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1. Introduction

Several years ago we wrote jointly with Ph. Ellia a series of papers on the
postulation of curves in projective spaces (see [3], [4], [5], [6], [7], [8]), developed
under the guidance of A. Hirschowitz and using a key method that he introduced
(see [12], [11]). Here we improve one of our old results and prove the following
result.

Theorem 1. Fix integers d, g such that g ≥ 0 and either d ≥ g + 4 or
d < g + 4 and 5d ≥ 4g + 4. Let C ⊂ P

4 be a general degree d non-degenerate
embedding of a general smooth curve of genus g. Then C has maximal rank,
i.e. for every integer t either h1(P4,IC(t)) = 0 or h0(P4,IC(t)) = 0.

In the statement of Theorem 1 the case d ≥ g + 4 (the non-special embed-
dings) was proved in [4] and [7] and hence we do not consider it here. In the
last part of the statement of Theorem 1 we only need to consider the integers
t ≥ 2. Let C ⊂ P

4 be any embedding of a curve with general moduli. A con-
sequence of Gieseker-Petri Theorem gives h1(C,OC(2)) = 0 (see [1], Corollary
5.7). Hence Riemann-Roch shows that we need to prove h1(P4,IC(t)) = 0 if

Received: May 2, 2009 c© 2009 Academic Publications



364 E. Ballico

t ≥ 2 and td+1−g ≤
(

t+4
4

)

and h0(P4,IC(t)) = 0 if t ≥ 2 and td+1−g ≥
(

t+4
4

)

.

Key lemmas are [8], Lemma 5.2, and [4], Lemma 1.

An essential tool is the following component of the Hilbert scheme of a
projective space. Fix integers r, d, g such that r ≥ 3, g ≥ 0 and either d ≥
g + r or d − r < g ≤ d − r + ⌊(d − r − 2)/(r − 2)⌋. There is an irreducible
component W (d, g; r) of the Hilbert scheme of P

r which is generically smooth
and of dimension (r + 1)d − (r − 3)(g − 1) such that a general C ∈ W (d, g; r)
has the following properties (see [5] for the case r = 3, [8] for the case r ≥ 4):

(a) C is a smooth and connected non-degenerate curve with degree d, genus
g and h1(C,NC) = 0, where NC denote the normal bundle of C in P

r;

(b) if d ≥ g + r, then h1(C,OC (1)) = 0;

(c) if d < g + r, then C is linearly normal and h1(C,OC (2)) = 0;

(d) if ρ(g, r, d) ≥ 0, then C has general moduli;

(e) if ρ(g, r, d) < 0, then the general fiber of the natural rational map
γd,g,r : W (d, g; r) 99K Mg has dimension dim(Aut(Pr)) = r2+2r, i.e. W (d, g; r)
has the right number of moduli in the sense of [16].

If U = P
x, x ≥ 3, and U is a linear subspace of another projective, then we

often write W (d, g;U) instead of W (d, g;x).

We work over an algebraically closed field K such that char(K) = 0.

2. Preliminaries

Fix integers r, d, g such that r ≥ 3, d ≥ r and 0 ≤ g ≤ d−r+⌊(d−r−2)/(r−2)⌋.
If (d, g, , r) 6= (r, 0, r), then we say that the triple (d, g, r) has as critical value

the first integer k ≥ 2 such that kd + 1 − g ≤
(

r+k
r

)

. We say that the triple
(r, 0, r) has critical value 1. Let k be the critical value of (d, g, r). It is easy to
check that td + 1− g <

(

r+t
r

)

for every integer t ≥ k + 1. Hence C ∈ W (d, g; r)
has maximal rank if and only if h1(Pr,IC(k)) = 0 (i.e. the restriction map
ρC,k,r : H0(Pr,OPr(k)) → H0(C,OC (k)) is surjective) and h0(Pr,IC(k−1)) = 0
(i.e. the restriction map ρC,k−1,r : H0(Pr,OPr (k − 1)) → H0(C,OC(k − 1)) is

injective). If kd+1−g =
(

r+k
r

)

, then it is sufficient to check that hi(Pr,IC(k)) =
0 for one of the integers i ∈ {0, 1}.

Let H ⊂ P
r, r ≥ 4, be a hyperplane. In Section 4 we collect the numerical

lemmas which we will use.

We need the following well-known lemma (the so-called Horace Lemma)
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(see [12]).

Lemma 1. Let H ⊂ P
r be a hyperplane. Fix any projective scheme

T ⊂ P
r. Let ResH(T ) be the closed subscheme of P

r with IT : IH as its ideal
sheaf. Then

hi(Pr,IT (t)) ≤ hi(Pr,IResH(T )(t − 1)) + hi(H,IT∩H,H(t))

for all integers i ≥ 0 and t ≥ 0.

