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1. Introduction

It is well known that the method of quasilinearization provides a powerful tool
for obtaining a sequence of approximate solutions of nonlinear problems involv-
ing convex/concave functions. In some cases, it offers a constructive procedure
for the solutions, and the iterates serve as upper and lower bounds for those
solutions. In recent years, the method of quasilinearization has been general-
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ized, refined and extended in diverse problems. We can refer the reader to the
monographes [6], [9], papers [7], [10], [3], [11], [4], [5], [1] and references cited
therein.

Integro-differential equations arise frequently as mathematical models in di-
verse disciplines, for example, the mathematical modeling of biological sciences
such as spreading of disease by dispersal of infectious individuals. The theory
and the applications of integro-differential equations is now an important area
of investigation [2]. In [3], Deo and Knoll investigated the integro-differential
equation by the method of quasilinearization developed in [2]. Here, to en-
large the class of functions, we should follow up the idea presented in [5] and
attempt to extend the technique of quasilinearization to the following initial

value problem
t

2 (t) = f(t,z(t)) —l—/ q(t,s,x(s))ds, x(to) = o, (1.1)

to
where f € C(J x R,R), q € C(J xJ x R/R), t € J = [to,to + T, to >
0, T" > 0. Consequently, in this paper, the investigations of quasilinearized
approximations to (1.1), as well as rapid convergence, become the goals of our
investigation.

2. Preliminaries

Firstly, for yo(t), z0(t) € C*(J, R) with yo < 2z, we denote the following sets

Q1 ={(t,u) :yo <u <z, teJ}

M = {(t,u,v) 1 yo < u,v < 20, t € J},

Qo = {(t,5,u) :yo <u < 2, (t,5) € JxJ},
QQ:{(t’Svuvv):yogu’USZO, (t,S)EJXJ}.

We say u € C1(J, R) is a lower solution of problem (1.1), if
t
u'(t) < f(t,u) +/ q(t,s,u(s))ds, ted,  u(0) <.
to

Similarly v € C(J, R) is an upper solution of problem (1.1), if the reverse
inequalities hold.

Before we proceed further, we need to list the following known result.
Lemma 2.1. (see [3]) For problem (1.1), suppose that:

(Ag) u, v are lower and upper solutions of problem (1.1) respectively;
(A1) f € C(Q,R), and f(t,z) — f(t,y) < L(z —y), where t € J, u(t) <
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y <z <w(t), and L > 0;

(A2) q € C(Q2, R) is monotone nondecreasing in x for each (t,s) € J x J,
and g(t,,) — q(t, $,5) < N(z — y), where (t,5) € J x J, u(t) <y <z < v(t)
and N > 0.

Then u(t) < v(t) for t € J, provided that u(tg) < v(tp).

3. Main Results

Suppose that f and ¢ have the splitting f(t,z) = F(t,z,z), and q(t,s,z) =
Q(t,s,z,x), where F € C'(1, R), Q € C(2, R). Then problem (1.1) shall take
the form

t
2(t) = F(t,z(t), z(t)) + t Q(t,s,x(s),x(s))ds, xz(tg) =x¢.- (3.1)

Theorem 3.1. For problem (3.1), suppose that:

(Bo) %o, 20 € CY(J,R) are lower and upper solutions of problem (3.1),
respectively, such that, yo(t) < zo(t) on J;

(Bl) F7 FI? Fy; FCCCC; ny; Fyx; FnyC(Ql,R) aﬂd
Foo(t,z,y) >0, Fpy(t,z,y) <0, Fyy(t,z,y) <0, for (t,z,y) € Qu;

(BQ) Q; QCC; Qy; Q:C:C; Qxy; ny; ny € C(QQ7R) and

Q:B:B(tv S, T, 2/) Z 0) Q:L‘y(tv S, T, 2/) S 0) ny(t’ €, 2/) S 0) (t7 S, T, 2/) € QQ;

(Bs) Qu(t,s,n(s),v(s)) — Qy(t,s,v(s),v(s)) 2 0, for yo(t) < n(t) < v(t) <
20(t), (t,s) € J x J.

Then there exist monotone sequences {y,}, {z,} which converge uniformly
to the unique solution of problem (3.1) on J, and the convergence is quadratic.

Proof. Assumptions (By)-(B2) guarantee that problem (3.1) has a unique
solution on €.

Obviously, (B1) implies that F), is nondecreasing in the second variable, F,
is nonincreasing in the third variable and F}, is nonincreasing in the last two
variables; (Bsg) leads to that @), is nondecreasing in the third variable, @, is
nonincreasing in the last variable; (), is nonincreasing in the last two variables.
For convenience, we denote these property by (A).

