International Journal of Pure and Applied Mathematics

Volume 53 No. 3 2009, 363-376

ON THE MAXIMAL RANK CONJECTURE IN \mathbb{P}^4

E. Ballico

Department of Mathematics University of Trento 380 50 Povo (Trento) - Via Sommarive, 14, ITALY e-mail: ballico@science.unitn.it

Abstract: Here (following old joint work with Ph. Ellia and using an inductive method due to A. Hirschowitz) we prove that a general embedding in \mathbb{P}^4 of a curve with general moduli has maximal rank, i.e. it has good postulation.

AMS Subject Classification: 14H50 **Key Words:** postulation, curve in \mathbb{P}^4 , maximal rank

1. Introduction

Several years ago we wrote jointly with Ph. Ellia a series of papers on the postulation of curves in projective spaces (see [3], [4], [5], [6], [7], [8]), developed under the guidance of A. Hirschowitz and using a key method that he introduced (see [12], [11]). Here we improve one of our old results and prove the following result.

Theorem 1. Fix integers d, g such that $g \ge 0$ and either $d \ge g + 4$ or d < g + 4 and $5d \ge 4g + 4$. Let $C \subset \mathbb{P}^4$ be a general degree d non-degenerate embedding of a general smooth curve of genus g. Then C has maximal rank, i.e. for every integer t either $h^1(\mathbb{P}^4, \mathcal{I}_C(t)) = 0$ or $h^0(\mathbb{P}^4, \mathcal{I}_C(t)) = 0$.

In the statement of Theorem 1 the case $d \ge g + 4$ (the non-special embeddings) was proved in [4] and [7] and hence we do not consider it here. In the last part of the statement of Theorem 1 we only need to consider the integers $t \ge 2$. Let $C \subset \mathbb{P}^4$ be any embedding of a curve with general moduli. A consequence of Gieseker-Petri Theorem gives $h^1(C, \mathcal{O}_C(2)) = 0$ (see [1], Corollary 5.7). Hence Riemann-Roch shows that we need to prove $h^1(\mathbb{P}^4, \mathcal{I}_C(t)) = 0$ if

Received: May 2, 2009

© 2009 Academic Publications

 $t \geq 2$ and $td+1-g \leq {\binom{t+4}{4}}$ and $h^0(\mathbb{P}^4, \mathcal{I}_C(t)) = 0$ if $t \geq 2$ and $td+1-g \geq {\binom{t+4}{4}}$. Key lemmas are [8], Lemma 5.2, and [4], Lemma 1.

An essential tool is the following component of the Hilbert scheme of a projective space. Fix integers r, d, g such that $r \ge 3, g \ge 0$ and either $d \ge g + r$ or $d - r < g \le d - r + \lfloor (d - r - 2)/(r - 2) \rfloor$. There is an irreducible component W(d, g; r) of the Hilbert scheme of \mathbb{P}^r which is generically smooth and of dimension (r + 1)d - (r - 3)(g - 1) such that a general $C \in W(d, g; r)$ has the following properties (see [5] for the case r = 3, [8] for the case $r \ge 4$):

(a) C is a smooth and connected non-degenerate curve with degree d, genus g and $h^1(C, N_C) = 0$, where N_C denote the normal bundle of C in \mathbb{P}^r ;

(b) if $d \ge g + r$, then $h^1(C, \mathcal{O}_C(1)) = 0$;

(c) if d < g + r, then C is linearly normal and $h^1(C, \mathcal{O}_C(2)) = 0$;

(d) if $\rho(g, r, d) \ge 0$, then C has general moduli;

(e) if $\rho(g, r, d) < 0$, then the general fiber of the natural rational map $\gamma_{d,g,r}: W(d,g;r) \dashrightarrow \mathcal{M}_g$ has dimension $\dim(\operatorname{Aut}(\mathbb{P}^r)) = r^2 + 2r$, i.e. W(d,g;r) has the right number of moduli in the sense of [16].

If $U = \mathbb{P}^x$, $x \ge 3$, and U is a linear subspace of another projective, then we often write W(d, g; U) instead of W(d, g; x).

We work over an algebraically closed field \mathbb{K} such that $char(\mathbb{K}) = 0$.

2. Preliminaries

Fix integers r, d, g such that $r \geq 3$, $d \geq r$ and $0 \leq g \leq d-r+\lfloor (d-r-2)/(r-2) \rfloor$. If $(d, g, r) \neq (r, 0, r)$, then we say that the triple (d, g, r) has as *critical value* the first integer $k \geq 2$ such that $kd + 1 - g \leq \binom{r+k}{r}$. We say that the triple (r, 0, r) has critical value 1. Let k be the critical value of (d, g, r). It is easy to check that $td + 1 - g < \binom{r+t}{r}$ for every integer $t \geq k + 1$. Hence $C \in W(d, g; r)$ has maximal rank if and only if $h^1(\mathbb{P}^r, \mathcal{I}_C(k)) = 0$ (i.e. the restriction map $\rho_{C,k,r} : H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(k)) \to H^0(C, \mathcal{O}_C(k))$ is surjective) and $h^0(\mathbb{P}^r, \mathcal{I}_C(k-1)) = 0$ (i.e. the restriction map $\rho_{C,k-1,r} : H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(k-1)) \to H^0(C, \mathcal{O}_C(k-1))$ is injective). If $kd+1-g = \binom{r+k}{r}$, then it is sufficient to check that $h^i(\mathbb{P}^r, \mathcal{I}_C(k)) =$ 0 for one of the integers $i \in \{0, 1\}$.

Let $H \subset \mathbb{P}^r$, $r \geq 4$, be a hyperplane. In Section 4 we collect the numerical lemmas which we will use.

We need the following well-known lemma (the so-called Horace Lemma)

(see [12]).