Proof. The definition of the residual scheme ResH(T ) gives the exact se-
quence

0 → IResH(T )(t − 1) → IT (t) → IT∩H,H(t) → 0,

whose long cohomological exact sequence gives the lemma.

Lemma 2. Fix integers r, g such that g−1 ≥ r ≥ 3. Let Ur,g be the set of
all smooth, connected and non-degenerate curves C ⊂ P

r such that pa(C) = g,
C is linearly normal and h1(C,OC (1)) = 1. Then Ur,g is irreducible and non-
empty.

Proof. Obviously Ug−1,g is the set of all canonical embeddings of all smooth
non-hyperelliptic curves. Thus the irreducibility of Ug−1,g follows from the irre-
ducibility of Mg and the irreduciblity of the projective linear group Aut(Pg−1).
Now assume r < g − 1. Any element of Ur,g may be obtained taking a linear
projection of any X ∈ Ug−1,g from g − r − 1 sufficiently general points of X.
Since Ug−1,g is irreducible and the symmetric product of g− r− 1 copies of any
irreducible curve is non-empty, irreducible and (g − r − 1)-dimensional, Ur,g is
irreducible.

Remark 1. Let D ⊂ P
r, r ≥ 2, be a rational normal curve. Then ND is

a direct sum of r − 1 line bundles of degree r + 2 (see e.g. [15] or [14]).

Lemma 3. Let D ⊂ P
r be a linearly normal elliptic curve.

(a) ND is semistable.

(b) For any A ⊂ D such that ♯(A) ≤ 2 we have h1(D,ND(−1)(−A)) = 0.

(c) Assume r ≤ 4. Then h1(D,ND(−1)(−A)) = 0 for every A ⊂ D such
that ♯(A) = 3.

Proof. Part (a) is proved in [9]. Fix A ⊂ D such that ♯(A) ≤ 2 and assume
h1(D,ND(−1)(−A)) > 0. Since ωD

∼= OD, Serre duality gives the existence
of a non-zero morphism β : ND(−1)(−A) → OD. Since ND is semistable,
ND(−1)(−A) is a rank r − 1 semistable vector bundle with degree 2(r + 1) −
(r − 1) · ♯(A). Since deg(ND(−1)(−A)) > 0 and β 6= 0, the vector bundle
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ND(−1)(−A) is not semistable, contradiction. If r ≤ 4, then the obtain a
similar contradiction even if ♯(A) = 3.

Remark 2. Fix integers d ≥ g + 3 ≥ 3 and a general S ⊂ P
3 such that

♯(S) ≤ 2d (we only need a weaker case, say ♯(S) ≤ d+3). There is a smooth and
connected curve C ⊂ P

3 such that deg(C) = d, pa(C) = g, h1(C,OC (1)) = 0,
S ⊂ C and h1(C,NC(−S)) = 0 (use [13], Theorem 1.5).

Lemma 4. Let H be a hyperplane of P
4. Fix integers g, d such that

d ≥ g + 4 ≥ 4. Write g = 4m + e with m a non-negative integer and 0 ≤ e ≤ 3.
If d ≤ 4m + 7, set f := d − 4m − 4. If d ≥ 4m + 8 set f := d − 4m − 8. Fix an
integer s such that 0 ≤ s ≤ 4 + 3m + f . Let S ⊂ H be a general subset such
that ♯(S) = s. Then there exists a smooth C ∈ W (d, g; 4) such that S ⊂ C∩H,
C intersects transversally H, h1(C,OC(1)) = 0 and h1(C,NC (−S)) = 0.

Proof. It is sufficient to do the case s = 4 + 3m + f . It is sufficient to find
a nodal and connected curve X ⊂ P

4 such that X intersects transversally H,
S ⊂ Xreg, h1(X,OX (1)) = 0 and h1(X,NX(−S)) = 0. First assume d = 4.
Hence g = 0 and s = c. Take as C a general rational normal curve of H and
use that any two serts of 4 points of H spanning H are projectively equivalent.
Remark 1 shows that NC is a direct sum of 3 line bundles of degree 6. Hence
h1(C,NC (−E)) = 0 for any E ⊂ C such that ♯(E) ≤ 7. Apply [13], Theorem
1.5, to E := C ∩ H. Now assume e = 0 and d = g + 4 > 0, i.e. d = 4m + 4,
g = 4m and s = 4 + 3m for some integer m > 0. We use induction on m, the
case m = 0 being just checked. Fix a general S′ ⊂ H such that ♯(S′) = 3m.
Let A be a general element of W (4m, 4m − 4; 4) such that S′ ⊂ A ∩ H. By
the inductive assumption there is such a curve A and it is smooth, connected,
h1(A,OA(1)) = 0 and h1(A,NA(−S′)) = 0. Fix a general E ⊂ A such that
♯(E) = 5. Let B a general rational normal curve of H such that E ⊂ B. Set
X := A ∪ B. X is nodal and X ∈ W (d, g; 4) (apply several times [8], Lemma
2.2; for a far stronger statement, see [8], Lemma 2.3). To prove the result using
X it is sufficient to prove h1(X,NX (−S′−S′′)) = 0, where S′′ is a general union
of 3 points of B. The Mayer-Vietoris exact sequence

