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1. Introduction

Several years ago we wrote jointly with Ph. Ellia a series of papers on the
postulation of curves in projective spaces (see [3], [4], [5], [6], [7], [8]), developed
under the guidance of A. Hirschowitz and using a key method that he introduced
(see [12], [11]). Here we improve one of our old results and prove the following
result.

Theorem 1. Fix integers d,g such that g > 0 and either d > g + 4 or
d< g+4 and 5d > 49 + 4. Let C C P* be a general degree d non-degenerate
embedding of a general smooth curve of genus g. Then C has maximal rank,
i.e. for every integer t either h'(P* Zc(t)) = 0 or h°(P4, I (t)) = 0.

In the statement of Theorem 1 the case d > g + 4 (the non-special embed-
dings) was proved in [4] and [7] and hence we do not consider it here. In the
last part of the statement of Theorem 1 we only need to consider the integers
t > 2. Let C C P* be any embedding of a curve with general moduli. A con-
sequence of Gieseker-Petri Theorem gives h'(C,Oc(2)) = 0 (see [1], Corollary
5.7). Hence Riemann-Roch shows that we need to prove h!(P4 Zo(t)) = 0 if
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t>2and td+1—g < ("1*) and hO(P4, Zc(t)) = 0if t > 2 and td+1—g > ("17).

Key lemmas are [8], Lemma 5.2, and [4], Lemma 1.

An essential tool is the following component of the Hilbert scheme of a
projective space. Fix integers r,d, g such that » > 3, ¢ > 0 and either d >
g+rord—r<g<d-—r+|[(d—r—2)/(r—2)]. There is an irreducible
component W(d, g;r) of the Hilbert scheme of P" which is generically smooth
and of dimension (r + 1)d — (r — 3)(g — 1) such that a general C' € W (d, g;r)
has the following properties (see [5] for the case r = 3, [8] for the case r > 4):

(a) C'is a smooth and connected non-degenerate curve with degree d, genus
g and h'(C, N¢) = 0, where N denote the normal bundle of C in P";

(b) if d > g + r, then h'(C,Oc(1)) = 0;

(c) if d < g +r, then C is linearly normal and h'(C,O¢(2)) = 0;

(d) if p(g,r,d) > 0, then C has general moduli;

(e) if p(g,r,d) < 0, then the general fiber of the natural rational map
Yagr : W(d,g;r) --» M, has dimension dim(Aut(P")) = r?+2r, i.e. W(d, g;7)
has the right number of moduli in the sense of [16].

If U =P* x> 3, and U is a linear subspace of another projective, then we
often write W (d, g; U) instead of W (d, g; z).

We work over an algebraically closed field K such that char(K) = 0.

2. Preliminaries

Fix integers 7, d, g such that r > 3,d > rand 0 < g < d—r+|[(d—r—2)/(r—2)].
If (d,g,,7r) # (r,0,r), then we say that the triple (d, g,r) has as critical value
the first integer £ > 2 such that kd +1 — g < (Tik) We say that the triple
(r,0,7) has critical value 1. Let k be the critical value of (d, g,r). It is easy to
check that td+1—¢g < (rjt) for every integer t > k + 1. Hence C € W (d, g;7)
has maximal rank if and only if h'(P",Zc(k)) = 0 (i.e. the restriction map
pckr s HO(P, Opr (k) — HO(C, Oc(k)) is surjective) and h°(P", Ze:(k—1)) = 0
(i.e. the restriction map po 1, : H*(P", Opr(k — 1)) — H(C,Oc(k — 1)) is
injective). If kd+1—g = (r”;k), then it is sufficient to check that h*(P", Zc(k)) =
0 for one of the integers i € {0,1}.

Let H C P", r > 4, be a hyperplane. In Section 4 we collect the numerical
lemmas which we will use.

We need the following well-known lemma (the so-called Horace Lemma)
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(see [12]).

Lemma 1. Let H C P" be a hyperplane. Fix any projective scheme
T C P". Let Resy(T) be the closed subscheme of P with Iy : Ty as its ideal
sheaf. Then

hi(]P’T,IT(t)) < hi(]P’T,IReSH(T)(t 1))+ h"(H,ITmH,H(t))
for all integers i > 0 and t > 0.