Lemma 1. Let $H \subset \mathbb{P}^r$ be a hyperplane. Fix any projective scheme $T \subset \mathbb{P}^r$. Let $\operatorname{Res}_H(T)$ be the closed subscheme of \mathbb{P}^r with $\mathcal{I}_T : \mathcal{I}_H$ as its ideal sheaf. Then

 $h^i(\mathbb{P}^r, \mathcal{I}_T(t)) \leq h^i(\mathbb{P}^r, \mathcal{I}_{\operatorname{Res}_H(T)}(t-1)) + h^i(H, \mathcal{I}_{T \cap H, H}(t))$ for all integers $i \geq 0$ and $t \geq 0$.

Proof. The definition of the residual scheme $\operatorname{Res}_H(T)$ gives the exact sequence

$$0 \to \mathcal{I}_{\operatorname{Res}_H(T)}(t-1) \to \mathcal{I}_T(t) \to \mathcal{I}_{T \cap H,H}(t) \to 0,$$

whose long cohomological exact sequence gives the lemma.

Lemma 2. Fix integers r, g such that $g - 1 \ge r \ge 3$. Let $U_{r,g}$ be the set of all smooth, connected and non-degenerate curves $C \subset \mathbb{P}^r$ such that $p_a(C) = g$, C is linearly normal and $h^1(C, \mathcal{O}_C(1)) = 1$. Then $U_{r,g}$ is irreducible and non-empty.

Proof. Obviously $U_{g-1,g}$ is the set of all canonical embeddings of all smooth non-hyperelliptic curves. Thus the irreducibility of $U_{g-1,g}$ follows from the irreducibility of \mathcal{M}_g and the irreducibility of the projective linear group $\operatorname{Aut}(\mathbb{P}^{g-1})$. Now assume r < g-1. Any element of $U_{r,g}$ may be obtained taking a linear projection of any $X \in U_{g-1,g}$ from g-r-1 sufficiently general points of X. Since $U_{g-1,g}$ is irreducible and the symmetric product of g-r-1 copies of any irreducible curve is non-empty, irreducible and (g-r-1)-dimensional, $U_{r,g}$ is irreducible.

Remark 1. Let $D \subset \mathbb{P}^r$, $r \geq 2$, be a rational normal curve. Then N_D is a direct sum of r-1 line bundles of degree r+2 (see e.g. [15] or [14]).

Lemma 3. Let $D \subset \mathbb{P}^r$ be a linearly normal elliptic curve.

(a) N_D is semistable.

(b) For any $A \subset D$ such that $\sharp(A) \leq 2$ we have $h^1(D, N_D(-1)(-A)) = 0$.

(c) Assume $r \leq 4$. Then $h^1(D, N_D(-1)(-A)) = 0$ for every $A \subset D$ such that $\sharp(A) = 3$.

Proof. Part (a) is proved in [9]. Fix $A \subset D$ such that $\sharp(A) \leq 2$ and assume $h^1(D, N_D(-1)(-A)) > 0$. Since $\omega_D \cong \mathcal{O}_D$, Serre duality gives the existence of a non-zero morphism $\beta : N_D(-1)(-A) \to \mathcal{O}_D$. Since N_D is semistable, $N_D(-1)(-A)$ is a rank r-1 semistable vector bundle with degree $2(r+1) - (r-1) \cdot \sharp(A)$. Since $\deg(N_D(-1)(-A)) > 0$ and $\beta \neq 0$, the vector bundle

365

 $N_D(-1)(-A)$ is not semistable, contradiction. If $r \leq 4$, then the obtain a similar contradiction even if $\sharp(A) = 3$.

Remark 2. Fix integers $d \ge g+3 \ge 3$ and a general $S \subset \mathbb{P}^3$ such that $\sharp(S) \le 2d$ (we only need a weaker case, say $\sharp(S) \le d+3$). There is a smooth and connected curve $C \subset \mathbb{P}^3$ such that $\deg(C) = d$, $p_a(C) = g$, $h^1(C, \mathcal{O}_C(1)) = 0$, $S \subset C$ and $h^1(C, N_C(-S)) = 0$ (use [13], Theorem 1.5).

Lemma 4. Let H be a hyperplane of \mathbb{P}^4 . Fix integers g, d such that $d \ge g+4 \ge 4$. Write g = 4m + e with m a non-negative integer and $0 \le e \le 3$. If $d \le 4m + 7$, set f := d - 4m - 4. If $d \ge 4m + 8$ set f := d - 4m - 8. Fix an integer s such that $0 \le s \le 4 + 3m + f$. Let $S \subset H$ be a general subset such that $\sharp(S) = s$. Then there exists a smooth $C \in W(d, g; 4)$ such that $S \subset C \cap H$, C intersects transversally H, $h^1(C, \mathcal{O}_C(1)) = 0$ and $h^1(C, N_C(-S)) = 0$.

Proof. It is sufficient to do the case s = 4 + 3m + f. It is sufficient to find a nodal and connected curve $X \subset \mathbb{P}^4$ such that X intersects transversally H, $S \subset X_{reg}, h^1(X, O_X(1)) = 0$ and $h^1(X, N_X(-S)) = 0$. First assume d = 4. Hence q = 0 and s = c. Take as C a general rational normal curve of H and use that any two serts of 4 points of H spanning H are projectively equivalent. Remark 1 shows that N_C is a direct sum of 3 line bundles of degree 6. Hence $h^1(C, N_C(-E)) = 0$ for any $E \subset C$ such that $\sharp(E) \leq 7$. Apply [13], Theorem 1.5, to $E := C \cap H$. Now assume e = 0 and d = g + 4 > 0, i.e. d = 4m + 4, g = 4m and s = 4 + 3m for some integer m > 0. We use induction on m, the case m = 0 being just checked. Fix a general $S' \subset H$ such that $\sharp(S') = 3m$. Let A be a general element of W(4m, 4m-4; 4) such that $S' \subset A \cap H$. By the inductive assumption there is such a curve A and it is smooth, connected, $h^1(A, \mathcal{O}_A(1)) = 0$ and $h^1(A, N_A(-S')) = 0$. Fix a general $E \subset A$ such that $\sharp(E) = 5$. Let B a general rational normal curve of H such that $E \subset B$. Set $X := A \cup B$. X is nodal and $X \in W(d, q; 4)$ (apply several times [8], Lemma 2.2; for a far stronger statement, see [8], Lemma 2.3). To prove the result using X it is sufficient to prove $h^1(X, N_X(-S'-S'')) = 0$, where S'' is a general union of 3 points of B. The Mayer-Vietoris exact sequence

