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Abstract: Super Hamiltonian semigroups were considered by K.P. Shum and
X.M. Ren in 2004. In their previous paper, it was proved that a semigroup
is a super Hamiltonian if and only if it is expressible as a strong semilattice
of quasi-groups. However, the above result does not hold in general. In this
paper, we consider the quasi periodic groups and accordingly, we give a char-
acterization theorem for the generalized quasi Hamiltonian semigroups. Some
subclasses of generalized quasi Hamiltonian semigroups are discussed and some
results obtained by Cherubini and Varisco on quasi Hamiltonian semigroups
are extended.
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1. Introduction

The following semigroups have been investigated by a number of authors in the
literature, for example, see [1]-[3], [6] and [13]:

(i) quasi commutative if (∀a, b ∈ S) (∃r ∈ N, r > 1) such that ab = bra.

(ii) σ-reflexive if (∀a, b ∈ S) (∃n ∈ N, n > 1) such that (ab)n = ba.
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(iii) Hamiltonian if (∀a, b ∈ S) (∃r, s ∈ N, r + s > 2) such that ab = bras.

(iv) generalized quasi Hamiltonian if (∀a, b ∈ S) (∃r, s, n ∈ N, r + s 6= 2n)
such that (ab)n = bras.

We point out here that in the above definitions, the integers n, r, s are
related to the elements a, b in the semigroup S. Moreover, in the definition
of generalized quasi Hamiltonian semigroups, the condition r + s 6= 2n can be
replaced by the condition r+ s < 2n as stated in [13]. It is clear that the class
of generalized quasi Hamiltonian semigroups is a general class which contains
the classes of quasi communicative semigroups, the σ-reflexive semigroups and
the quasi Hamiltonian semigroups, respectively as its special subclasses. The
generalized quasi Hamiltonian semigroups were first investigated by Shum and
Ren [13], in particular, they proved that a semigroups S is a supper Hamiltonian
semigroups if and only if S can be expressed as a strong semilattice of quasi-
groups. However, their result is not true in general. In this paper, we study the
generalized quasi Hamiltonian semigroups and introduce the concept of quasi
periodic groups. By using the above concepts, we can accordingly amend and
modify a previous result of Shum and Ren on a super Hamiltonian semigroup.
In addition, some subclasses of generalized quasi Hamiltonian semigroups are
considered and some related results given by Cherubini and Varisco in 1983 on
quasi Hamiltonian semigroups are extended.

For notations and definitions not given in this paper, the reader is referred
to [3] and [13].

2. Quasi Periodic Groups

A semigroup S generated by one element a, i.e., S =< a >, is called monogenic.
If the semigroup S is finite, then there exist some positive integers m, r ∈ N

such that am = am+r. Such integers m and r are called the index of a and
periodicity of a, respectively.

We call a semigroup S a quasi group if S itself is a quasi regular semigroup
and has one and only one idempotent, or equivalently, S contains a subgroup G
and for each element a ∈ S, there exists a positive integer n such that an ∈ G.

Proposition 2.1. Let S be a quasi group. Then there exists a maximum
subgroup G of S which consists of all regular elements of S and is denoted by
G = He, where e is the unique idempotent of the quasi group S.

Proof. If x ∈ S is a regular element, then there exists x′ ∈ S such that
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xx′ and x′x are idempotents. Because S is a quasi group, S contains only one
idempotent e. Hence, xx′ = x′x = e. This shows that x H e and x ∈ He. In
other words, all the regular elements of S are in the subgroup He of S. Clearly,
all elements in He is regular. Thereby, the group He consists of all regular
elements of S. If a ∈ S is not regular, then a cannot belong to any subgroup of
S. In fact, if a belongs to a subgroup of S, then a must be a regular element.
This is clearly a contradiction. Thus, He is the maximum subgroup of S.

We call a group G periodic if < g > is finite for every element g ∈ G.

We now formulate the following definition.

Definition 2.2. A semigroup S is called a quasi periodic group if S is a
quasi group and the maximum subgroup of S is periodic.