Proof. The definition of the residual scheme Resy (1) gives the exact se-
quence

0— IRGSH(T) (t — 1) — IT(t) — ITOH,H(t) — 0,
whose long cohomological exact sequence gives the lemma. O

Lemma 2. Fix integers r,g such that g—1 > r > 3. Let U, 4 be the set of
all smooth, connected and non-degenerate curves C' C P" such that p,(C) = g,
C is linearly normal and h'(C,O¢ (1)) = 1. Then U, , is irreducible and non-
empty.

Proof. Obviously U,_1 4 is the set of all canonical embeddings of all smooth
non-hyperelliptic curves. Thus the irreducibility of U,_1 4 follows from the irre-
ducibility of M, and the irreduciblity of the projective linear group Aut(P91).
Now assume 7 < g — 1. Any element of U, ;, may be obtained taking a linear
projection of any X € Uy_1 4 from g — r — 1 sufficiently general points of X.
Since Uy_1 4 is irreducible and the symmetric product of g —r — 1 copies of any
irreducible curve is non-empty, irreducible and (g — r — 1)-dimensional, U, g4 is
irreducible. U

Remark 1. Let D C P", r > 2, be a rational normal curve. Then Np is
a direct sum of r — 1 line bundles of degree r + 2 (see e.g. [15] or [14]).

Lemma 3. Let D C P" be a linearly normal elliptic curve.
(a) Np is semistable.
(b) For any A C D such that §(A) < 2 we have h'(D, Np(—1)(—A)) = 0.

(c) Assume r < 4. Then h'(D, Np(—1)(—A)) = 0 for every A C D such
that §(A) = 3.

Proof. Part (a) is proved in [9]. Fix A C D such that §(A) < 2 and assume
hY(D,Np(—1)(—A)) > 0. Since wp = Op, Serre duality gives the existence
of a non-zero morphism 5 : Np(—1)(—=A4) — Op. Since Np is semistable,
Np(—1)(—A) is a rank r — 1 semistable vector bundle with degree 2(r + 1) —
(r—1)-4(A). Since deg(Np(—1)(—A)) > 0 and B # 0, the vector bundle
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Np(—1)(—A) is not semistable, contradiction. If » < 4, then the obtain a
similar contradiction even if §(A) = 3. O

Remark 2. Fix integers d > g+ 3 > 3 and a general S C P? such that
#(S) < 2d (we only need a weaker case, say #(S) < d+3). There is a smooth and
connected curve C' C P3 such that deg(C) = d, p,(C) = g, h'(C,Oc(1)) = 0,
S C C and hY(C, No(—S)) = 0 (use [13], Theorem 1.5).

Lemma 4. Let H be a hyperplane of P*. Fix integers ¢,d such that
d>g+4>4. Write g = 4m + e with m a non-negative integer and 0 < e < 3.
Ifd<4dm +7,set f:=d—4m —4. Ifd > 4m + 8 set f :=d —4m — 8. Fix an
integer s such that 0 < s <4+ 3m+ f. Let S C H be a general subset such
that §(S) = s. Then there exists a smooth C € W (d, g;4) such that S C CNH,
C intersects transversally H, h'(C,Oc(1)) = 0 and h'(C, No(—S)) = 0.