$$0 \to \mathcal{O}_{A \cup B}(t) \to \mathcal{O}_A(t) \oplus \mathcal{O}_B(t) \to \mathcal{O}_{A \cap B}(t) \to 0, \qquad (1)$$

gives $h^1(A \cup B, \mathcal{O}_{A \cup B}(1)) = 0$, because $h^1(A, \mathcal{O}_A(1)) = h^1(B, \mathcal{O}_B(1)) = 0$ and the vanishing of $h^1(B, \mathcal{O}_B(1)(-(A \cap B)))$ gives the surjectivity of the restriction map $H^0(B, \mathcal{O}_B(1)) \to H^0(A \cap B, \mathcal{O}_{A \cap B}(1))$ (indeed, $\sharp(A \cap B) = 5$ and that Bis a rational normal curve of $H \cong \mathbb{P}^4$). Consider the Mayer-Vietoris exact sequence

$$0 \to N_{A \cup B}(-S' - S'') \to N_{A \cup B}(-S' - S'') | A \oplus N_{A \cup B}(-S' - S'') | B \\ \to N_{A \cup B}(-S' - S'') | A \cap B \to 0.$$
(2)

Since $N_{A\cup B}(-S'-S'')|A \cong N_{A\cup B}(-S')|A$ is obtained from $N_A(-S')$ making 5 positive elementary transformations and $h^1(A, N_A(-S')) = 0$, we have $h^1(A, N_{A\cup B}(-S'-S'')|A)$. Since $S' \cap B = \emptyset$, $N_X(-S'-S'')|B \cong N_X(-S'')|B$. The vector bundle $N_X(-S'')|B$ is obtained from the vector bundle $N_B(-S'')$ making 5 positive elementary transformations and $N_B(-S'')$ is isomorphic to the direct sum of 3 line bundles of degree 2, $h^1(B, N_{A\cup B}(-S' - S'')|B) =$ 0. Hence (1) shows that to prove $h^1(X, N_X(-S' - S'')) = 0$ it is sufficient to prove the surjectivity of the restriction map $H^0(B, N_X(-S'-S'')|B) \rightarrow$ $H^0(E, N_X(-S'-S'')|E)$. Hence it is sufficient to prove $h^1(B, N_X(-S'-S'')|E)$ B(-E) = 0. Hence it is sufficient to prove that every rank 1 direct summand of $N_X|B$ has degree at least 7. This is true, because we may do sufficiently general 3 of the 5 positive elementary transformations needed to obtain $N_X|B$ for B. Now assume that either $g/4 \notin \mathbb{Z}$ or d > g + 4. Write g = 4m + e and d = (4m+4)e + a. Fix a general $S' \subset H$ such that $\sharp(S') = 4 + 3m$. By the case (d, g, s) = (4m+4, 4m, 4+3m) just done there is a smooth $A \in W(4m+4, 4m; 4)$ such that $h^1(A, \mathcal{O}_A(1)) = 0$ and $h^1(A, N_A(-S')) = 0$. Fix a general $F \subset A$ such that $\sharp(F) = e + 1$. Let $B \subset \mathbb{P}^4$ be a general smooth rational curve of degree d-4m-4. Take a general $S'' \subset B$ such that $\sharp(S'') = s - 3m - 4$. We saw that it is sufficient to prove $h^1(B, N_{A\cup B}(-F - S'')) = 0$ and that this vanishing is true if $h^1(B, N_B(-F - S'')) = 0$. First assume $d - 4m - 4 \ge 4$. Since $\sharp(F) \leq 4$, B may be considered as a general degree d - 4m - 4 rational curve of \mathbb{P}^4 . Let $a_1 \geq a_2 \geq a_3$ be the splitting type of N_B . We have $a_3 = \lfloor \deg(N_B)/3 \rfloor$ (see [15] or [14]). Since $\deg(N_B) = 5 \cdot \deg(B) - 2 = 5d - 20m - 22$, and $s - (4 + 3m) = \lfloor (5d - 20m - 22)/3 \rfloor$, we are done.

We lift the following joint lemma with C. Fontanari from a joint paper in preparation.

Lemma 5. Fix integers r, m, e such that $r \ge 4, r \ge m \ge 2$, and $e \in \{0, 1\}$. Let $H \subset \mathbb{P}^r$ be a hyperplane and $V \subseteq \mathbb{P}^r$ an *m*-dimensional linear subspace such that $V \cap H \ne V$. Let $Y \subset H$ be a nodal and connected curve such that $h^1(Y, N_{Y,H}) = 0$. Set $c := h^1(Y, \mathcal{O}_Y(1))$. Assume $m + e \ge c$. If e = 1 assume m = r. Fix $S \subset Y_{reg}$ such that $\sharp(S) = m + e + 1$ and $h^1(Y, \mathcal{O}_Y(1)(S)) = 0$. Let $D \subset V$ be a smooth curve of genus e and degree m + e spanning V such that Dintersects transversally $V \cap H$ and $S = Y \cap D$. Then $h^1(Y \cup D, N_{Y \cup D}) = 0$. If $m + e \ge c + 1$ and $h^1(Y, \mathcal{O}_Y(1)(S')) = 0$ for all $S' \subset S$ such that $\sharp(S') = m + e - 1$, then $Y \cup D$ is smoothable. **Lemma 6.** Fin integers t, a, b, c such that $t \ge 3, 0 \le a \le t - 1, b \ge 2t$, and $tc + 1 + a(t + 1) + b \le {\binom{t+3}{3}}$. Let $A \subset H$ be a general union of a degree csmooth rational curve and a disjoint lines. Then $h^1(H, \mathcal{I}_A(t)) = 0$.