The following theorem is a characterization theorem for quasi periodic
groups.

Theorem 2.3. Let S be a quasi group. Then S is a generalized quasi
Hamiltonian semigroup if and only if S is a quasi periodic group.

Proof. “⇒” Let S be a generalized quasi Hamiltonian semigroup. Then for
any a ∈ S, there exist n, r, s ∈ N with n 6= r + s such that (a2)n = ar+s. Since
2n 6= r+ s, < a > is a monogenic semigroup. Because S itself is a quasi group,
the maximum subgroup G of S is clearly periodic and hence, by definition, S
is a quasi periodic group.

“⇐” Let S be a quasi periodic group and G the maximum subgroup of S.
Then G is a periodic subgroup of S. Hence, for any ai ∈ S with i = 1, 2, there
exists ni ∈ N such that ani

i ∈ G. Since G is a group, there exists mi ∈ N such
that ani+mi

i = 1G (the identity of G). Similarly, for a1a2, there exists n,m ∈ N

such that (a1a2)
n ∈ G and (a1a2)

n+m = 1G. Thus we can easily deduce that

(a1a2)
(n+m)(n1+m1)(n2+m2) = 1G = a

2(n+m)(n1+m1)(n2+m2)
2 a

(n+m)(n1+m1)(n2+m2)
1 .

Clearly, 2(n+m)(n1 +m1)(n2 +m2) 6= 3(n+m)(n1 +m1)(n2 +m2). Hence S
is a generalized quasi Hamiltonian semigroup. The proof is completed.

3. Generalized Quasi Hamiltonian Semigroups

In this section, we investigate the structure of generalized quasi Hamiltonian
semigroups. Although a structure theorem of the super Hamiltonian semigroup
were given by Shum and Ren in [13], there exists a gap in their proof. In this
section, we shall amend their gap and give a general theorem for the generalized
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quasi Hamiltonian semigroups.

We first make the following observation:

Proposition 3.1. The set of all idempotents E(S) of a generalized quasi
Hamiltonian semigroup S forms a semilattice.

Proof. Since S is a generalized quasi Hamiltonian semigroup, there exist
n1, r1, s1 ∈ N such that (ef)n1 = f r1es1 = fe, for any e, f ∈ E(S). Similarly,
there exist n2, r2, s2 ∈ N such that (fe)n2 = er2f s2 = ef . Thus, we deduce
that

(ef)n1n2e = ((ef)n1)n2e = (f r1es1)n2e = (fe)n2 = er2f s2 = ef ,

(ef)n1n2e = e((fe)n2)n1 = e(er2f s2)n1 = (ef)n1 = f r1es1 = fe .

Consequently, ef = fe and (ef)2 = ef2e = efe = e2f = ef . This shows that
E(S) is a commutative semigroup and thereby, E(S) is a semilattice.

Proposition 3.2. Let S be a generalized quasi Hamiltonian semigroup.
Then for any a ∈ S, < a > is a finite monogenic semigroup.

Proof. Since S is a generalized quasi Hamiltonian semigroup, there exist
n, r, s ∈ N such that a2n = (a2)n = aras = ar+s. By the definition of general-
ized quasi Hamiltonian semigroups, we have 2n 6= r+s. Hence < a > is a finite
monogenic semigroup.

In a generalized quasi Hamiltonian semigroup S, for any a ∈ S, we denote
the maximum subgroup of < a > by Ga. And we denote the set of all regular
elements of S by Reg(S).

Proposition 3.3. Let S be a generalized quasi Hamiltonian semigroup.
Then, for e ∈ E(S), the subset

Se = {a ∈ S|∃m ∈ N such that am = e}

is a subsemigroup of S. Moreover, Se is a quasi periodic group.