Proof. It is sufficient to do the case s =4 + 3m + f. It is sufficient to find
a nodal and connected curve X C P* such that X intersects transversally H,
S C Xyeg, M'(X,0x(1)) = 0 and h'(X,Nx(—S)) = 0. First assume d = 4.
Hence g = 0 and s = ¢. Take as C' a general rational normal curve of H and
use that any two serts of 4 points of H spanning H are projectively equivalent.
Remark 1 shows that N¢ is a direct sum of 3 line bundles of degree 6. Hence
h*(C,Nc(—FE)) = 0 for any E C C such that #(E) < 7. Apply [13], Theorem
1.5, to E:=CNH. Now assume e =0 and d =g+ 4 > 0, i.e. d =4m + 4,
g = 4m and s = 4 + 3m for some integer m > 0. We use induction on m, the
case m = 0 being just checked. Fix a general S’ C H such that §(S’) = 3m.
Let A be a general element of W(4m,4m — 4;4) such that S C AN H. By
the inductive assumption there is such a curve A and it is smooth, connected,
h'(A,04(1)) = 0 and h'(A, Ns(—S")) = 0. Fix a general E C A such that
#(F) = 5. Let B a general rational normal curve of H such that £ C B. Set
X :=AUB. X isnodal and X € W(d,g;4) (apply several times [8], Lemma
2.2; for a far stronger statement, see [8], Lemma 2.3). To prove the result using
X it is sufficient to prove h' (X, Nx(—S'—S5")) = 0, where S” is a general union
of 3 points of B. The Mayer-Vietoris exact sequence
0 — Oaup(t) — Oa(t) ® Op(t) — Oanp(t) — 0, (1)
gives h' (AU B,O4up(1)) = 0, because h' (A, O4(1)) = b1 (B,0p(1)) = 0 and
the vanishing of h' (B, Og(1)(—(ANB))) gives the surjectivity of the restriction
map HY(B,0p(1)) — H°(AN B,0anp(1)) (indeed, (A N B) = 5 and that B
is a rational normal curve of H = P*). Consider the Mayer-Vietoris exact
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sequence
0 — Naug(—=S" —8") = Naup(—=S — S")|A® Naup(—S" - S")|B
— Naup(=S" = S"ANB —0. (2)

Since Naup(—S" — S")|A = Nuup(—S')|A is obtained from Na(—S’) mak-
ing 5 positive elementary transformations and h'(A, Na(—S")) = 0, we have
hY(A, Naup(—S" — S")|A). Since SN B =0, Nx(—S" — S")|B = Nx(-S")|B.
The vector bundle Nx(—S")|B is obtained from the vector bundle Np(—S")
making 5 positive elementary transformations and Np(—S") is isomorphic to
the direct sum of 3 line bundles of degree 2, h'(B, Naug(—S" — S")|B) =
0. Hence (1) shows that to prove h!'(X, Nx(—S" — S")) = 0 it is sufficient
to prove the surjectivity of the restriction map H°(B, Nx(—S' — S")|B) —
HY(E,Nx(—S"— S")|E). Hence it is sufficient to prove h'(B, Nx(—S" — S")|
B(—FE)) = 0. Hence it is sufficient to prove that every rank 1 direct summand
of Nx|B has degree at least 7. This is true, because we may do sufficiently
general 3 of the 5 positive elementary transformations needed to obtain Nx|B
for B. Now assume that either g/4 ¢ Z or d > g + 4. Write g = 4m + e and
d= (4m+4)e+a. Fix a general S’ C H such that (S’) = 4+ 3m. By the case
(d,g,s) = (4m+4,4m,4+43m) just done there is a smooth A € W (4m+4,4m;4)
such that h'(A,O4(1)) = 0 and h'(A, N4(—S")) = 0. Fix a general F' C A such
that #(F) = e + 1. Let B C P* be a general smooth rational curve of degree
d — 4m — 4. Take a general S” C B such that §(S”) = s — 3m — 4. We saw
that it is sufficient to prove h'(B, Naup(—F — S”)) = 0 and that this vanish-
ing is true if h'(B, Ng(—F — S”)) = 0. First assume d — 4m — 4 > 4. Since
#(F) < 4, B may be considered as a general degree d — 4m — 4 rational curve of
P*. Let a; > as > ag be the splitting type of Ng. We have a3 = |deg(Np)/3]
(see [15] or [14]). Since deg(Np) = 5 - deg(B) — 2 = 5d — 20m — 22, and
s—(4+3m) = |(bd — 20m — 22)/3], we are done. O

We lift the following joint lemma with C. Fontanari from a joint paper in
preparation.

Lemma 5. Fix integers r,m,e such thatr > 4,r > m > 2, and e € {0, 1}.
Let H C P" be a hyperplane and V' C P" an m-dimensional linear subspace
such that V N H # V. Let Y C H be a nodal and connected curve such that
Y (Y, Ny ) = 0. Set ¢ :== h1(Y,0y(1)). Assume m +e > c. If e = 1 assume
m =r. Fix S C Y;¢q such that 4(S) = m+e+1 and h1(Y, Oy (1)(S)) = 0. Let
D C V be a smooth curve of genus e and degree m + e spanning V' such that D
intersects transversally V N H and S =Y N D. Then h'(Y U D, Nyyp) = 0. If
m+e > c+1 and h' (Y, Oy (1)(S")) = 0 for all S’ C S such that #(S") = m+e—1,
then Y U D is smoothable.
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Lemma 6. Fin integers t,a,b,c such thatt > 3,0 <a <t—1,b > 2t,
andtc+1+4+a(t+1)4+0b< (H:;?’). Let A C H be a general union of a degree ¢
smooth rational curve and a disjoint lines. Then h'(H,Z(t)) = 0.