0 → OA∪B(t) → OA(t) ⊕OB(t) → OA∩B(t) → 0 , (1)

gives h1(A ∪ B,OA∪B(1)) = 0, because h1(A,OA(1)) = h1(B,OB(1)) = 0 and
the vanishing of h1(B,OB(1)(−(A∩B))) gives the surjectivity of the restriction
map H0(B,OB(1)) → H0(A ∩ B,OA∩B(1)) (indeed, ♯(A ∩ B) = 5 and that B
is a rational normal curve of H ∼= P

4). Consider the Mayer-Vietoris exact
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sequence

0 → NA∪B(−S′ − S′′) → NA∪B(−S′ − S′′)|A ⊕ NA∪B(−S′ − S′′)|B

→ NA∪B(−S′ − S′′)|A ∩ B → 0 . (2)

Since NA∪B(−S′ − S′′)|A ∼= NA∪B(−S′)|A is obtained from NA(−S′) mak-
ing 5 positive elementary transformations and h1(A,NA(−S′)) = 0, we have
h1(A,NA∪B(−S′ − S′′)|A). Since S′ ∩B = ∅, NX(−S′ − S′′)|B ∼= NX(−S′′)|B.
The vector bundle NX(−S′′)|B is obtained from the vector bundle NB(−S′′)
making 5 positive elementary transformations and NB(−S′′) is isomorphic to
the direct sum of 3 line bundles of degree 2, h1(B,NA∪B(−S′ − S′′)|B) =
0. Hence (1) shows that to prove h1(X,NX (−S′ − S′′)) = 0 it is sufficient
to prove the surjectivity of the restriction map H0(B,NX(−S′ − S′′)|B) →
H0(E,NX (−S′ − S′′)|E). Hence it is sufficient to prove h1(B,NX(−S′ − S′′)|
B(−E)) = 0. Hence it is sufficient to prove that every rank 1 direct summand
of NX |B has degree at least 7. This is true, because we may do sufficiently
general 3 of the 5 positive elementary transformations needed to obtain NX |B
for B. Now assume that either g/4 /∈ Z or d > g + 4. Write g = 4m + e and
d = (4m+4)e+a. Fix a general S′ ⊂ H such that ♯(S′) = 4+3m. By the case
(d, g, s) = (4m+4, 4m, 4+3m) just done there is a smooth A ∈ W (4m+4, 4m; 4)
such that h1(A,OA(1)) = 0 and h1(A,NA(−S′)) = 0. Fix a general F ⊂ A such
that ♯(F ) = e + 1. Let B ⊂ P

4 be a general smooth rational curve of degree
d − 4m − 4. Take a general S′′ ⊂ B such that ♯(S′′) = s − 3m − 4. We saw
that it is sufficient to prove h1(B,NA∪B(−F − S′′)) = 0 and that this vanish-
ing is true if h1(B,NB(−F − S′′)) = 0. First assume d − 4m − 4 ≥ 4. Since
♯(F ) ≤ 4, B may be considered as a general degree d− 4m− 4 rational curve of
P

4. Let a1 ≥ a2 ≥ a3 be the splitting type of NB . We have a3 = ⌊deg(NB)/3⌋
(see [15] or [14]). Since deg(NB) = 5 · deg(B) − 2 = 5d − 20m − 22, and
s − (4 + 3m) = ⌊(5d − 20m − 22)/3⌋, we are done.

We lift the following joint lemma with C. Fontanari from a joint paper in
preparation.

Lemma 5. Fix integers r,m, e such that r ≥ 4, r ≥ m ≥ 2, and e ∈ {0, 1}.
Let H ⊂ P

r be a hyperplane and V ⊆ P
r an m-dimensional linear subspace

such that V ∩ H 6= V . Let Y ⊂ H be a nodal and connected curve such that
h1(Y,NY,H) = 0. Set c := h1(Y,OY (1)). Assume m + e ≥ c. If e = 1 assume
m = r. Fix S ⊂ Yreg such that ♯(S) = m + e + 1 and h1(Y,OY (1)(S)) = 0. Let
D ⊂ V be a smooth curve of genus e and degree m+ e spanning V such that D
intersects transversally V ∩ H and S = Y ∩D. Then h1(Y ∪ D,NY ∪D) = 0. If
m+e ≥ c+1 and h1(Y,OY (1)(S′)) = 0 for all S′ ⊂ S such that ♯(S′) = m+e−1,
then Y ∪ D is smoothable.
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Lemma 6. Fin integers t, a, b, c such that t ≥ 3, 0 ≤ a ≤ t − 1, b ≥ 2t,
and tc + 1 + a(t + 1) + b ≤

(

t+3
3

)

. Let A ⊂ H be a general union of a degree c
smooth rational curve and a disjoint lines. Then h1(H,IA(t)) = 0.