Proof. We first show that Se is a subsemigroup of S. Let a, b ∈ Se. Then
by the definition of Se, there exist m1,m2 ∈ N such that am1 = bm2 = e.
Since S is a generalized quasi Hamiltonian semigroup, there exist ni, ri, si ∈ N,
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i = 1, 2, · · · such that

(ab)n1 = br1as1,

(br1as1)n2 = as1s2br1r2 ,

· · · · · · · · ·
(as1···s2kbr1···r2k)n2k+1 = br1···r2k+1as1···s2k+1 ,

(br1···r2k+1as1···s2k+1)n2k+2 = as1···s2k+2br1···r2k+2 ,

· · · · · · · · · .

(1)

By the above equalities, we observe that there exist some sufficiently large
integers n, r, s satisfying (ab)n = bras and br ∈ Gb, a

s ∈ Ga. Since < ab > is a
finite monogenic semigroup, there exists m ∈ N such that (ab)m = 1Gab

. Thus
we deduce that

1Gab
= (ab)m = (ab)nm = (bras)m = (bras)me = (ab)nme = 1Gab

e = e1Gab
.

Observe that e can be written as

e =

m
︷ ︸︸ ︷

am1−sbm2−r · · · am1−sbm2−r (bras)m,

we have

e1Gab
=

m
︷ ︸︸ ︷

am1−sbm2−r · · · am1−sbm2−r (bras)m(bras)m

=

m
︷ ︸︸ ︷

am1−sbm2−r · · · am1−sbm2−r (bras)m = e.

Hence (ab)m = 1Gab
= e. This shows that ab ∈ Se and thereby Se is indeed a

subsemigroup of S. Since am1 is an idempotent, it is regular and this implies
that Se is a quasi regular semigroup. We now show that Se has only one
idempotent e. If f ∈ Se is another idempotent, then there exists m ∈ N such
that fm = e. This leads to f = e and this shows that e is the unique idempotent
of Se. Thus Se must be a quasi group. Since for every element a of S, < a >

is a finite monogenic semigroup. Therefore, Se is a quasi periodic group.

In the following, we denote the maximum subgroup of Se by Ge.

Proposition 3.4. Let S be a generalized quasi Hamiltonian semigroup.
Then for any a ∈ Ge, the class La (Ra) contains an unique idempotent e in S.

Proof. Since a ∈ Ge, Ge ⊆ Ha ⊆. If f ∈ La is an idempotent, then e = xf

and f = ye for some x, y ∈ S. Thus, we have

ef = xff = xf = e, fe = yee = ye = f.

Since E(S) is a semilattice (see Proposition 3.1), ef = fe and consequently,
e = f . This shows that the class La contains an unique idempotent e. Similarly,
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the class Ra also contains an unique idempotent e.

Proposition 3.5. Let S be a generalized quasi Hamiltonian semigroup.
Then a ∈ Se is a regular element of Se if and only if a is a regular element of S.

Proof. Clearly, if a is a regular element of Se, then a must be a regular
element of S. Conversely, if we let a be a regular element of S and am = e,
then there exists x ∈ S such that axa = a and xax = x. Since S is a generalized
quasi Hamiltonian semigroup, there exist some sufficiently large integers n, r, s
satisfying (xa)n = xras and as ∈ Ga, where Ga is the maximum subgroup of
< a > (see the equalities (1) in the proof of Proposition 3.3). Obviously, xa is
an idempotent and Ga ⊆ Ge. Thus we immediately deduce that

a = axa = a(xa)nxa = aarxsxa = aearxsxa

= aexaxa = aexa = eaxa = ea = am+1.

Hence a ∈ Ga ⊆ Ge and thereby a is a regular element of Se.

Proposition 3.6. Let S be a generalized quasi Hamiltonian semigroup.
Then G = ∪e∈E(S)Ge consists of all regular elements of S. Moreover, G is a
subsemigroup of S.