Consider the following linear problems for each n =0,1,2,3,--- |

y;wrl - F(t, Yn, yn) + [Fx(ta Yn, Zn) + Fy(ta Zny Zn)](ynJrl - yn)
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t
+ ’ {Q(t’ Saynayn) + [Q$(t7 Sy Yn, Zn) + Qy(t’ S5 Zn, zn)](yn—I—l - yn)}ds’

Yn+1(to) = o,

Z1/1+1 = F(t’ Zn, Zn) + [F;B (t’ Yns Zn) + Fy(t’ Zn, Zn)](zn—I—l - Zn)
t
+ {Q(t, Sy Zny Zn) + [Q:v(t’ Sy Yn,s Zn) + Qy(t’ Sy Zny Zn)](zn—l—l - Zn)}ds,
to

Zn+1(t0) = Z.
Clearly, each linear problem has a unique solution on J. We wish to show

that
Yo<y1 < <yp <z, <---<2<2z on J (3.2)

We claim first that yo < y; on J. For this purpose, let p = yo — y1, and
note that p(to) = yo(to) — y1(to) < 0. Then

t

p,(t) S F(t7y07y0) + Q(t787y07y0)d8 - F(t7y07y0)
to

- [Fx(t7 Yo, ZO) + Fy(tv 20 ZO)](yl - yO)
t
- {Q(t’ 87y07y0) + [Q$(t7 S, Y0, ZO) + Qy(tv S, 20, ZO)](yl - yO)}dS

to

t
= [F:B(tv Yo, ZO) + Fy(t’ 20, ZO)]p(t) + [ [Q$(t7 S,Y0, ZO) + Qy(t’ S, 20, Zo)]p(S)dS,

telJ

By Lemma 2.1, in view of (Bs), this implies yp < y; on J.

Similarly, we can show that z; < zp on J.

Next we prove that y; < z; on J. Setting p = y1 — z1, and p(tp) = 0. We
obtain

p,(t) = F(tu Yo, yO) + [Fx(t7 Yo, ZO) + Fy(tu 205 ZO)](yl - yO)
t
+ {Q(t7 S, Yo, yO) + [Qx(ta S, Y0, ZO) + Qy(ta 5,20, ZO)](yl - yO)}dS

to

— F(t, 20, 20) — [Fx(t,y0, 20) — Fy(t, 20, 20)] (21 — 20)

t
- {Q(t’ S, 20, ZO) + [Q.T(tv 5,90, ZO) + Qy(t7 5520, ZO)](zl - ZO)}dS‘
to
From the mean value theorem and property (A), we have
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p/(t) < F(t7y07y0) - F(t7 Z07y0) + F(t7 ZO:yO) - F(t,Zo,Zo)
+ [F(t, 9o, 20) + Fy(t, 20, 20)](y1 — Yo — 21 + 20)
t
+ / [Q(tv 3»2/0»90) - Q(tv S, ZOvyO) + Q(tv S, ZOvyO) - Q(tv S, 20, ZO)]dS

to

t
+ / (Qu (5,50, 20) + Qy (£ 5 20, 20)) (v — o — 21+ 70)ds
to

- [Fx(t7 617 yO) + Fy(t7 20, 62) - Fx(tu Yo, ZO) - Fy(t7 20, ZO)](yO - ZO)
+ [Fu(tyo, 20) + Fy(t, 20, 20)](y1 — 21)
t
+/ [Qx(ta575373/0)+Qy(ta572’0754)_6296(@57?/Oa2’0)_Qy(ta57ZOaZO)](?JO_ZO)dS

to
t
+/t' [Q:B(t’svy()vz()) + Qy(tvsa'ZOaZO)](yl - Zl)ds
< [F$(t’ Yo, ZO) - F$(t7 Yo, yO)](ZO - Z/O) + [F$(t7 Yo, ZO) + Fy(t’ 20, ZO)]p(t)
t
+/ [Qx(t7 S, Y0, ZO) - Qx(t7 87y07y0)](20 - yO)dS

to

t
+/t' [Q:B(t’ S, Y0, ZO) + Qy(tv S, 20, ZO)]p(S)dS < [Fg;(t,yo, ZO) + Fy(t’ 20, ZO)]p(t)

t
+/ [Qx(t757y0720) + Qy(t75720720)]p(5)d57 te J7
to

where yo < &1,89,&3,&4 < z9. Then, we get, by using Lemma 2.1, p(¢t) < 0 on J
and consequently, y; < z; on J.