Proof. The quickest way is to follow the proof in [6] with (at some point)
taking only surjectivity of a certain restriction map instead of bijectivity and
inserting a of the lines without intersecting the rational curve.

3. Proof of Theorem 1

For all integers k ≥ 2 let gk be the maximal integer such that k(⌈4gk/5⌉+ 4) +
1− gk ≤

(

k+4
4

)

. Set dk := ⌈4gk/5⌉+4 and ak :=
(

k+4
k

)

−k ·dk −1+ gk. We have

k · dk + 1 − gk + ak =

(

k + 4

4

)

, 0 ≤ ak ≤ k − 2 . (3)

Remark 3. We have gk ≥ k − 2 for every integer k ≥ 2 (Remark 5).
Hence gk ≥ ak for every integer k ≥ 2.

Remark 3 justifies the introduction of the following assertion A(k), k ≥ 2:

A(k), k ≥ 2. There is X ∈ W (dk, gk − ak; 4) such that hi(P4,IX(k)) = 0,
i = 0, 1.

As A(1) we take the assertion that a rational normal curve of P
4 is linearly

normal. Hence A(1) is true.

Lemma 7. Fix an integer k ≥ 2. Assume the existence of X ∈ W (dk, gk; 4)
such that h1(P4,IX(k)) = 0 (or, equivalently, h0(P4,IX(k)) = ak) and h0(P4,
IX(k − 1)) = 0 and that no irreducible component of X is contained in H. Fix
a general W ⊂ H such that ♯(W ) = ak. Then h0(P4,IX∪W (k)) = 0.

Proof. Since h0(P4,IX(k − 1)) = 0 and ResH(X) = X, we have h0(P4,
IX∪H(k)) = 0 (Lemma 1). Since h0(P4,IX(k)) = ak, we may take ak general
points of H instead of H in the previous relation.

Lemma 8. Fix integers d, g such that g ≥ 0, 5d ≥ 4g + 20 and (d, g) has
critical value 2. Then there exists a smooth and non-degenerate curve C ∈ P

4

with degree d, genus g and maximal rank.

Proof. Since the case d ≥ g + 4 is true (see [4]), we may assume d < g + 4.
Since h1(C,OC(1)) > 0 for any a smooth C ∈ W (d, g; 4), we have g ≥ 5,
with equality if and only if d = 10 and C is a canonically embedded genus 5
curve. Since a canonically embedded smooth curve is projectively normal and
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2d + 1 − g ≤
(

6
2

)

= 15, it is sufficient to prove the lemma for the following
pairs of integers (d, g): (9, 6), (10, 7), (11, 8), (12, 10). Since our curves are
non-degenerate, it is sufficient to check that h1(P4,IC(2)) = 0 for a general
C ∈ W (d, g; 4). Fix a hyperplane H ⊂ P

4. Let Y ⊂ H be a general smooth
curve of genus 5 and degree 7. We have hi(H,IY,H(2)) = 0, i = 0, 1 (see [5]).
Fix an integer s such that 2 ≤ s ≤ 5 and a general S ⊂ Y such that ♯(S) = s. If
s ≥ 4, then set V := P

4. If s ≤ 3 take as V an s-dimensional linear subspace of
P

4 such that V ∩H = 〈S〉. First assume 2 ≤ s ≤ 4. Let D be a rational normal
curve of V such that S ⊂ V . Thus deg(D) = s, D intersects transversally
H and h1(P4,ID(1)) = 0. Since ResH(Y ∪ D) = D and h1(H,IY,H(2)) = 0,
Lemma 1 gives h1(P4,IY ∪D(2)) = 0. We have deg(Y ∪D) = 7+ s and pa(Y ) =
5 + s. To conclude for the pair (d, g) = (7 + s, 5 + s) it is sufficient to prove
Y ∪ D ∈ W (6 + s, 3 + s; 4). Lemma 5 gives h1(Y ∪ D,NY ∪D) = 0 and that
Y ∪ D is smoothable. Since h1(Y ∪ D,OY ∪D(1)) = 1 (use a Mayer-Vietoris
exact sequence) we have h1(C,OC (1)) ≤ 1 for a general smoothing C of Y ∪D.
Apply Lemma 2. Now we consider the case (d, g) = (12, 10). We take s = 5
and as curve D a linearly normal elliptic curve of P

4 containing S. Hence
D intersects transversally H and S = D ∩ Y . Another joint lemma with C.
Fontanari (omitted here) gives Y ∪D ∈ W (12, 10; 4). Now we consider the case
(d, g) = (9, 6). Here we make the previous construction with s = 3, except that
here Y is a canonically embedded curve Y ⊂ P

3 with degree 6 and genus 4.