Proof. It is clear that an element of S contained in a subgroup of S must
be a regular element of S. Hence G ⊆Reg(S). Conversely, if a ∈ Se is a regular
element of S, then by Proposition 3.5, a is also a regular element of Se. Since Se

is a quasi periodic group, by Proposition 2.1, Ge consists of all regular elements
of Se. Hence a ∈ Ge ⊆ G, i.e., Reg(S) ⊆ G. Thus G is a subsemigroup. Now,
we let a ∈ Ge and b ∈ Gf . Then there exist some inverses a−1 and b−1 of a and
b in Ge and Gf , respectively. This leads to

ab(b−1a−1)ab = a(bb−1)(a−1a)b = afeb = aefb = ab.

Hence, we can see immediately that the element ab is regular. Since G
consists of all regular elements of S, ab ∈ G and so G must be a subsemigroup
of S.

Proposition 3.7. Let S be a generalized quasi Hamiltonian semigroup.
Then for e, f ∈ E(S) with e 6= f , we have

Ge ∩Gf = ∅

and

GeGf ⊆ Gef .

Proof. If there exists a ∈ Ge ∩ Gf , then there exists m ∈ N such that am

is idempotent. Since any group contains one and only one idempotent which is
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the identity of the group, we have e = am = f . Hence, Ge ∩Gf = ∅ whenever
e 6= f .

In order to show that GeGf ⊆ Gef , we let a ∈ Ge, b ∈ Gf with a−1 the
inverse of a in Ge and b−1 the inverse of b in Gf . Moreover, we denote the
idempotent of < ab > and < ba > by (ab)m and (ba)m

′

, respectively. Thus
(ab)m ∈ Hab = G(ab)m and (ba)m

′

∈ Hba. It is now easy to see that baa−1b−1

is an idempotent and ba R baa−1b−1. This leads to that (ba)m
′

R baa−1b−1.
Since Rba contain only one idempotent (see Proposition 3.4), we have (ba)m

′

=
baa−1b−1. By the above observation, we can deduce that

ef = fef = b−1baa−1b−1b = b−1(baa−1b−1)b = b−1(ba)mm′

b = f(ab)mm′

= (ab)mm′

f = (ab)mm′

= (ab)m.

Hence ab ∈ G(ab)m = Gef and thereby, GeGf ⊆ Gef .

Proposition 3.8. Let S be a generalized quasi Hamiltonian semigroup.
Then E(S) lies in the center of G = ∪e∈E(S)Ge.

Proof. Let a ∈ Ge and f ∈ E(S). Then by Proposition 3.7, af, fa ∈ Gef .

Consequently, there exists m1,m2 ∈ N such that (af)m1 = (fa)m2 = ef . Let
m = m1m2. Then we have (af)m = (fa)m = ef . Consequently, we have

af = (ef)(af)(ef) = (fe)(af)(fa)m = f(eaf)(fa)m = f(af)(fa)m−1(fa)

= (fa)(fa)m−1(fa) = (fa)m(fa) = (ef)(fa) = fa.

This shows that E(S) lies in the center of G.

Corollary 3.9. Let S be a generalized quasi Hamiltonian semigroup.
Then Reg(S) is a Clifford semigroup.

Proof. By Proposition 3.6, Reg(S) = G, and whence Reg(S) is a union of
groups. By Proposition 3.8, E(S) lies in the center of G. Thereby, Reg(S) is a
Clifford semigroup.

Since G is a Clifford semigroup, G is a strong semilattice of groups. Now,
if we let E(S) be the structure semilattice then the groups {Ge|e ∈ E(S)} can
be regarded as the group components of the strong semilattice expression of G.
We have the following proposition.

Proposition 3.10. Let S be a generalized quasi Hamiltonian semigroup.
Then for e, f ∈ E(S) with e 6= f , we have

Se ∩ Sf = ∅
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and

SeSf ⊆ Sef .

Proof. Let e, f ∈ E(S) with e 6= f and suppose that Se ∩ Sf 6= ∅, say
a ∈ Se∩Sf . Then there exists m ∈ N such that am ∈ Ge∩Gf . This contradicts
Ge ∩Gf = ∅ (see Proposition 3.7). Hence Se ∩ Sf = ∅ holds.