As a result, it follows that
yo<wy1 <2 <z, ted

Now we need to show that y; and z; are lower and upper solutions of
problem (3.1), respectively. The mean value theorem and property (A) yield

Y (t) = F(t,y1,y1) + F(t,y0,90) — F(t,y1,50) + F(t, 91, 0)
- F(t7y17yl) + [Fx(t7y07Z0) + Fy(t7 ZO,ZO)](yl - ?JO)
t
+/ [Q(tvsaybyl) + Q(t’svy()vy()) - Q(t’svylvy())

to

+ Q(t’ S, Y1, Z/o) - Q(t’ S, Y1, yl)]ds

t
+ /; [Q:B(t’ S, Y0, ZO) + Qy(t’ S, 20, ZO)](yl - yO)dS

= F(tvylvyl) + [F$(t’§1’y0) + Fy(t?y17£2)](y0 - yl)
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+ [Fx(t7 Yo, ZO) + Fy(tu 20, ZO)](yl - ?JO)

t t
+/ Q(t’svylvyl)ds—i_/ [Q$(tvs>§3>y0)+Qy(t’87yl>§4)](y0_y1)ds

to to

t
+ /; [Q:B(t’ S, Y0, ZO) + Qy(t’ S, 20, ZO)](yl - yO)dS
t

S F(t7y17y1) + Q(t787y17y1)d8

to

+ [F2(t,y0,20) — Fz(t, 90, y0) + Fy(t, 20, 20) — Fy(t,y1,91)](y1 — vo)

t
+/ [Q$(tvs>y07z0) - Q$(t78>y07y0)

to
t

+Qy(t757ZO7Z0)_Qy(t757y17yl)](y1 _yO)dS S F(t7y17y1)+ Q(t757y17y1)d57
to

teJ,

where yo < §1,82,83,84 < 20.

Similarly, proceeding as before, one can obtain that
t
20)>F(t,z1,21)+ | Qt,s,21,21)ds, te
to
The above proves that y; and z; are lower and upper solutions of problem (3.1).

Suppose that for some k£ > 1, we have
Y1 Sk < zp <21 on J (3.3)
Let yg, z be lower and upper solutions of problem (3.1). We shall show that
Yk <Y1 < 2kr1 <2z on J. (3.4)

To do this, consider p = yp — yr+1 on J so that p(tg) = 0. From the fact
that yy is a lower solution of problem (3.1), it is clear that

t
p'(t) < F(tyrye) + | Qt, s, Yk, yr)ds

to
- F(t7yk7y]€) - [Fl(t7y]€7 Zk) + Fy(tu Zk s Zk)](yk-f—l - yk)
t
- {Q(t7 Suykuyk) + [Qm(t7 S, Yk, Zk) + Qy(t7 Sy 2l Zk)](yk-f—l - yk)}ds

to

= [Fu(t, yk, zx) + Fy(t, 25, 21)|p(t)

t
+/ [Q:B(t’svykvzk) +Qy(t’872k’zk)]p(s)dsv teJ
to

This leads to by Lemma 2.1, because of (By), that yx < yg41 on J. A similar
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argument holds for zx11 < z; on J.

Letting p = yg+1 — 2k+1, again p(tg) = 0, and arguing as before, one can
show that

t
p/(t) < [Fﬂﬂ(t’yka Zk) + Fy(t? 2k Zk)]p(t) + /t [Qﬂﬁ(tv S, Yk, Zk)

+ Qy(t, s, 2, z)|p(s)ds, teJ,
which yields yg+1 < 2g4+1, on J. Thus we have (3.4) and by induction, we
see that (3.2) is valid on J. By the standard arguments [6], it can be shown
that the sequences {y,(t)} and {z,(t)} converge uniformly and monotonically
to x(t), the unique solution of problem (3.1) on J.

Finally, we shall show that the convergence is quadratic. For this purpose,
put p, = * — y, and h, = z, — x, where z denotes the unique solution of
problems (3.1). Note that p,(ty) = hn(to) = 0, and p, > 0, h,, > 0. Applying
the mean value theorem and property (A), there exist &, ¢ =1,2,--- ,12, such
that y, < &1,82,83,84,85,80 < @, @ < &6,810 < 2ny Yn < €7, 88,811, €12 < 25, and

t

Phii(t) = F(t,z,2) + [ Q(t,s,2,2)ds
to

- F(taynayn) - [F$(t7ynv Zn) + Fy(tv Zn Zn)](yn-i-l - yn)
t

- ; {Q(t7 Sy Yn, yn) + [Q$(t7 Sy Yn, zn) + Qy(t’ Sy Zn, Zn)](yn—i—l - yn)}ds

= F(t’x)x) - F(t?yn’m) + F(t?yn’m) - F(t?ynayn)
— [Fe(t, Yn, 2n) + Fy(ta Zny 20)|(Ynt1 — T+ T — yn)
t
+ / [Q(t7 S,ZE,.’E) - Q(tu 57?/n71’) + Q(tu 57?/n7$) - Q(tu S, Yn, Zn)]dS