Proof. The quickest way is to follow the proof in [6] with (at some point)
taking only surjectivity of a certain restriction map instead of bijectivity and
inserting a of the lines without intersecting the rational curve. O

3. Proof of Theorem 1

For all integers k > 2 let g be the maximal integer such that k([4gx /5| +4) +
1—gi, < ("), Set dy == [4g4/5] +4 and ay, :== (*}*) —k-dj, — 1+ gy. We have

k+4
4

Remark 3. We have g, > k — 2 for every integer k£ > 2 (Remark 5).
Hence g > aj, for every integer k > 2.

k-dk—l—l—gk—i—ak:( ),0<ak<k‘—2. (3)

Remark 3 justifies the introduction of the following assertion A(k), k > 2:
A(k), k > 2. There is X € W(dy, gr — ax;4) such that h'(P* Ix(k)) = 0,
i=0,1.
As A(1) we take the assertion that a rational normal curve of P4 is linearly
normal. Hence A(1) is true.

Lemma 7. Fix an integer k > 2. Assume the existence of X € W (dy, gx;4)
such that h'(P* Ix(k)) = 0 (or, equivalently, h®(P*, Ix(k)) = a;) and hO(P*,
Zx(k—1)) = 0 and that no irreducible component of X is contained in H. Fix
a general W C H such that $(W) = aj,. Then h°(P*, Ixuw (k)) = 0.

Proof. Since h%(P4, Zx(k — 1)) = 0 and Resy(X) = X, we have h°(P4,
Ixur(k)) = 0 (Lemma 1). Since h°(P4, Zx(k)) = ay, we may take aj general
points of H instead of H in the previous relation. O

Lemma 8. Fix integers d, g such that g > 0, 5d > 4g + 20 and (d, g) has
critical value 2. Then there exists a smooth and non-degenerate curve C' € P*
with degree d, genus g and maximal rank.

Proof. Since the case d > g + 4 is true (see [4]), we may assume d < g + 4.
Since h'(C,0¢(1)) > 0 for any a smooth C € W(d,g;4), we have g > b5,
with equality if and only if d = 10 and C' is a canonically embedded genus 5
curve. Since a canonically embedded smooth curve is projectively normal and
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2d+1—-g < (g) = 15, it is sufficient to prove the lemma for the following
pairs of integers (d,g): (9,6), (10,7), (11,8), (12,10). Since our curves are
non-degenerate, it is sufficient to check that h'(P* Zx(2)) = 0 for a general
C € W(d,g;4). Fix a hyperplane H C P*. Let Y C H be a general smooth
curve of genus 5 and degree 7. We have hi(H,Zy y(2)) =0, i = 0,1 (see [5]).
Fix an integer s such that 2 < s <5 and a general S C Y such that §(S) = s. If
s >4, then set V :=P*. If s < 3 take as V an s-dimensional linear subspace of
P* such that VN H = (S). First assume 2 < s < 4. Let D be a rational normal
curve of V' such that S C V. Thus deg(D) = s, D intersects transversally
H and h*(P*,Zp(1)) = 0. Since Resg(Y U D) = D and h'(H,Zy u(2)) = 0,
Lemma 1 gives h!'(P*, Ty _p(2)) = 0. We have deg(Y UD) = 7+ s and p,(Y) =
5+ s. To conclude for the pair (d,g9) = (7 + 5,5 + s) it is sufficient to prove
YUD € W(6+ 5,3+ s;4). Lemma 5 gives h!(Y U D, Nyyp) = 0 and that
Y U D is smoothable. Since h*(Y U D,Oyp(1)) = 1 (use a Mayer-Vietoris
exact sequence) we have h!(C,O¢(1)) < 1 for a general smoothing C' of Y U D.
Apply Lemma 2. Now we consider the case (d,g) = (12,10). We take s =5
and as curve D a linearly normal elliptic curve of P* containing S. Hence
D intersects transversally H and S = D NY. Another joint lemma with C.
Fontanari (omitted here) gives Y UD € W (12,10;4). Now we consider the case
(d,g9) = (9,6). Here we make the previous construction with s = 3, except that
here Y is a canonically embedded curve Y C P? with degree 6 and genus 4. [

Lemma 9. Fix integers d, g such that g > 0, 5d > 4g + 20 and (d, g) has
critical value 3. Then there exists a smooth and non-degenerate curve C' € P*
with degree d, genus g and maximal rank.