Now we prove that SeSf ⊆ Sef . Let a ∈ Se and b ∈ Sf . Then by equalities
(1) in the proof of Proposition 3.3, there exist some sufficiently large integers
n, r, s satisfying (ab)n = bras and hence by Proposition 3.7, there exists k ∈ N

such that ((ab)n)k = ef . This leads to ab ∈ Sef and hence, SeSf ⊆ Sef .

In the above proposition, we have shown that a generalized quasi Hamil-
tonian semigroup S can be expressed a semilattice of a quasi periodic groups,
i.e., S = ∪e∈E(S)Se, which is the semilattice E(S) of quasi periodic groups
{Se|e ∈ E(S)}. We note that the converse part of the above proposition is also
true. We now state the following theorem.

Theorem 3.11. A semigroup S is a generalized quasi Hamiltonian semi-
group if and only if E(S) of S forms a semilattice and S can be expressed
by S = ∪e∈E(S)Se, which is a semilattice E(S) of some quasi periodic groups
{Se|e ∈ E(S)}.

Proof. The necessity part has already been proved. We only need to prove
the sufficiency part. Let S = ∪e∈E(S)Se be the semilattice E(S) of quasi pe-
riodic groups Se, and let a ∈ Se, b ∈ Sf . Since Se and Sf are quasi periodic
groups, there exist m1,m2 ∈ N such that am1 = e and bm2 = f . By the semi-
lattice structure of S, we see that ab ∈ Sef . Hence, there exists some m ∈ N

such that (ab)m = ef . This leads to

(ab)m = ef = fe = bm2am1 .

Now, we can select an integer m such that 2m 6= m1 + m2 because (ab)m =
(ab)2m = (ab)3m = · · · . Hence S is indeed a generalized quasi Hamiltonian
semigroup.

Remark 3.12. A generalized quasi Hamiltonian semigroup, in general,
need not be a strong semilattice of quasi periodic groups. We provide below
an example which is a generalized quasi Hamiltonian semigroup but it is not a
strong semilattice of quasi periodic groups.

Example 3.13. Consider β < α. Let Sα =< a > and Sβ =< b > be the
monogenic semigroups mounted on the semilattice α and β expressed by the
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following diagram.
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b3

b4

Sα Sβ

Define the multiplication on S = Sα ∪ Sβ as the multiplications of S. Clearly,
the defined multiplication on S is well-defined and is associative. Thus, S
forms a semigroup. It is clear that S is commutative and obviously E(S) lies
in the center of S. Moreover, we have (abi)4 = b4i = bi = bia and hence
S is a generalized quasi Hamiltonian semigroup which is commutative (this
semigroup was called super Hamiltonian in [13]). However, there does not
exist any homomorphism φ : Sα → Sβ such that

biφ(a) = bia = bi. (2)

In fact, in order to make that equality (2) holds for i = 1, we must define
φ(a) = 1, however, in this case, φ is not a homomorphism which maps from Sα

into Sβ. Thus S is not a strong semilattice of semigroups S′
αs. This example

shows that Theorem 2.8 in [13] is not true. We note that the authors in [13]
forgot to verify that the multiplication of the strong semilattice of semigroups
and the multiplication in the semigroup itself should be the same! Moreover,
we note here that a strong semilattice of quasi-groups is not necessarily a super
Hamiltonian semigroup. For instance, a non-periodic Abelian group is not
necessarily a super Hamiltonian semigroup.

4. Some Special Generalized quasi Hamiltonian Semigroups

In this Section, we discuss the properties of some subclasses of generalized
quasi Hamiltonian semigroups. In particular, we consider the quasi Hamiltonian
semigroups, quasi commutative semigroups and σ-reflexive semigroups.

We first formulate the following definition.

Definition 4.1. Let S be a semigroup. Then S is called:
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(i) a uniform quasi commutative semigroup if

(∃r ∈ N, r > 1)(∀a, b ∈ S) ab = bra;

(ii) a uniform σ-reflexive semigroup if

(∃n ∈ N, n > 1)(∀a, b ∈ S) (ab)n = ba;

(iii) a uniform quasi Hamiltonian semigroup if

(∃r, s ∈ N, r + s > 2)(∀a, b ∈ S) ab = bras.

