n - 1} \mu_2^2 \right)
\]

\[
= \frac{1}{n} (\mu_4 - \mu_2^2) + O(n^{-2}).
\]

Proof. Let \(Z_i = X_i - \mu \) for \(i = 1, 2, \ldots, n \) so that \(E(Z_i) = 0 \). Since \(\text{Var}(S^2) = E(S^4) - \mu_2^2 \), we derive an expression of \(E(S^4) \) in terms of \(n \) and the moments. We can write

\[
S^2 = \frac{n \sum_{i=1}^{n} Z_i^2 - (\sum_{i=1}^{n} Z_i)^2}{n (n - 1)}
\]

and by squaring

\[
S^4 = \frac{n^2 \left(\sum_{i=1}^{n} Z_i^2 \right)^2 - 2n \left(\sum_{i=1}^{n} Z_i^2 \right) \left(\sum_{i=1}^{n} Z_i \right)^2 + (\sum_{i=1}^{n} Z_i)^4}{n^2 (n - 1)^2},
\]

\[
E(S^4) = \frac{n^2 E \left(\sum_{i=1}^{n} Z_i^2 \right)^2 - 2n E \left(\sum_{i=1}^{n} Z_i^2 \right) \left(\sum_{i=1}^{n} Z_i \right)^2 + E \left(\sum_{i=1}^{n} Z_i \right)^4}{n^2 (n - 1)^2}.
\]

Since \(Z_1, \ldots, Z_n \) are independent, we have

\[
E(Z_i Z_j) = 0, \quad E(Z_i^3 Z_j) = 0, \quad E(Z_i^2 Z_j Z_k) = 0,
\]

\[
E(Z_i^2 Z_j^2) = \mu_2^2, \quad E(Z_i^4) = \mu_4, \quad \text{for distinct } i, j, k.
\]

Routine algebraic simplification with the expected values given above yields

\[
E \left(\sum_{i=1}^{n} Z_i^2 \right)^2 = n \mu_4 + n (n - 1) \mu_2^2, \quad (3)
\]

\[
E \left(\left(\sum_{i=1}^{n} Z_i^2 \right) \left(\sum_{i=1}^{n} Z_i \right)^2 \right) = n \mu_4 + n (n - 1) \mu_2^2, \quad (4)
\]
VARIANCE OF SAMPLE VARIANCE WITH REPLACEMENT

\[E \left(\sum_{i=1}^{n} Z_i \right)^4 = n \mu_4 + 3n (n - 1) \mu_2^2. \]
(5)

Substitution of (3), (4) and (5) into the expansion of \(E(S^4) \) and simplification give

\[E(S^4) = \frac{(n - 1) \mu_4 + (n^2 - 2n + 3) \mu_2^2}{n (n - 1)} \]
(6)

and

\[\text{Var}(S^2) = E(S^4) - \mu_2^2 \\
= \frac{(n - 1) \mu_4 + (n^2 - 2n + 3) \mu_2^2}{n (n - 1)} - \mu_2^2 \\
= \frac{1}{n} \left(\mu_4 - \frac{3}{n - 1} \mu_2^2 \right) \\
= \frac{1}{n} (\mu_4 - \mu_2^2) + \frac{2}{n(n-1)} \mu_2^2. \]
\[
\square
\]

To obtain an expression of the formula of \(\text{Var}(S^2) \) in terms of \(\mu \) and the moments \(\mu'_2, \mu'_3 \) and \(\mu'_4 \) about zero, we substitute

\[\mu_2 = \mu'_2 - \mu^2; \]
\[\mu_4 = \mu'_4 - 4 \mu \mu'_3 + 6 \mu^2 \mu'_2 - 3 \mu^4 \]

into (1) and get

\[\text{Var}(S^2) = \frac{1}{n} \mu'_4 - \frac{4}{n} \mu \mu'_3 - \frac{n - 3}{n (n - 1)} \mu'_2^2 \\
+ \frac{4}{n (n - 1)} \mu^2 \mu'_2 - \frac{2 (2n - 3)}{n (n - 1)} \mu^4. \]
(7)