Proof. Since the case d > g+4 is true (see [4]), we may assume d < g+4. Let
C' be a general element of W(d, g;4). To prove that C' has maximal rank it is suf-
ficient to prove h'(P*, Z¢(3)) = 0 and h°(P*, Z¢(2)) = 0. Since W (d, g;4) is ir-
reducible, the semicontinuity theorem for cohomology shows that it is sufficient
to find C,C" € W(d, g;4) such that h'(P* Z¢(3)) = 0 and h°(P*, Zc(2)) = 0.
Since the existence of C’ is easy (take the union of some curve C” given by
Lemma 8 and another curve), we just consider the condition h!(P4, Z¢(3)) = 0.
Write d = g + 4 — ¢ with ¢ > 0. The inequality p(g,4,d) > 0 is equivalent to
the inequality 5¢ < g. Since 3d +1 — g < (Z) =3band 2d+1—g > (g) = 15,
the pair (d, g) is one of the following pairs: (13,10), (13,11), (14,11), (14,12),
(15,12), (15,13), (15,14), (16,14), (16, 15).

Let D(d',¢') C P* be a general element of W (d', ¢';4), where (d',¢’) is one
of the pairs of integers listed in the proof of Lemma 8. Hence D intersects
transversally H. Fix an integer a such that 0 < a < 4. Let Y, C H be a
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general curve of degree 4 + a and genus 1+ a. We have h'(H,Zy (3)) = 0 (see
[6]). We may take Y, passing through 2 - deg(Y,) points of H. Fix an integer
s such that 1 < s < min{d’,8 + 2a} and a general S C H such that {(S) = s.
We may take D(d',¢') and Y, with the additional condition S = D(d’,¢') NY,
(Lemma 4 and Remark 10). We have deg(D(d',¢') UY,) = d 4+ 3 + a and
pa(D(d', ¢ UY,) = ¢'+a+s—1. If (d, g) = (13,10), then we take (d',¢") = (9, 6),
a=1and s =1. If (d,g) = (13,11), then we take (d',¢') = (9,6), a = 1 and
s =2.1If (d,g) = (14,11), then we take (d’,¢') = (11,8), a = 0 and s = 4. If
(d,g) = (14,12), then we take (d’',¢') = (11,8), a = 0 and s = 5. If (d,g9) =
(15,12), then we take (d',¢') = (11,8), a = 1 and s = 4. If (d,g) = (15,13),
then we take (d’,¢') = (11,8), a = 1 and s = 5. If (d, g) = (15, 14), then we take
(d,¢)=(11,8), a =1 and s = 6. If (d,g9) = (16,14), then we take (d',¢') =
(12,10), a = 1 and s = 4. If (d,g) = (16,15), then we take (d',¢") = (12,10),
a=1and s = 5. To obtain h'(Y U D,Zy_p(3)) = 0, it is sufficient to prove
h'(H, Iy, (pnm)(3)) = 0. We have $((Y N H)\S) = d' — s. Hence we certain
need d' — s < h%(H, Ty, (3)). This inequality is also sufficient (see [4], Lemma
1, and [8], Lemma 5.2). We have h°(H,Zy,(3)) = 20—-9—3a—1+a = 10 — 2a.
Hence our construction works in all cases. O

Lemma 10. For every integer k > 1 the assertion A(k) is true .