Proof. The quickest way is to follow the proof in [6] with (at some point) taking only surjectivity of a certain restriction map instead of bijectivity and inserting a of the lines without intersecting the rational curve.

3. Proof of Theorem 1

For all integers $k \ge 2$ let g_k be the maximal integer such that $k(\lceil 4g_k/5 \rceil + 4) + 1 - g_k \le \binom{k+4}{4}$. Set $d_k := \lceil 4g_k/5 \rceil + 4$ and $a_k := \binom{k+4}{k} - k \cdot d_k - 1 + g_k$. We have $k \cdot d_k + 1 - g_k + g_k = \binom{k+4}{k} = 0 \le a_k \le k - 2$ (3)

$$k \cdot d_k + 1 - g_k + a_k = \binom{n+4}{4}, \ 0 \le a_k \le k - 2.$$
(3)

Remark 3. We have $g_k \ge k-2$ for every integer $k \ge 2$ (Remark 5). Hence $g_k \ge a_k$ for every integer $k \ge 2$.

Remark 3 justifies the introduction of the following assertion A(k), $k \ge 2$: A(k), $k \ge 2$. There is $X \in W(d_k, g_k - a_k; 4)$ such that $h^i(\mathbb{P}^4, \mathcal{I}_X(k)) = 0$, i = 0, 1.

As A(1) we take the assertion that a rational normal curve of \mathbb{P}^4 is linearly normal. Hence A(1) is true.

Lemma 7. Fix an integer $k \geq 2$. Assume the existence of $X \in W(d_k, g_k; 4)$ such that $h^1(\mathbb{P}^4, \mathcal{I}_X(k)) = 0$ (or, equivalently, $h^0(\mathbb{P}^4, \mathcal{I}_X(k)) = a_k$) and $h^0(\mathbb{P}^4, \mathcal{I}_X(k-1)) = 0$ and that no irreducible component of X is contained in H. Fix a general $W \subset H$ such that $\sharp(W) = a_k$. Then $h^0(\mathbb{P}^4, \mathcal{I}_X \cup W(k)) = 0$.

Proof. Since $h^0(\mathbb{P}^4, \mathcal{I}_X(k-1)) = 0$ and $\operatorname{Res}_H(X) = X$, we have $h^0(\mathbb{P}^4, \mathcal{I}_X \cup H(k)) = 0$ (Lemma 1). Since $h^0(\mathbb{P}^4, \mathcal{I}_X(k)) = a_k$, we may take a_k general points of H instead of H in the previous relation.

Lemma 8. Fix integers d, g such that $g \ge 0$, $5d \ge 4g + 20$ and (d, g) has critical value 2. Then there exists a smooth and non-degenerate curve $C \in \mathbb{P}^4$ with degree d, genus g and maximal rank.

Proof. Since the case $d \ge g + 4$ is true (see [4]), we may assume d < g + 4. Since $h^1(C, \mathcal{O}_C(1)) > 0$ for any a smooth $C \in W(d, g; 4)$, we have $g \ge 5$, with equality if and only if d = 10 and C is a canonically embedded genus 5 curve. Since a canonically embedded smooth curve is projectively normal and $2d+1-g \leq {6 \choose 2} = 15$, it is sufficient to prove the lemma for the following pairs of integers (d, q): (9, 6), (10, 7), (11, 8), (12, 10). Since our curves are non-degenerate, it is sufficient to check that $h^1(\mathbb{P}^4, \mathcal{I}_C(2)) = 0$ for a general $C \in W(d,q;4)$. Fix a hyperplane $H \subset \mathbb{P}^4$. Let $Y \subset H$ be a general smooth curve of genus 5 and degree 7. We have $h^i(H, \mathcal{I}_{Y,H}(2)) = 0$, i = 0, 1 (see [5]). Fix an integer s such that $2 \leq s \leq 5$ and a general $S \subset Y$ such that $\sharp(S) = s$. If s > 4, then set $V := \mathbb{P}^4$. If s < 3 take as V an s-dimensional linear subspace of \mathbb{P}^4 such that $V \cap H = \langle S \rangle$. First assume $2 \leq s \leq 4$. Let D be a rational normal curve of V such that $S \subset V$. Thus $\deg(D) = s$, D intersects transversally *H* and $h^{1}(\mathbb{P}^{4}, \mathcal{I}_{D}(1)) = 0$. Since $\operatorname{Res}_{H}(Y \cup D) = D$ and $h^{1}(H, \mathcal{I}_{Y,H}(2)) = 0$, Lemma 1 gives $h^1(\mathbb{P}^4, \mathcal{I}_{Y \cup D}(2)) = 0$. We have $\deg(Y \cup D) = 7 + s$ and $p_a(Y) =$ 5+s. To conclude for the pair (d,g) = (7+s,5+s) it is sufficient to prove $Y \cup D \in W(6+s,3+s;4)$. Lemma 5 gives $h^1(Y \cup D, N_{Y \cup D}) = 0$ and that $Y \cup D$ is smoothable. Since $h^1(Y \cup D, \mathcal{O}_{Y \cup D}(1)) = 1$ (use a Mayer-Vietoris exact sequence) we have $h^1(C, \mathcal{O}_C(1)) \leq 1$ for a general smoothing C of $Y \cup D$. Apply Lemma 2. Now we consider the case (d, q) = (12, 10). We take s = 5and as curve D a linearly normal elliptic curve of \mathbb{P}^4 containing S. Hence D intersects transversally H and $S = D \cap Y$. Another joint lemma with C. Fontanari (omitted here) gives $Y \cup D \in W(12, 10; 4)$. Now we consider the case (d, q) = (9, 6). Here we make the previous construction with s = 3, except that here Y is a canonically embedded curve $Y \subset \mathbb{P}^3$ with degree 6 and genus 4. \square

Lemma 9. Fix integers d, g such that $g \ge 0$, $5d \ge 4g + 20$ and (d, g) has critical value 3. Then there exists a smooth and non-degenerate curve $C \in \mathbb{P}^4$ with degree d, genus g and maximal rank.