3. Comparison with Without-Replacement Samples

Here we compare (1) with the variance of variance of without-replacement samples given in [1]. Let \(\text{Var}_{wo}(S^2) \) denote the variance of variance of without-replacement samples of size \(n \) from \(A \). The following is a simplified (improved) version from [1]:

\[\text{Var}_{wo}(S^2) = c_1 \mu_4 + c_3 \mu_2^2, \]
(8)

where

\[c_1 = \frac{N (N-n) (Nn-N-n-1)}{n (n-1) (N-3) (N-2) (N-1)}. \]
where c is expected. The difference of $\text{Var}_w(\bar{S}^2)$ and $\text{Var}(\bar{S}^2)$ is of order $1/N$, that is, $|\text{Var}_w(\bar{S}^2) - \text{Var}(\bar{S}^2)|$ is $O(N^{-1})$. In most practical situations where $n = cN^\alpha$ for some $c > 0$ and $0 < \alpha < 1$, $|\text{Var}_w(\bar{S}^2) - \text{Var}(\bar{S}^2)|$ is $O(n^{-\alpha})$. For example, if $n = \sqrt{N}$, then the difference of $\text{Var}_w(\bar{S}^2)$ and $\text{Var}(\bar{S}^2)$ is $O(n^{-2})$. As we did for $\text{Var}(\bar{S}^2)$, we represent $\text{Var}_w(\bar{S}^2)$ in terms of the moments μ_2 and μ_4 about zero by substitution of (7) into (8):

$$\text{Var}_w(\bar{S}^2) = c_1 \mu_4 + c_2 \mu_3 + c_3 \mu_2^2 + c_4, \mu_2^2 \mu_2 + c_5 \mu^4,$$

(10)

where c_1 and c_3 are as before (9) and

$$c_2 = -4 \frac{N(N-n)(Nn-N-n-1)}{n(n-1)(N-3)(N-2)(N-1)},$$

$$c_4 = 4 \frac{N^2(N-n)(2Nn-3N-3n+3)}{n(n-1)(N-1)^2(N-2)(N-3)},$$

$$c_5 = -2 \frac{N^2(N-n)(2Nn-3N-3n+3)}{n(n-1)(N-1)^2(N-2)(N-3)}.$$

Here again, each c_i converges to the corresponding coefficient in (7)

$$\lim_{N \to \infty} c_2 = -\frac{4}{n}, \quad \lim_{N \to \infty} c_4 = \frac{4(2n-3)}{n(n-1)},$$

$$\lim_{N \to \infty} c_5 = -\frac{2n-3}{n(n-1)}.$$

Following are examples where the population itself is like a finite sample from a specific distribution.

Example 1. If a finite population follows the Gaussian distribution and $\mu_4 = 3\mu_2^2$, then the variance of variance of with-replacement samples of size n,

$$\text{Var}(\bar{S}^2) = \frac{1}{n} \left(3\mu_2^2 - \frac{n-3}{n-1} \mu_2^2 \right) = \frac{2}{n-1} \mu_2^2.$$

Example 2. If a finite population follows Poisson distribution with $\mu = \lambda$, $\mu_2 = \lambda$ and $\mu_4 = 3\lambda^2 + \lambda$, then

$$\text{Var}(\bar{S}^2) = \frac{1}{n} \left(3\lambda^2 + \lambda - \frac{n-3}{n-1} \lambda^2 \right) = \left(\frac{2\lambda}{n-1} + \frac{1}{n} \right) \lambda.$$

The views expressed in this paper are those of the authors and do not
necessarily reflect the policies of the U.S. Bureau of Labor Statistics. The authors thank John Eltinge for many helpful suggestions that improved the paper. Eungchun Cho’s work at Seoul National University was supported by The Korea Research Foundation and The Korean Federation of Science and Technology Societies Grant funded by Korea Government (MOEHRD, Basic Research Promotion Fund).

References