Proposition 4.2. Let S be a uniform σ-reflexive semigroup. Then S is a
commutative semigroup.

Proof. Since S is a uniform σ-reflexive semigroup, there exists n ∈ N such
that for all a, b ∈ S, (ab)n = ba. Thus we deduce that

baa = (ab)na = a(ba)n = aab,

and

aab = (b(aa))n = ((ba)a)n = aba.

Consequently, we have

ba = (ab)n

= abab · · · ababab
= (aba)b · · · ababab
= (baa)b · · · ababab
= (ba)ab · · · ababab
· · ·
= (baba · · · ba)abab
= (baba · · · )b(aab)ab
= (baba · · · )b(aba)ab
= (baba · · · ba)b(aab)
= (baba · · · ba)b(aba)
= (ba)n

= ab.

Hence S is a commutative semigroup.

By Proposition 4.2, we see that the concept of uniform σ-reflexive semi-
groups is not weaker than the concept of commutative semigroups, on the con-
trary, it is a stronger concept. In the following, we consider an important
subclass of quasi periodic groups.

We give the following definition.

Definition 4.3. Let S be a quasi periodic group (periodic group).
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(i) If the periodicity of each a ∈ S is a factor of n and the index of a is
less than or equal to m, then S is called a quasi periodic group (periodic group)
with periodicity n and index m (if S is a group, then the index is always 1 and
is not necessary to mention).

(ii) If S2 = G (G is the maximum subgroup of S), then S is called a near

periodic group.

Theorem 4.4. Let S be a semigroup with S2 = S. Then S is a uniform
σ-reflexive semigroup with (ab)n = ba if and only if S = (Y ;Gα;φα,β) is a
strong semilattice of commutative periodic groups with period n− 1.

Proof. “⇒” Clearly, S is a generalized quasi Hamiltonian semigroup. By
Theorem 3.11, we can write S = ∪e∈E(S)Se which is the semilattice of the
quasi periodic groups Se|e ∈ E(S). Now, by Proposition 4.2, S is commutative
semigroup. Since for every e ∈ E(S), Ge is a commutative periodic group with
period n− 1. Also, because (E(S) lies in the center of S, we can easily see that
S = ∪e∈E(S)Ge is a semilattice of commutative periodic groups with periodicity
n-1 and thereby, S is a Clifford semigroup. This shows that S = (Y ;Gα;φα,β)
is a strong semilattice of commutative periodic groups with period n− 1.

“⇐” Let S = (Y ;Gα;φα,β) be a strong semilattice of commutative periodic
groups with periodicity n−1. Then for a ∈ Gα and b ∈ Gβ , we have a = an, b =
bn. This leads to

a ◦ b = an ◦ bn = (anφα,αβ)(bnφβ,αβ)

= (aφα,αβ)n(bφβ,αβ)n = ((aφα,α)(bφβ,αβ))n = (a ◦ b)n = (b ◦ a)n.

Hence S is a uniform σ-reflexive semigroup.

Theorem 4.5. Let S be a semigroup. Then S is a uniform σ-reflexive
semigroup with (ab)n = ba if and only if S = (Y ;Sα;φα,β) is a strong semilattice
of commutative near periodic groups with periodicity (n−1), where φα,β, α, β ∈
Y with α > β, are homomorphisms from Sα into Gβ (the maximum subgroup
of Sβ).