Proof. By Lemmas 2 and 1) we may assume k > 4 and that the lemma is
true for the integer k' := k — 1. Notice that g, — gpr—1 > d — dp_1 — 3. Fix a
general S C H such that $(S) = gx — gr—1 —dp +di—1 +4+ ar_1 — ar. Lemma
4 gives the existence of a smooth U € W(dg_1,9x—1 — ar—1;4) intersecting
transversally H and containing S. Since S is general, we may also assume that
U is general in W (dg_1,9gx—1;4). By the inductive assumption we may assume
R (P4 Iy (k—1)) = 0,7 = 0,1. Since k > 4, we have 2(dy —d_1) > gr —gr_1+k
(Lemma 13). There is a smooth Y € W (dy — dp_1,dy — dp_1 — 3; H) such that
YN(ANH)=S5. By [8], Lemma 2.3, UUY € W(dk, gk — ak,g;4)reqg- Apply
Lemma 1. O

To make easier steps (e) and (f) of the proof of Theorem 10 we give the
following variation of the statement of Lemma 10.

Lemma 11. For every integer k > 2 a general X € W(dy,gy;4) has
maximal rank, i.e. h*(P* P* Zx(k)) = ax and h°(P*, P4 Zx(k — 1)) = 0.

Proof. Since the pair (d, gi) has critical value k, the two formulations of
the lemma are equivalent. Since W (dy, gi;4) is irreducible, it is sufficient to
prove the existence of curves X, X’ € W(dg, gx;4) (even diffrent) such that
Rt (P4, P4 Zx(k)) = ap and hO(P*, P4 Tx:(k — 1)) = 0. We first prove the h'-



ON THE MAXIMAL RANK CONJECTURE IN P* 371

part of the lemma. Since the cases k = 2,3 are true by Lemmas 2 and 1, we
may assume k > 4. Fix a general A € W (di_1,9x—1—ar_1;4). Since A(k—1) is
true (Lemma 10), h* (P4, Z4(k—1)) = 0,7 = 0, 1. Since A is general, it intersects
transversally H. Fix S € AN H such that §(A) = 3 + ax_1. Take a general
Y € W(dy — dg—1,dx, — dx—1 — 3; H) such that S = Y N (AN H). As in the
previous lemma use AUY . It is obvious that the same construction works even
for the h%-part, because h(P*, P*, Tauy (k—1)) < RO(P4L P4 Z4(k—1)) =0. O

Proof of Theorem 1. Fix integers d, g such that W(d, g;4) is defined and
p(g,4,d) >0, i.e. such that W (d, g;4) is the component of Hilb(P%) containing
non-degenerate curves of degree d and genus g with general moduli. By the
maximal rank conjecture for non-special curves (see [7]) we may assume d <
g+4. Let k be the critical value of the pair (d, g). By Lemmas 8 and 9 we may
assume k > 4. Let m be the maximal non-negative integer such that g, < g.
Hence g < gpm+1. Since p(d,4,g) > 0, we have d,,, < d.

(a) Here and in steps (b), (c), and (d) we assume m < k — 2. For every
integer t such that m +1 <t < k — 1 we define the integers u; and v; by the
relations
t+4

4
For every integer ¢ such that m+1 <t < k—1 we define the following assertion
B(t):

Assertion B(t): Let U UT C P* be a general union of a general U €
W (u; — vy, 9;4) and a disjoint union T' of v; lines. Then h'(P4, Zyur(t)) = 0,
i=1,2.

For every integer ¢ such that k+1 <t <m—1 we have g < u; = vy + [ (us —
vy —6)/2] (Lemma 15). Hence the component W (u; — vy, g;4) is defined. Since
X(Ouar(t)) = (%), B(t) is well-defined.

(b) Here we prove B(m+1). Take a general A € W (d,,, gm — am;4). Hence
A intersects transversally H. Since A(m) is true, h*(P*, Zg(m)) =0, i = 0, 1.
Lemma +15 gives w1 — Umy1 — dpy > m. Fix a general S C H such that
8(S) = vm + 1+ g — gm, general B € W(umi1 — Uma1 — dm, 0; H) such that
S C B and a general disjoint union 7' C H of v,,4+1 lines. Lemma 6 gives
hY(H,Zpur(m+1)) = 0. First applying several times [8], Lemma 5.2, and then
applying [4], Lemma 1, we get h'(H,Zp roanm(m +1)) =0, i = 0,1. Hence
a smoothing of AU B UT proves B(m + 1).

tut—l—l—g—i—vt:( ),Ogvtgt—l. (4)