Proof. Since the case $d \ge g+4$ is true (see [4]), we may assume d < g+4. Let C be a general element of W(d, g; 4). To prove that C has maximal rank it is sufficient to prove $h^1(\mathbb{P}^4, \mathcal{I}_C(3)) = 0$ and $h^0(\mathbb{P}^4, \mathcal{I}_C(2)) = 0$. Since W(d, g; 4) is irreducible, the semicontinuity theorem for cohomology shows that it is sufficient to find $C, C' \in W(d, g; 4)$ such that $h^1(\mathbb{P}^4, \mathcal{I}_C(3)) = 0$ and $h^0(\mathbb{P}^4, \mathcal{I}_{C'}(2)) = 0$. Since the existence of C' is easy (take the union of some curve C'' given by Lemma 8 and another curve), we just consider the condition $h^1(\mathbb{P}^4, \mathcal{I}_C(3)) = 0$. Write d = g + 4 - c with c > 0. The inequality $\rho(g, 4, d) \ge 0$ is equivalent to the inequality $5c \le g$. Since $3d + 1 - g \le {7 \choose 4} = 35$ and $2d + 1 - g > {6 \choose 2} = 15$, the pair (d, g) is one of the following pairs: (13, 10), (13, 11), (14, 11), (14, 12), (15, 12), (15, 13), (15, 14), (16, 14), (16, 15).

Let $D(d',g') \subset \mathbb{P}^4$ be a general element of W(d',g';4), where (d',g') is one of the pairs of integers listed in the proof of Lemma 8. Hence D intersects transversally H. Fix an integer a such that $0 \leq a \leq 4$. Let $Y_a \subset H$ be a general curve of degree 4 + a and genus 1 + a. We have $h^1(H, \mathcal{I}_Y(3)) = 0$ (see [6]). We may take Y_a passing through $2 \cdot \deg(Y_a)$ points of H. Fix an integer s such that $1 \leq s \leq \min\{d', 8+2a\}$ and a general $S \subset H$ such that $\sharp(S) = s$. We may take D(d', g') and Y_a with the additional condition $S = D(d', g') \cap Y_a$ (Lemma 4 and Remark 10). We have $\deg(D(d',g') \cup Y_a) = d' + 3 + a$ and $p_a(D(d',g')\cup Y_a) = g'+a+s-1$. If (d,g) = (13,10), then we take (d',g') = (9,6), a = 1 and s = 1. If (d, g) = (13, 11), then we take (d', g') = (9, 6), a = 1 and s = 2. If (d, g) = (14, 11), then we take (d', g') = (11, 8), a = 0 and s = 4. If (d, g) = (14, 12), then we take (d', g') = (11, 8), a = 0 and s = 5. If (d, g) =(15, 12), then we take (d', g') = (11, 8), a = 1 and s = 4. If (d, g) = (15, 13), then we take (d', g') = (11, 8), a = 1 and s = 5. If (d, g) = (15, 14), then we take (d',g') = (11,8), a = 1 and s = 6. If (d,g) = (16,14), then we take (d',g') =(12, 10), a = 1 and s = 4. If (d, g) = (16, 15), then we take (d', g') = (12, 10),a = 1 and s = 5. To obtain $h^1(Y \cup D, \mathcal{I}_{Y \cup D}(3)) = 0$, it is sufficient to prove $h^1(H, \mathcal{I}_{Y_d \cup (D \cap H)}(3)) = 0$. We have $\sharp((Y \cap H) \setminus S) = d' - s$. Hence we certain need $d' - s \leq h^0(H, \mathcal{I}_{Y_a}(3))$. This inequality is also sufficient (see [4], Lemma 1, and [8], Lemma 5.2). We have $h^0(H, \mathcal{I}_{Y_a}(3)) = 20 - 9 - 3a - 1 + a = 10 - 2a$. Hence our construction works in all cases.

Lemma 10. For every integer $k \ge 1$ the assertion A(k) is true.

Proof. By Lemmas 2 and 1) we may assume $k \ge 4$ and that the lemma is true for the integer k' := k - 1. Notice that $g_k - g_{k-1} \ge d_k - d_{k-1} - 3$. Fix a general $S \subset H$ such that $\sharp(S) = g_k - g_{k-1} - d_k + d_{k-1} + 4 + a_{k-1} - a_k$. Lemma 4 gives the existence of a smooth $U \in W(d_{k-1}, g_{k-1} - a_{k-1}; 4)$ intersecting transversally H and containing S. Since S is general, we may also assume that U is general in $W(d_{k-1}, g_{k-1}; 4)$. By the inductive assumption we may assume $h^i(\mathbb{P}^4, \mathcal{I}_U(k-1)) = 0, i = 0, 1$. Since $k \ge 4$, we have $2(d_k - d_{k-1}) \ge g_k - g_{k-1} + k$ (Lemma 13). There is a smooth $Y \in W(d_k - d_{k-1}, d_k - d_{k-1} - 3; H)$ such that $Y \cap (A \cap H) = S$. By [8], Lemma 2.3, $U \cup Y \in W(d_k, g_k - a_k, g; 4)_{reg}$. Apply Lemma 1.

To make easier steps (e) and (f) of the proof of Theorem 10 we give the following variation of the statement of Lemma 10.

Lemma 11. For every integer $k \ge 2$ a general $X \in W(d_k, g_k; 4)$ has maximal rank, i.e. $h^1(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_X(k)) = a_k$ and $h^0(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_X(k-1)) = 0$.