Lemma 9. Fix integers d, g such that g ≥ 0, 5d ≥ 4g + 20 and (d, g) has
critical value 3. Then there exists a smooth and non-degenerate curve C ∈ P

4

with degree d, genus g and maximal rank.

Proof. Since the case d ≥ g+4 is true (see [4]), we may assume d < g+4. Let
C be a general element of W (d, g; 4). To prove that C has maximal rank it is suf-
ficient to prove h1(P4,IC(3)) = 0 and h0(P4,IC(2)) = 0. Since W (d, g; 4) is ir-
reducible, the semicontinuity theorem for cohomology shows that it is sufficient
to find C,C ′ ∈ W (d, g; 4) such that h1(P4,IC(3)) = 0 and h0(P4,IC′(2)) = 0.
Since the existence of C ′ is easy (take the union of some curve C ′′ given by
Lemma 8 and another curve), we just consider the condition h1(P4,IC(3)) = 0.
Write d = g + 4 − c with c > 0. The inequality ρ(g, 4, d) ≥ 0 is equivalent to
the inequality 5c ≤ g. Since 3d + 1 − g ≤

(7
4

)

= 35 and 2d + 1 − g >
(6
2

)

= 15,
the pair (d, g) is one of the following pairs: (13, 10), (13, 11), (14, 11), (14, 12),
(15, 12), (15, 13), (15, 14), (16, 14), (16, 15).

Let D(d′, g′) ⊂ P
4 be a general element of W (d′, g′; 4), where (d′, g′) is one

of the pairs of integers listed in the proof of Lemma 8. Hence D intersects
transversally H. Fix an integer a such that 0 ≤ a ≤ 4. Let Ya ⊂ H be a
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general curve of degree 4 + a and genus 1 + a. We have h1(H,IY (3)) = 0 (see
[6]). We may take Ya passing through 2 · deg(Ya) points of H. Fix an integer
s such that 1 ≤ s ≤ min{d′, 8 + 2a} and a general S ⊂ H such that ♯(S) = s.
We may take D(d′, g′) and Ya with the additional condition S = D(d′, g′) ∩ Ya

(Lemma 4 and Remark 10). We have deg(D(d′, g′) ∪ Ya) = d′ + 3 + a and
pa(D(d′, g′)∪Ya) = g′+a+s−1. If (d, g) = (13, 10), then we take (d′, g′) = (9, 6),
a = 1 and s = 1. If (d, g) = (13, 11), then we take (d′, g′) = (9, 6), a = 1 and
s = 2. If (d, g) = (14, 11), then we take (d′, g′) = (11, 8), a = 0 and s = 4. If
(d, g) = (14, 12), then we take (d′, g′) = (11, 8), a = 0 and s = 5. If (d, g) =
(15, 12), then we take (d′, g′) = (11, 8), a = 1 and s = 4. If (d, g) = (15, 13),
then we take (d′, g′) = (11, 8), a = 1 and s = 5. If (d, g) = (15, 14), then we take
(d′, g′) = (11, 8), a = 1 and s = 6. If (d, g) = (16, 14), then we take (d′, g′) =
(12, 10), a = 1 and s = 4. If (d, g) = (16, 15), then we take (d′, g′) = (12, 10),
a = 1 and s = 5. To obtain h1(Y ∪ D,IY ∪D(3)) = 0, it is sufficient to prove
h1(H,IYa∪(D∩H)(3)) = 0. We have ♯((Y ∩ H)\S) = d′ − s. Hence we certain
need d′ − s ≤ h0(H,IYa

(3)). This inequality is also sufficient (see [4], Lemma
1, and [8], Lemma 5.2). We have h0(H,IYa

(3)) = 20− 9− 3a− 1+a = 10− 2a.
Hence our construction works in all cases.

Lemma 10. For every integer k ≥ 1 the assertion A(k) is true .

Proof. By Lemmas 2 and 1) we may assume k ≥ 4 and that the lemma is
true for the integer k′ := k − 1. Notice that gk − gk−1 ≥ dk − dk−1 − 3. Fix a
general S ⊂ H such that ♯(S) = gk − gk−1 − dk + dk−1 + 4 + ak−1 − ak. Lemma
4 gives the existence of a smooth U ∈ W (dk−1, gk−1 − ak−1; 4) intersecting
transversally H and containing S. Since S is general, we may also assume that
U is general in W (dk−1, gk−1; 4). By the inductive assumption we may assume
hi(P4,IU (k−1)) = 0, i = 0, 1. Since k ≥ 4, we have 2(dk−dk−1) ≥ gk−gk−1+k
(Lemma 13). There is a smooth Y ∈ W (dk − dk−1, dk − dk−1 − 3;H) such that
Y ∩ (A ∩ H) = S. By [8], Lemma 2.3, U ∪ Y ∈ W (dk, gk − ak, g; 4)reg . Apply
Lemma 1.