(c) Here we prove that B(t) is true for every integer ¢ such that m+1 <t <
k—1. Since the case t = m+1 was proved in step (b), we may assume k > m—+3
and that B(t — 1) is true. Fix U U T satisfying B(t — 1). By the generality of
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UUT we may assume that it intersects transversally H. First assume vy > vy_1.
Let U’ be a general element of W (u; —u;—1 — v, 0; H) intersecting U N H at one
point and T C H a general udisjoint union of v; — v;_1 lines. Since v; — vy <
vy <t—1, and uz—1 > 2t (Lemmas 17 and 18), we may apply Lemma 6 and get
hY(H, Zyor (t)) = 0. By construction 4((UNT)|(H\U'UT")) = u;—1—1. Hence
F(UND)|(H\U'UT))+ v —vpq +tog+1 = (tJ§3). Using first [8], Lemma 5.2,
and then [4], Lemma 1, we get h'(H,Zyurururrur (t)) =0, i = 0,1. Lemma
1 gives B(t). Now assume v;_1 > v;. We take a general U’ € W (us —u—1,0; H)
intersecting U at one point and intersecting exactly v;_1 — v; lines of 7. These
are not constrains to the generality of U, because T'N H may be a general set of
vy—1 points of H. Hence [12] gives h'(H, Ziyuryurur (t) = 0, i = 0,1. Lemma
1 gives B(t).

(d) Now we check the h! = 0 part of Theorem 1 for the pair (d,g) under
the assumption m < k—2. First assume d > ug_1+vi_1. Take a general UUT
satisfying B(k—1). Take a general U’ € W (d—uy_1,0; H) such that $(ANU) =1
and TNH C U'. As in the second part of (¢) we see that UUTUT" € W (d, g;4)
and h'(P*, Zyuyur(k)) = 0. Now assume d < ug_1 + vi_1. The pair (d, g) has
critical value k and wuy is the maximal integer such that the pair (ug,g) has
critical value k, uy > d. Since uy — up_1 — v > k and d < up_1 + v5_1 Lemma
17 gives kd +1 —g < (k;g4) — 2k. Hence in this case we take Uy € W (uy,g;4)
with h'(Zy, (k — 1)) = 0 (and hence h(P*, Iy, (k — 1)) = vx_1. Since (d, g)
has critical value k, we have d > uj_1. A solution is given by Uy U U’ with U’
general in H and intersecting U; at eactly one point.

(e) Here we assume m = k — 1. First assume d — di_1 > g — (gt — a¢).
Take a general A € W(dy_1,9x1 — ax_1;4). Hence h'(P* Za(k — 1)) = 0,
i =0,1, and A intersects transversally H. Fix a general B € W(d —dy_1,0; H)
intersecting A at g — (¢+ — a;) + 1 points and apply [4], Lemma 1, and [§],
Lemma 5.2, we get h'(P*, Z4up(k) = 0. Now assume d—di_1 < g—(g:—az), but
2(d—dp_1)+1 > g— (gt —a¢). In this case we make the same construction taking
BeW(d—dg-1,0;H) with ¢ :=g— (gt —a) — (d—dj—1). If 2(d—dp_1)+1 <
g — (gt — az), then (kfl) — kd — 1+ g is very large; we only need that it is at
least a;_1. Instead of using A(k — 1) we take A € W (d_1,gx_1;4) such that
(P4, Za(k —1)) =0, ie. hO(P* Za(k —1)) = ax_1 (Lemma 11 for the integer
k — 1) and then add a suitable curve in H.

(f) Here we assume m > k. Since ¢m < ¢ < gm+1, dm = [49m /5] + 4,
mdy, + 1 — gm > (”1:4) —m+1, (d, g) has critical value k and [4g/5] +4 > g,
Lemma 12 gives m = k, d = d,,, and g¢,, = g. Apply Lemma 11.

(g) Here we show how to modify the construction to cover the h%-part of
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Theorem 1. First assume k& > m + 3. We start with Y satisfying B(k — 2) and
then instead of adding something to get a reducible curve W with h* (P4, Ty (k—
1)) = 0,4 =0,1, whose general smoothing satisfies B(k — 1) we add something
more in H to get a nodal element of W(d, g;4) not contained in any degree k
hypersurface. If k = m+2 or k = m—+1, then we start with a curve Y satisfying
B(k —2). O

4. Numerical Lemmas

In this section we give the numerical results which we used in this paper.