Proof. Since the pair (d_k, g_k) has critical value k, the two formulations of the lemma are equivalent. Since $W(d_k, g_k; 4)$ is irreducible, it is sufficient to prove the existence of curves $X, X' \in W(d_k, g_k; 4)$ (even diffrent) such that $h^1(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_X(k)) = a_k$ and $h^0(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_{X'}(k-1)) = 0$. We first prove the h^1 - part of the lemma. Since the cases k = 2, 3 are true by Lemmas 2 and 1, we may assume $k \ge 4$. Fix a general $A \in W(d_{k-1}, g_{k-1} - a_{k-1}; 4)$. Since A(k-1) is true (Lemma 10), $h^i(\mathbb{P}^4, \mathcal{I}_A(k-1)) = 0$, i = 0, 1. Since A is general, it intersects transversally H. Fix $S \subset A \cap H$ such that $\sharp(A) = 3 + a_{k-1}$. Take a general $Y \in W(d_k - d_{k-1}, d_k - d_{k-1} - 3; H)$ such that $S = Y \cap (A \cap H)$. As in the previous lemma use $A \cup Y$. It is obvious that the same construction works even for the h^0 -part, because $h^0(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_{A \cup Y}(k-1)) \le h^0(\mathbb{P}^4, \mathbb{P}^4, \mathcal{I}_A(k-1)) = 0$. \Box

Proof of Theorem 1. Fix integers d, g such that W(d, g; 4) is defined and $\rho(g, 4, d) \geq 0$, i.e. such that W(d, g; 4) is the component of Hilb(\mathbb{P}^4) containing non-degenerate curves of degree d and genus g with general moduli. By the maximal rank conjecture for non-special curves (see [7]) we may assume d < g+4. Let k be the critical value of the pair (d, g). By Lemmas 8 and 9 we may assume $k \geq 4$. Let m be the maximal non-negative integer such that $g_m \leq g$. Hence $g < g_{m+1}$. Since $\rho(d, 4, g) \geq 0$, we have $d_m \leq d$.

(a) Here and in steps (b), (c), and (d) we assume $m \leq k-2$. For every integer t such that $m+1 \leq t \leq k-1$ we define the integers u_t and v_t by the relations

$$tu_t + 1 - g + v_t = \binom{t+4}{4}, \ 0 \le v_t \le t - 1.$$
 (4)

For every integer t such that $m+1 \le t \le k-1$ we define the following assertion B(t):

Assertion B(t): Let $U \cup T \subset \mathbb{P}^4$ be a general union of a general $U \in W(u_t - v_t, g; 4)$ and a disjoint union T of v_t lines. Then $h^1(\mathbb{P}^4, \mathcal{I}_{U \cup T}(t)) = 0$, i = 1, 2.

For every integer t such that $k+1 \leq t \leq m-1$ we have $g \leq u_t = v_t + \lfloor (u_t - v_t - 6)/2 \rfloor$ (Lemma 15). Hence the component $W(u_t - v_t, g; 4)$ is defined. Since $\chi(\mathcal{O}_{U\cap T}(t)) = \binom{t+4}{4}$, B(t) is well-defined.

(b) Here we prove B(m+1). Take a general $A \in W(d_m, g_m - a_m; 4)$. Hence A intersects transversally H. Since A(m) is true, $h^i(\mathbb{P}^4, \mathcal{I}_B(m)) = 0$, i = 0, 1. Lemma +15 gives $u_{m+1} - v_{m+1} - d_m \geq m$. Fix a general $S \subset H$ such that $\sharp(S) = v_m + 1 + g - g_m$, general $B \in W(u_{m+1} - v_{m+1} - d_m, 0; H)$ such that $S \subset B$ and a general disjoint union $T \subset H$ of v_{m+1} lines. Lemma 6 gives $h^1(H, \mathcal{I}_{B \cup T}(m+1)) = 0$. First applying several times [8], Lemma 5.2, and then applying [4], Lemma 1, we get $h^i(H, \mathcal{I}_{B \cup T \cup (A \cap H)}(m+1)) = 0$, i = 0, 1. Hence a smoothing of $A \cup B \cup T$ proves B(m+1).

(c) Here we prove that B(t) is true for every integer t such that $m+1 \le t \le k-1$. Since the case t = m+1 was proved in step (b), we may assume $k \ge m+3$ and that B(t-1) is true. Fix $U \cup T$ satisfying B(t-1). By the generality of

 $U \cup T$ we may assume that it intersects transversally H. First assume $v_t \ge v_{t-1}$. Let U' be a general element of $W(u_t - u_{t-1} - v_t, 0; H)$ intersecting $U \cap H$ at one point and $T' \subset H$ a general udisjoint union of $v_t - v_{t-1}$ lines. Since $v_t - v_{t-1} \le v_t \le t-1$, and $u_{t-1} \ge 2t$ (Lemmas 17 and 18), we may apply Lemma 6 and get $h^1(H, \mathcal{I}_{U'\cup T'}(t)) = 0$. By construction $\sharp((U \cap T)|(H \setminus U' \cup T')) = u_{t-1} - 1$. Hence $\sharp((U \cap T)|(H \setminus U' \cup T')) + v_t - v_{t-1} + tv_t + 1 = \binom{t+3}{3}$. Using first [8], Lemma 5.2, and then [4], Lemma 1, we get $h^i(H, \mathcal{I}_{(U \cup T) \cup H \cup U' \cup T'}(t)) = 0$, i = 0, 1. Lemma 1 gives B(t). Now assume $v_{t-1} > v_t$. We take a general $U' \in W(u_t - u_{t-1}, 0; H)$ intersecting U at one point and intersecting exactly $v_{t-1} - v_t$ lines of T'. These are not constrains to the generality of U, because $T \cap H$ may be a general set of v_{t-1} points of H. Hence [12] gives $h^i(H, \mathcal{I}_{(U \cup T) \cup H \cup U'}(t)) = 0$, i = 0, 1. Lemma 1 gives B(t).