To make easier steps (e) and (f) of the proof of Theorem 10 we give the
following variation of the statement of Lemma 10.

Lemma 11. For every integer k ≥ 2 a general X ∈ W (dk, gk; 4) has
maximal rank, i.e. h1(P4, P4,IX(k)) = ak and h0(P4, P4,IX(k − 1)) = 0.

Proof. Since the pair (dk, gk) has critical value k, the two formulations of
the lemma are equivalent. Since W (dk, gk; 4) is irreducible, it is sufficient to
prove the existence of curves X,X ′ ∈ W (dk, gk; 4) (even diffrent) such that
h1(P4, P4,IX(k)) = ak and h0(P4, P4,IX′(k − 1)) = 0. We first prove the h1-
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part of the lemma. Since the cases k = 2, 3 are true by Lemmas 2 and 1, we
may assume k ≥ 4. Fix a general A ∈ W (dk−1, gk−1−ak−1; 4). Since A(k−1) is
true (Lemma 10), hi(P4,IA(k−1)) = 0, i = 0, 1. Since A is general, it intersects
transversally H. Fix S ⊂ A ∩ H such that ♯(A) = 3 + ak−1. Take a general
Y ∈ W (dk − dk−1, dk − dk−1 − 3;H) such that S = Y ∩ (A ∩ H). As in the
previous lemma use A∪Y . It is obvious that the same construction works even
for the h0-part, because h0(P4, P4,IA∪Y (k−1)) ≤ h0(P4, P4,IA(k−1)) = 0.

Proof of Theorem 1. Fix integers d, g such that W (d, g; 4) is defined and
ρ(g, 4, d) ≥ 0, i.e. such that W (d, g; 4) is the component of Hilb(P4) containing
non-degenerate curves of degree d and genus g with general moduli. By the
maximal rank conjecture for non-special curves (see [7]) we may assume d <
g +4. Let k be the critical value of the pair (d, g). By Lemmas 8 and 9 we may
assume k ≥ 4. Let m be the maximal non-negative integer such that gm ≤ g.
Hence g < gm+1. Since ρ(d, 4, g) ≥ 0, we have dm ≤ d.

(a) Here and in steps (b), (c), and (d) we assume m ≤ k − 2. For every
integer t such that m + 1 ≤ t ≤ k − 1 we define the integers ut and vt by the
relations

tut + 1 − g + vt =

(

t + 4

4

)

, 0 ≤ vt ≤ t − 1 . (4)

For every integer t such that m+1 ≤ t ≤ k−1 we define the following assertion
B(t):

Assertion B(t): Let U ∪ T ⊂ P
4 be a general union of a general U ∈

W (ut − vt, g; 4) and a disjoint union T of vt lines. Then h1(P4,IU∪T (t)) = 0,
i = 1, 2.

For every integer t such that k+1 ≤ t ≤ m−1 we have g ≤ ut = vt + ⌊(ut−
vt − 6)/2⌋ (Lemma 15). Hence the component W (ut − vt, g; 4) is defined. Since
χ(OU∩T (t)) =

(

t+4
4

)

, B(t) is well-defined.

(b) Here we prove B(m+1). Take a general A ∈ W (dm, gm −am; 4). Hence
A intersects transversally H. Since A(m) is true, hi(P4,IB(m)) = 0, i = 0, 1.
Lemma +15 gives um+1 − vm+1 − dm ≥ m. Fix a general S ⊂ H such that
♯(S) = vm + 1 + g − gm, general B ∈ W (um+1 − vm+1 − dm, 0;H) such that
S ⊂ B and a general disjoint union T ⊂ H of vm+1 lines. Lemma 6 gives
h1(H,IB∪T (m+1)) = 0. First applying several times [8], Lemma 5.2, and then
applying [4], Lemma 1, we get hi(H,IB∪T∪(A∩H)(m + 1)) = 0, i = 0, 1. Hence
a smoothing of A ∪ B ∪ T proves B(m + 1).