Proof. “⇒” Clearly, S2 is a subsemigroup of S and S2 is also a uniform
σ-reflexive semigroup. Moreover, E(S2) = E(S) and (S2)e = Ge. Now, by The-
orem 4.4, S2 = (E(S);Ge;φe,f ) is a strong semilattice of commutative periodic
groups with periodicity n−1. Now, we define a homomorphisms ψe,f : Se → Sf ,
where e ≥ f . If e = f , then we let ψe,e be the identical automorphism. If e > f ,
then we can extend the domain of the homomorphism φe,f from Ge to Se in
the following way: for any a ∈ Se, define aψe,f = anφe,f . Since the index of a
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is 1 or 2 and n > 1, we have an ∈ Ge and

(ab)ψe,f = (ab)nφe,f = (anφe,f )(bnφe,f ) = (aψe,f )(bψe,f ) .

Thus, ψe,f is indeed a homomorphism. Let e, f, g ∈ E(S) with e ≥ f ≥ g.
Then we can deduce that ψe,fψf,g = ψe,g. In fact, for any a ∈ Se, we have

aψe,fψf,g = anφe,fψf,g = (aφe,f )nψf,g

= (aφe,f )nφf,g = anφe,fφf,g = anφe,g = aψe,g.

Hence, ψe,fψf,g = ψe,g and thereby, {ψe,f |e, f ∈ E(S) with e ≥ f} are the
structure homomorphisms of the strong semilattice. It is clear that the range
of ψe,f (e > f) is contained in Gf . The final and the most vital step is to verify
that the multiplication in the semigroup S and the multiplication in the strong
semilattice of semigroups are the same. For this purpose, we let a ∈ Se and
b ∈ Sf . If e = f , then it is clear that (aψe,ef )(bψf,ef ) = ab. Now we suppose
that e 6= f . Since ab = (ba)n ∈ Gef , ab = abef = (ae)(bf) = anbn. Thus, we
deduce that

(aψe,ef )(bψf,ef ) = (anφe,ef)(bnφf,ef ) = anbn = ab.

Hence the multiplication in the semigroup S and the multiplication in the strong
semilattice are indeed the same. Since for a, b ∈ Se, ab = (ba)n = anbn ∈ Ge,
we have (Se)

2 = Ge. By summing up the above discussion, we can easily prove
that S = (E(S);Se;ψe,f ) is a strong semilattice of commutative near periodic
groups whose periodicity are n − 1, where ψe,f ’s (e > f) are the structural
homomorphisms which map from Se into Gf .

“⇐” Let S = (Y ;Sα;φα,β) be a strong semilattice of commutative near
periodic groups with periodicity n− 1, and φα,β’s (α > β) are homomorphisms
which map from Sα into Gβ . For a, b ∈ Sα, since Sα is a commutative near
periodic group with periodicity n − 1, we have a ◦ b = ab ∈ Gα. Moreover, for
any x ∈ Sα, (xn−1)2 = x2n−2 = xn−1. Hence 1Gα

= xn−1. Thus we deduce that

a ◦ b = ab = eabe == anbn,

and

a ◦ b = (aφα,α)(bφα,α) = ab = eabe = anbn = (ba)n = (b ◦ a)n.

Also, for a ∈ Sα, b ∈ Sβ, α 6= β , we have

a ◦ b = (aψα,αβ)(bψβ,αβ)

= (aψα,αβ)n(bψβ,αβ)n = ((aψα,αβ)(bψβ,αβ))n = (b ◦ a)n.

Hence S is a uniform σ-reflexive semigroup.

In the following, we are going to show that the concepts of uniform σ-
reflexive semigroups, uniform quasi commutative semigroups and uniform quasi
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Hamiltonian semigroups are equivalent.

Theorem 4.6. Let S be a semigroup. Then the following statements are
equivalent:

(i) S is a uniform quasi commutative semigroup with ab = bna (n > 1).

(ii) S is a uniform σ-reflexive semigroup with ab = (ba)n (n > 1).

(iii) S is a uniform quasi Hamiltonian semigroup with ab = bnas(n > 1)
or ab = bsan (n > 1).