(d) Now we check the $h^1 = 0$ part of Theorem 1 for the pair (d, g) under the assumption $m \leq k-2$. First assume $d \geq u_{k-1} + v_{k-1}$. Take a general $U \cup T$ satisfying B(k-1). Take a general $U' \in W(d-u_{k-1}, 0; H)$ such that $\sharp(A \cap U) = 1$ and $T \cap H \subset U'$. As in the second part of (c) we see that $U \cup T \cup T' \in W(d, g; 4)$ and $h^1(\mathbb{P}^4, \mathcal{I}_{U \cup U' \cup T}(k)) = 0$. Now assume $d < u_{k-1} + v_{k-1}$. The pair (d, g) has critical value k and u_k is the maximal integer such that the pair (u_k, g) has critical value $k, u_k \geq d$. Since $u_k - u_{k-1} - v_k \geq k$ and $d < u_{k-1} + v_{k-1}$ Lemma 17 gives $kd + 1 - g \leq {k+4 \choose k} - 2k$. Hence in this case we take $U_1 \in W(u_t, g; 4)$ with $h^1(\mathcal{I}_{U_1}(k-1)) = 0$ (and hence $h^0(\mathbb{P}^4, \mathcal{I}_{U_1}(k-1)) = v_{k-1}$. Since (d, g)has critical value k, we have $d > u_{k-1}$. A solution is given by $U_1 \cup U'$ with U'general in H and intersecting U_1 at eactly one point.

(e) Here we assume m = k - 1. First assume $d - d_{k-1} \ge g - (g_t - a_t)$. Take a general $A \in W(d_{k-1}, g_{k-1} - a_{k-1}; 4)$. Hence $h^i(\mathbb{P}^4, \mathcal{I}_A(k-1)) = 0$, i = 0, 1, and A intersects transversally H. Fix a general $B \in W(d - d_{k-1}, 0; H)$ intersecting A at $g - (g_t - a_t) + 1$ points and apply [4], Lemma 1, and [8], Lemma 5.2, we get $h^1(\mathbb{P}^4, \mathcal{I}_{A \cup B}(k) = 0$. Now assume $d - d_{k-1} < g - (g_t - a_t)$, but $2(d - d_{k-1}) + 1 \ge g - (g_t - a_t)$. In this case we make the same construction taking $B \in W(d - d_{k-1}, 0; H)$ with $q := g - (g_t - a_t) - (d - d_{k-1})$. If $2(d - d_{k-1}) + 1 < g - (g_t - a_t)$, then $\binom{k+4}{4} - kd - 1 + g$ is very large; we only need that it is at least a_{k-1} . Instead of using A(k-1) we take $A \in W(d_{k-1}, g_{k-1}; 4)$ such that $h^1(\mathbb{P}^4, \mathcal{I}_A(k-1)) = 0$, i.e. $h^0(\mathbb{P}^4, \mathcal{I}_A(k-1)) = a_{k-1}$ (Lemma 11 for the integer k - 1) and then add a suitable curve in H.

(f) Here we assume $m \geq k$. Since $g_m \leq g < g_{m+1}$, $d_m = \lceil 4g_m/5 \rceil + 4$, $md_m + 1 - g_m \geq \binom{m+4}{m} - m + 1$, (d, g) has critical value k and $\lceil 4g/5 \rceil + 4 \geq g$, Lemma 12 gives m = k, $d = d_m$ and $g_m = g$. Apply Lemma 11.

(g) Here we show how to modify the construction to cover the h^0 -part of

Theorem 1. First assume $k \ge m + 3$. We start with Y satisfying B(k-2) and then instead of adding something to get a reducible curve W with $h^i(\mathbb{P}^4, \mathcal{I}_W(k-1)) = 0$, i = 0, 1, whose general smoothing satisfies B(k-1) we add something more in H to get a nodal element of W(d, g; 4) not contained in any degree k hypersurface. If k = m+2 or k = m+1, then we start with a curve Y satisfying B(k-2).

4. Numerical Lemmas

In this section we give the numerical results which we used in this paper.

Remark 4. We have $(d_2, g_2, a_2) = (12, 10, 0), (d_3, g_3, a_3) = (16, 15, 1), (d_4, g_4, a_4) = (23, 24, 1), (d_5, g_5, a_5) = (34, 37, 1), (d_6, g_6, a_6) = (42, 47, 4), (d_7, g_7, a_7) = (56, 65, 2), (d_8, g_8, a_8) = (71, 83, 5),$

Remark 5. Fix an integer $x \ge 2$. Since $d_x = \lfloor 4g_x/5 \rfloor + 4 \le g_x + 4$ and $a_x \le x - 2$, (3) gives

$$g_x \ge \left(\binom{x+4}{4} - 5x+1\right)/(x-1).$$
 (5)

From (5) we get $g_x \ge 4$ for all $x \ge 4$ and $d_x \ge 4$ for all $x \ge 3$.

Remark 6. Since $g_x \leq 2d_x - 1$, (3) gives

$$d_x \le \binom{x+4}{4} / (x-2) \tag{6}$$

for all integers $x \ge 3$.

Lemma 12. We have $g_x - g_{x-1} \ge x$ and $d_x - d_{x-1} \ge x$ for all $x \ge 3$.

Proof. Subtracting (3) for the integer k := x - 1 from (3) for the integer k := x we get

$$(x-1)(d_x - d_{x-1}) - (g_x - g_{x-1}) + d_x = \begin{pmatrix} x+3\\3 \end{pmatrix}.$$
 (7)

Since $d_x = \lceil 4g_x/5 \rceil + 4$ and $d_{x-1} = \lceil 4g_{x-1}/5 \rceil + 4$, we have

$$4(g_x - g_{x-1})/5 - 2 \le d_x - d_{x-1} \le 4(g_x - g_{x-1})/5 + 2.$$
(8)

We get from (7) and (8) we get

$$(x-1-4/5)(d_x-d_{x-1}) \ge {\binom{x+3}{3}} - {\binom{x+4}{4}}/(x-2) - 2.$$
(9)

Hence $d_x - d_{x-1} \ge x$ for all $x \ge 9$. Similarly (or by (7) we get $g_x \ge g_{x-1} \ge x$ for all $x \ge 9$. For low x use the explicit values of the integers g_x, g_{x-1}, d_x and

 d_{x-1} given in Remark 4.

Lemma 13. We have $2(d_x - d_{x-1}) \ge g_x - g_{x-1} + x$ for all $x \ge 3$.

Proof. If $x \ge 9$, then use (8). For $3 \le x \le 8$ ise the explicit values of the integers g_x , g_{x-1} , d_x and d_{x-1} given in Remark 4.