(c) Here we prove that B(t) is true for every integer t such that m+1 ≤ t ≤
k−1. Since the case t = m+1 was proved in step (b), we may assume k ≥ m+3
and that B(t − 1) is true. Fix U ∪ T satisfying B(t − 1). By the generality of
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U∪T we may assume that it intersects transversally H. First assume vt ≥ vt−1.
Let U ′ be a general element of W (ut−ut−1−vt, 0;H) intersecting U ∩H at one
point and T ′ ⊂ H a general udisjoint union of vt − vt−1 lines. Since vt − vt−1 ≤
vt ≤ t− 1, and ut−1 ≥ 2t (Lemmas 17 and 18), we may apply Lemma 6 and get
h1(H,IU ′∪T ′(t)) = 0. By construction ♯((U∩T )|(H\U ′∪T ′)) = ut−1−1. Hence
♯((U ∩T )|(H\U ′ ∪T ′))+ vt − vt−1 + tvt +1 =

(

t+3
3

)

. Using first [8], Lemma 5.2,
and then [4], Lemma 1, we get hi(H,I(U∪T )∪H∪U ′∪T ′(t)) = 0, i = 0, 1. Lemma
1 gives B(t). Now assume vt−1 > vt. We take a general U ′ ∈ W (ut−ut−1, 0;H)
intersecting U at one point and intersecting exactly vt−1 − vt lines of T ′. These
are not constrains to the generality of U , because T ∩H may be a general set of
vt−1 points of H. Hence [12] gives hi(H,I(U∪T )∪H∪U ′(t)) = 0, i = 0, 1. Lemma
1 gives B(t).

(d) Now we check the h1 = 0 part of Theorem 1 for the pair (d, g) under
the assumption m ≤ k−2. First assume d ≥ uk−1 +vk−1. Take a general U ∪T
satisfying B(k−1). Take a general U ′ ∈ W (d−uk−1, 0;H) such that ♯(A∩U) = 1
and T ∩H ⊂ U ′. As in the second part of (c) we see that U ∪T ∪T ′ ∈ W (d, g; 4)
and h1(P4,IU∪U ′∪T (k)) = 0. Now assume d < uk−1 + vk−1. The pair (d, g) has
critical value k and uk is the maximal integer such that the pair (uk, g) has
critical value k, uk ≥ d. Since uk − uk−1 − vk ≥ k and d < uk−1 + vk−1 Lemma
17 gives kd + 1 − g ≤

(

k+4
k

)

− 2k. Hence in this case we take U1 ∈ W (ut, g; 4)
with h1(IU1

(k − 1)) = 0 (and hence h0(P4,IU1
(k − 1)) = vk−1. Since (d, g)

has critical value k, we have d > uk−1. A solution is given by U1 ∪ U ′ with U ′

general in H and intersecting U1 at eactly one point.

(e) Here we assume m = k − 1. First assume d − dk−1 ≥ g − (gt − at).
Take a general A ∈ W (dk−1, gk−1 − ak−1; 4). Hence hi(P4,IA(k − 1)) = 0,
i = 0, 1, and A intersects transversally H. Fix a general B ∈ W (d− dk−1, 0;H)
intersecting A at g − (gt − at) + 1 points and apply [4], Lemma 1, and [8],
Lemma 5.2, we get h1(P4,IA∪B(k) = 0. Now assume d−dk−1 < g−(gt−at), but
2(d−dk−1)+1 ≥ g−(gt−at). In this case we make the same construction taking
B ∈ W (d− dk−1, 0;H) with q := g− (gt − at)− (d− dk−1). If 2(d− dk−1)+ 1 <
g − (gt − at), then

(

k+4
4

)

− kd − 1 + g is very large; we only need that it is at
least ak−1. Instead of using A(k − 1) we take A ∈ W (dk−1, gk−1; 4) such that
h1(P4,IA(k − 1)) = 0, i.e. h0(P4,IA(k − 1)) = ak−1 (Lemma 11 for the integer
k − 1) and then add a suitable curve in H.

(f) Here we assume m ≥ k. Since gm ≤ g < gm+1, dm = ⌈4gm/5⌉ + 4,
mdm + 1− gm ≥

(

m+4
m

)

−m + 1, (d, g) has critical value k and ⌈4g/5⌉ + 4 ≥ g,
Lemma 12 gives m = k, d = dm and gm = g. Apply Lemma 11.

(g) Here we show how to modify the construction to cover the h0-part of
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Theorem 1. First assume k ≥ m + 3. We start with Y satisfying B(k − 2) and
then instead of adding something to get a reducible curve W with hi(P4,IW (k−
1)) = 0, i = 0, 1, whose general smoothing satisfies B(k − 1) we add something
more in H to get a nodal element of W (d, g; 4) not contained in any degree k
hypersurface. If k = m+2 or k = m+1, then we start with a curve Y satisfying
B(k − 2).

4. Numerical Lemmas

In this section we give the numerical results which we used in this paper.