Proof. “(ii)⇒(i)” Let S be a uniform σ-reflexive semigroup with ab =
(ba)n. Then by Theorem 4.5, S = (E(S);Se;φe,f ) is a strong semilattice of
commutative near periodic groups. By Proposition 4.2, S is commutative. Since
for a ∈ Se, a

2 = a2n, a3 = a3n, the index of Se is 2, the periodicity of Se is
a common factor of 2n − 2 and 3n − 3 and hence it is n − 1. Furthermore,
e = a2(n−1) = a3(n−1). Thus for a ∈ Se and b ∈ Sf , we have

ab = abef = (ba)nef = bnanef = (bna)a3(n−1)f = bnaef = bna.

Hence S is a uniform quasi commutative semigroup with ab = bna (n > 1).

“(iii)⇒(ii)” Let S be a uniform quasi Hamiltonian semigroup with ab = bnas

(n > 1) for all a, b ∈ S. Then by Theorem 3.11, S = ∪e∈E(S)Se is the semilattice
E(S) of quasi periodic groups. Clearly, for a ∈ Se, a

2 = an+s, a3 = a2n+s =
an+2s. This means that the index of < a > is 2, the periodicity of < a > is a
common factor of n+s−1, 2n+s−3 and n+2s−3 and thereby it is a common
factor of (2n+ s−3)− (n+ s−2) = n−1 and (n+2s−3)− (n+ s−2) = s−1.
we denote it by p. Clearly, we have e = a2p. Now let a ∈ Se and b ∈ Sf .
Then from ab = bnas = ansbns and ba = anbs = bnsans, we know that ans ∈ Ge

and bns ∈ Gf because ns ≥ 2. Moreover, by Proposition 3.7, we see that
ab, ba ∈ Gef and by Proposition 3.8, E(S) lies in the center of G. Thus we
deduce that

ab = efab = efbnas = fbnase = b2p+n−1(ba)a2p+s−1 = ba.

Thereby, S is commutative semigroup with ab = bnan = (ba)n. This shows that
S is a uniform σ-reflexive semigroup with ab = (ba)n (n > 1). For n = 1, s > 1,
the proof is similar and we hence omit the proof.

Since the class of uniform quasi commutative semigroups with ab = bna

(n > 1) forms a subclass of uniform quasi Hamiltonian semigroups with ab =
bnas (n > 1), we see that from (iii)⇒ (ii), we have (i) ⇒ (ii) and from (ii)⇒(i),
we have (ii)⇒ (iii). Thus, the proof is completed.

The following are some special classes of uniform quasi commutative semi-
groups (uniform σ-reflexive semigroups, uniform quasi Hamiltonian semigroups).
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They all have simpler structures.

Corollary 4.7. A semigroup S satisfies one of the following conditions:

(i) ab = b2a for all a, b ∈ S,

(ii) ab = (ba)2 for all a, b ∈ S,

(iii) ab = b2as for all a, b ∈ S, where s is an arbitrary fixed positive integer
if and only if S = ∪α∈Y Sα is a semilattice of null semigroups, and for a ∈ Sα,
b ∈ Sβ, ab = 0αβ (the zero element of Sαβ).

Proof. By Theorem 4.6, the condition (i), (ii) and (iii) are equivalent. Hence
we only need to prove that the conclusion holds if S satisfies condition (i).

“⇒” Clearly, S is a uniform quasi commutative semigroup. By Theorem
4.6, S is also a uniform σ-reflexive semigroup. Now, by Theorem 4.5, we see
that S = (Y ;Sα;φα,β) is a strong semilattice of commutative near periodic
groups. Since a2 = a3, for all a ∈ S, the periodicity of the semigroup Sα is 1
and Gα has only one element. Notice that since Sα is a near periodic group,
Sα is a null semigroup. Denote the idempotent of Sα by 0α, for a ∈ Sα and
b ∈ Sβ. Then, we have

ab = (aφα,αβ)(bφβ,αβ) = 0αβ .

Hence the necessity part is proved.

“⇐” Since S = (Y ;Sα;φα,β) is a semilattice of null semigroups, and for
a ∈ Sα, b ∈ Sβ, ab = 0αβ , we have ab = 0αβ = b2a and hence the sufficiency
part is proved.
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