Lemma 14. We have $d_{x-1} \ge 2(g_x - g_{x-1} + a_{x-1} - a_x + 1)$ for all $x \ge 3$.

Proof. For $3 \le x \le 8$ use the explicit values of the integers g_x , g_{x-1} , d_x and d_{x-1} given in Remark 4.

From now on we take the set-up of step (a) of the proof of Theorem 1. We first assume $k \ge m + 2$. By assumption the pair (d,g) has critical value $k \ge m + 2$ and d < g + 4. Taking the difference of equation (4) for the integer t' := t with the same equation for the integer t' := t - 1 we get

$$(t-1)(u_t - u_{t-1}) + u_t + v_t - v_{t-1} = \begin{pmatrix} t+3\\3 \end{pmatrix}.$$
 (10)

The pair (d_t, g_t) has critical value t and

$$\binom{t+4}{4} - (t-2) \le td_t + 1 - g_t \le \binom{t+4}{4}.$$
(11)

The pair (u_t, g) has critical value t. Since $0 \le v_t \le t - 1$, (4) gives

$$\binom{t+4}{4} - (t-1) \le tu_t + 1 - g \le \binom{t+4}{4}.$$
(12)

Moreover, $g_t > g$, $d_t = \lfloor 4g_t/5 \rfloor + 4$ and $u_t \ge \lfloor 4g/5 \rfloor + 4$.

Lemma 15. Assume $k \ge m + 2$. Then $u_{m+1} - v_{m+1} \ge d_m + m$.

Proof. Subtracting (3) for the integeb k := m from (4) for the integer t := m + 1 we get

$$m(u_{m+1} - d_m) + u_{m+1} + v_{m+1} - a_m + g_m - g = \binom{m+4}{3}.$$
 (13)

Subtracting (3) for the integeb k := m + 1 from (4) for the integer t := m + 1we get

$$(m+1)(d_{m+1} - u_{m+1}) = g_{m+1} + a_{m+1} - g - v_{m+1}.$$
 (14)

Recall that $g_m \leq g < g_{m+1}, 0 \leq a_{m+1} \leq m-1$ and $0 \leq v_{m+1} \leq m$.

Lemma 16. For every integer t such that $k + 1 \le t \le m - 1$ we have $d_t \ge u_t$ and $\lceil 4u_t/5 \rceil + 4 \ge g$.

Proof. The proof is omitted.

Lemma 17. Assume $k \ge m+3$ and fix an integer t such that $k+2 \le t \le m+3$

m-1. Then $u_t - u_{t-1} \ge t+1$.

Proof. Subtracting (4) for the integer t' := t - 1 from the same equation for the integer t we get

$$(t-1)(u_t - u_{t-1}) + u_t + v_t - v_{t-1} = \begin{pmatrix} t+3\\3 \end{pmatrix}.$$
 (15)

From (4) we also get $u_t \leq {\binom{t+3}{3}}/{(t-2)}$. Hence (15) gives the lemma.

From Lemmas 15 and 17 we get by induction on t the following lemma.

Lemma 18. For every integer t such that $k + 1 \le t \le m - 1$ we have $u_t \ge 2t$ and $u_t - v_t \ge 4g/5 + 4$. Hence the component $W(u_t - v_t, g; 4)$ is defined and contains curves with general moduli.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- E. Arbarello, M. Cornalba, On a conjecture of Petri, Comment. Math. Helv., 56, No. 1 (1981), 1-38.
- [2] E. Ballico, Ph. Ellia, Generic curves of small genus in P³ are of maximal rank, Math. Ann., 264, No. 2 (1983), 211-225.
- [3] E. Ballico, Ph. Ellia, On postulation of curves: Embeddings by complete linear series, Arch. Math., Basel, 43 (1984), 244-249.
- [4] E. Ballico, Ph. Ellia, On the postulation of curves in P⁴, Math. Zeit., 188, No. 2 (1985), 215-223.
- [5] E. Ballico, Ph. Ellia, Beyond the maximal rank conjecture for curves in P³, In: Space Curves, Proceedings Rocca di Papa, Lecture Notes in Math., **1266**, Springer, Berlin (1985), 1-23.
- [6] E. Ballico, Ph. Ellia, The maximal rank conjecture for non-special curves in P³, *Invent. Math.*, **79**, No. 3 (1985), 541-555.
- [7] E. Ballico, Ph. Ellia, The maximal rank conjecture for non-special curves in ℙⁿ, Math. Zeit., 196, No. 3 (1987), 585-599.

- [8] E. Ballico, Ph. Ellia, On the existence of curves with maximal rank in \mathbb{P}^n , J. Reine Angew. Math., **397** (1989), 1-22.
- [9] L. Ein, R. Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, In: *Complex Projective Geometry*, Trieste-Bergen (1989), 149-156; *London Math. Soc. Lecture Note Ser.*, Cambridge Univ. Press, Cambridge, **179** (1992).
- [10] R. Hartshorne, A. Hirschowitz, Droites en position générale dans l'espace projectif, In: Algebraic Geometry. Proceedings, La Rabida (1981), 169-188; Lect. Notes in Math., 961, Springer, Berlin (1982).
- [11] R. Hartshorne, A. Hirschowitz, Smoothing algebraic space curves, Algebraic Geometry, Sitges (1983), 98-131; Lecture Notes in Math., 1124, Springer, Berlin (1985).
- [12] A. Hirschowitz, Sur la postulation générique des courbes rationnelles, Acta Math., 146 (1981), 209-230.
- [13] D. Perrin, Courbes passant par m points généraux de \mathbb{P}^3 , Bull. Soc. Math. France, Mémoire 28/29 (1987).
- [14] Z. Ran, Normal bundles of rational curves in projective spaces, Asian J. Math., 11, No. 4 (2007), 567-608.
- [15] G. Sacchiero, Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez., VII, No. 26 (1980), 33-40.
- [16] E. Sernesi, On the existence of certain families of curves, *Invent. Math.*, 75, No. 1 (1984), 25-57.