Remark 4. We have (ds,g2,a2) = (12,10,0), (ds,gs,a3) = (16,15,1),
(d47g47a4) - (237 247 ]-)7 (d57g57a5) - (347377 ]-)7 (d67gﬁaa6) - (4-274-77 4)7 (d77g77
a7) = (56,65,2), (dg,gg,ag) = (71,83,5),

Remark 5. Fix an integer x > 2. Since d, = [4¢,/5| +4 < g, + 4 and
a; <z —2,(3) gives

4
From (5) we get g, > 4 for all x > 4 and d, > 4 for all z > 3.

Remark 6. Since g, < 2d, — 1, (3) gives
x+4
s (") a2 )

0z ("1 5o+ 0iE- 0. )

for all integers x > 3.

Lemma 12. We have g, — g,—1 > x and d, — d,_1 > « for all x > 3.

Proof. Subtracting (3) for the integer k := x — 1 from (3) for the integer
k = x we get

T+ 3
(x_1)(dx_dx71)_(gx_gxfl)+dx = < 3 > . (7)
Since dy = [495/5] +4 and dy—1 = [4g,—1/5] + 4, we have
4ge — 9o-1)/5 =2 <dy —dy—1 < 4(gz — gz—1)/5 + 2. (8)

We get from (7) and (8) we get
@-t-1a -z (T3 - (T - -2 @

Hence d, — d,—1 > x for all x > 9. Similarly (or by (7) we get g, > gz—1 >
for all x > 9. For low x use the explicit values of the integers g,, g1, d» and
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dy—1 given in Remark 4. O
Lemma 13. We have 2(d; — dy—1) > gz — gz—1 + « for all x > 3.

Proof. If x > 9, then use (8). For 3 < z < 8 ise the explict values of the
integers ¢., g1, d; and d,_q given in Remark 4. O

Lemma 14. We have d,—1 > 2(gy — go—1 + az—1 — az + 1) for all z > 3.

Proof. For 3 < z < 8 use the explict values of the integers g, g»—1, d, and
dy,—1 given in Remark 4. ]

From now on we take the set-up of step (a) of the proof of Theorem 1.
We first assume k > m + 2. By assumption the pair (d,g) has critical value
k>m+2 and d < g + 4. Taking the difference of equation (4) for the integer
t' :=t with the same equation for the integer ¢’ :=t — 1 we get

(t— 1) (ur — up—1) +ur + v — ve_q = (t—g?’) . (10)
The pair (dy, g+) has critical value ¢ and
(4 -e-2<as-as (1Y), (11)
The pair (u¢, g) has critical value ¢. Since 0 < v <t —1, (4) gives
<t—z4>—(t—1)<tut+1—g<<t1_4>. (12)

Moreover, g; > g, di = [4g:/5] + 4 and u; > [4g/5] + 4.

Lemma 15. Assume k > m + 2. Then tm4+1 — Umt1 = Ay + M.

Proof. Subtracting (3) for the integeb k := m from (4) for the integer
t:=m+ 1 we get

m+ 4
M (Ums1 — dm) + Umt1 + Vmt1 — Qm + Gm — g = < 3 ) (13)

Subtracting (3) for the integeb k := m + 1 from (4) for the integer t :=m + 1
we get

(m +1)(dm+1 — Um+1) = Gmt1 + Gmt1 — g — U1 - (14)
Recall that g, < g < gm+1, 0 < amy1 <m—1and 0 < vy <m. U

Lemma 16. For every integer t such that k+1 <t < m — 1 we have
d¢ > uy and [4uy /5] +4 > g.

O

Proof. The proof is omitted.
Lemma 17. Assume k > m + 3 and fix an integer t such that k+2 <t <
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m — 1. Then u; —u—1 > t+ 1.

Proof. Subtracting (4) for the integer ¢’ := t — 1 from the same equation
for the integer ¢ we get

t+3
(t—1)(ut—ut,1)+ut+vt—vt,1 = < 3 ) . (15)
From (4) we also get u; < (tJ§3)/(t — 2). Hence (15) gives the lemma. O

From Lemmas 15 and 17 we get by induction on ¢ the following lemma.

Lemma 18. For every integer t such that k+ 1 <t < m — 1 we have
ug > 2t and ug — vy > 4g/5+4. Hence the component W (u; — vy, g;4) is defined
and contains curves with general moduli.
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