Remark 4. We have (d2, g2, a2) = (12, 10, 0), (d3, g3, a3) = (16, 15, 1),
(d4, g4, a4) = (23, 24, 1), (d5, g5, a5) = (34, 37, 1), (d6, g6, a6) = (42, 47, 4), (d7, g7,
a7) = (56, 65, 2), (d8, g8, a8) = (71, 83, 5),

Remark 5. Fix an integer x ≥ 2. Since dx = ⌈4gx/5⌉ + 4 ≤ gx + 4 and
ax ≤ x − 2, (3) gives

gx ≥ (

(

x + 4

4

)

− 5x + 1)/(x − 1) . (5)

From (5) we get gx ≥ 4 for all x ≥ 4 and dx ≥ 4 for all x ≥ 3.

Remark 6. Since gx ≤ 2dx − 1, (3) gives

dx ≤

(

x + 4

4

)

/(x − 2) (6)

for all integers x ≥ 3.

Lemma 12. We have gx − gx−1 ≥ x and dx − dx−1 ≥ x for all x ≥ 3.

Proof. Subtracting (3) for the integer k := x − 1 from (3) for the integer
k := x we get

(x − 1)(dx − dx−1) − (gx − gx−1) + dx =

(

x + 3

3

)

. (7)

Since dx = ⌈4gx/5⌉ + 4 and dx−1 = ⌈4gx−1/5⌉ + 4, we have

4(gx − gx−1)/5 − 2 ≤ dx − dx−1 ≤ 4(gx − gx−1)/5 + 2 . (8)

We get from (7) and (8) we get

(x − 1 − 4/5)(dx − dx−1) ≥

(

x + 3

3

)

−

(

x + 4

4

)

/(x − 2) − 2 . (9)

Hence dx − dx−1 ≥ x for all x ≥ 9. Similarly (or by (7) we get gx ≥ gx−1 ≥ x
for all x ≥ 9. For low x use the explicit values of the integers gx, gx−1, dx and
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dx−1 given in Remark 4.

Lemma 13. We have 2(dx − dx−1) ≥ gx − gx−1 + x for all x ≥ 3.

Proof. If x ≥ 9, then use (8). For 3 ≤ x ≤ 8 ise the explict values of the
integers gx, gx−1, dx and dx−1 given in Remark 4.

Lemma 14. We have dx−1 ≥ 2(gx − gx−1 + ax−1 − ax + 1) for all x ≥ 3.

Proof. For 3 ≤ x ≤ 8 use the explict values of the integers gx, gx−1, dx and
dx−1 given in Remark 4.

From now on we take the set-up of step (a) of the proof of Theorem 1.
We first assume k ≥ m + 2. By assumption the pair (d, g) has critical value
k ≥ m + 2 and d < g + 4. Taking the difference of equation (4) for the integer
t′ := t with the same equation for the integer t′ := t − 1 we get

(t − 1)(ut − ut−1) + ut + vt − vt−1 =

(

t + 3

3

)

. (10)

The pair (dt, gt) has critical value t and
(

t + 4

4

)

− (t − 2) ≤ tdt + 1 − gt ≤

(

t + 4

4

)

. (11)

The pair (ut, g) has critical value t. Since 0 ≤ vt ≤ t − 1, (4) gives
(

t + 4

4

)

− (t − 1) ≤ tut + 1 − g ≤

(

t + 4

4

)

. (12)

Moreover, gt > g, dt = ⌈4gt/5⌉ + 4 and ut ≥ ⌈4g/5⌉ + 4.

Lemma 15. Assume k ≥ m + 2. Then um+1 − vm+1 ≥ dm + m.

Proof. Subtracting (3) for the integeb k := m from (4) for the integer
t := m + 1 we get

m(um+1 − dm) + um+1 + vm+1 − am + gm − g =

(

m + 4

3

)

. (13)

Subtracting (3) for the integeb k := m + 1 from (4) for the integer t := m + 1
we get

(m + 1)(dm+1 − um+1) = gm+1 + am+1 − g − vm+1 . (14)

Recall that gm ≤ g < gm+1, 0 ≤ am+1 ≤ m − 1 and 0 ≤ vm+1 ≤ m.

Lemma 16. For every integer t such that k + 1 ≤ t ≤ m − 1 we have
dt ≥ ut and ⌈4ut/5⌉ + 4 ≥ g.

Proof. The proof is omitted.

Lemma 17. Assume k ≥ m + 3 and fix an integer t such that k + 2 ≤ t ≤
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m − 1. Then ut − ut−1 ≥ t + 1.

Proof. Subtracting (4) for the integer t′ := t − 1 from the same equation
for the integer t we get

(t − 1)(ut − ut−1) + ut + vt − vt−1 =

(

t + 3

3

)

. (15)

From (4) we also get ut ≤
(

t+3
3

)

/(t − 2). Hence (15) gives the lemma.

From Lemmas 15 and 17 we get by induction on t the following lemma.

Lemma 18. For every integer t such that k + 1 ≤ t ≤ m − 1 we have
ut ≥ 2t and ut − vt ≥ 4g/5+4. Hence the component W (ut− vt, g; 4) is defined
and contains curves with general moduli.
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