IJPAM: Volume 53, No. 1 (2009)
MEXICO CITY USING A NON-HOMOGENEOUS POISSON
MODEL AND A METROPOLIS-HASTINGS ALGORITHM
Faculdade de Medicina de Ribeirão Preto
Universidade de São Paulo - USP
Av. Bandeirantes, 3900
14049-900 - Ribeirão Preto - SP, BRAZIL
e-mail: achcar@fmrp.usp.br
Instituto de Matemáticas
Universidad Nacional Autónoma de México - UNAM
Area de la Investigación Científica
Circuito Exterior, Ciudad Universitaria
México, D.F., 04510, MÉXICO
e-mail: giselaortiz37@hotmail.com
e-mail: eliane@math.unam.mx
Abstract.In this paper we consider the problem of estimating the probability of
having an air quality standard exceeded a certain number of times in a time
interval of interest. A non-homogeneous Poisson model is used to study
this problem. The rate
function at which the Poisson events occur is given by
, which depends on some parameters to be estimated. These parameters
are estimated using a Bayesian formulation based on a Metropolis-Hastings
algorithm. A comparison of the performance of this algorithm with the
performance of the WinBugs software is also given.
Received: March 7, 2009
AMS Subject Classification: 60J20, 60G55, 62F15, 62M99, 92F05
Key Words and Phrases: Metropolis-Hastings algorithm, Bayesian inference, non-homogeneous Poisson model
Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2009
Volume: 53
Issue: 1