to

t
- / [Q:B(t’ Sy Yn,s zn) + Qy(t’ Sy Zn,y Zn)](yn—i-l —T+T - yn)ds
to

S [F:B(t7xax) - Fx(t’yn’x) + F.T(tayn)x) - F:D(tayna Zn)
+ F’y(tv ynv y’n) - F’y(tv znv y’n) + F’y(tv znv y’n) - F’y(t7 Zn, zn)]pn(t)
+ [Fa:(ta Yn, Zn) + Fy(ta Zns Zn)]pn—i—l(t)
t
+/ [Qw(t787xax) - Qx(twgaynax) + Qz(t,S,yn,x) - Qw(twgaynazn)

to
+ Qy(ta 57 yn7 yn) - Qy(t7 87 Znu yn) + Qy(ta 57 Zn7 yn) - Qy(ta 57 ZTH Zn)]pn(s)ds

t
4 / (Qut, 5, Yns 2) + Qy(t, 5, 2 20 prs1 (5)ds

to
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= [Fiz(t, &5, 2)pn(t) — ny(t, Yn» &6, ) Pn(t) — Fyx(t7 §7,Yn) (hn(t) + pn(t))
- Fyy(t7 Zn, 68)(hn(t) + pn(t))]pn(t) + [Fﬁ(u Yn, Zn) + Fy(t7 Zn Zn)]anrl(t)

+ /t [Q$$(tv 5,&9, :L‘)pn(s) - wa(t¢ 5, Yn, €10, )hn(s)
= Qya(t, 5,811, Yn) (An(s) + pn(s)) — Quy(t; s, 2n, £12) (An () + pn(s))pn(s)ds

t
+ / (Qu(t, 5, s 2n) + Qy (b 5, 2 2Dt (5)ds
to

t

¢
< Mppi1+ | Nppyi(s)ds 4+ Lip? + Loh? + / (L3p? + Lyh2)ds, te€J,
to to

where |Fyy(t,u,v)| < Ay, [Fpy(t,u,v)| < Ag, [Fyy(t,u,v)| < As, [Fi(t,u,v)| <
My, \Fy(t,u,v)| < My on £y with Ly = Ay + 245 + %Ag, Lo = Ay + %Ag,
M = Mi+Mos; |Qaa(t, s,u,v)| < By, |Quy(t, s,u,v)| < Ba, |Qyy(t,s,u,v)| < Bs,
\Qx(t,s,u,’u)\ < Ny, \Qy(t,s,u,v)| < Ny on 9 with L3 = By + 2By + %Bg,
Ly=By+ 3Bs, N = Ny + Na.

On the same lines in [3], we can arrive at

2eMT 9 9
MaX Pri1 < m[@l + L3T) T?Ea}(pn(t) + (L2 + LaT) max hn ()], teJ,

that is,

ZEIWT

— e _ 2
I?E%X | — Yny1| < \/m[(ljl + L3T) I?Ea}( |z — ynl*(t)
+ (Ly + LaT) max|z, — z(t)], te

Analogous to the discussion of {z,}, we have

2eMT 9 9
I?Ea}{ hpyr < m[(Kl +K3T) Iglea}(pn(t)—i-(KQ +K4T) I?Ea}(hn(t)], ted,

which means
2€MT

_ _2eMT a2
r?g:]x |zn+1 — 2| < \/m[(Kl + K3T) I?Ea}{ |z — ynl*(t)
+ (K2 + K4T) max 20 —2P(t)], teE
where K1 = Ay, Ko = 3A; + Ay + A3, K3 = $By, Ky = 3By + By + Bs. The
proof is complete. O

Similarly, we can give various monotone sequences according to the pro-
ceeding of Theorem 3.1, as follows.

Theorem 3.2. For problem (3.1), suppose that:

(Co) wo, z0 € CY(J,R) are lower and upper solutions of problem (3.1),
respectively, with yo(t) < zo(t) on J;
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(Cl) F7 FI? Fy; FCECC; ny; Fyx; Fyy S C(Ql,R) aﬂd
Fm(t71’7?/) 2 07 ny(t7$7y) Z 07 Fyy(tyl’y?/) S 07 for (tuxuy) € Qla

(CQ) Q; QCE; Qy; Qxx; Qxy; ny; ny € C(QQ7R) and
Q:B:B(tvsax)y) > 07 wa(tvsaxay) > 0) ny(t)xay) < 0? for (t,S,ZC,y) € QQ)

(C3) Qu(t,s,n(s),n(s)) — Qy(t,s,n(s),v(s)) =0, for yo(t) < m(t) <v(t) <
20(t), (t,s) € J x J.

Then there exist monotone sequences {yn}, {zn}, such that

y;wrl - F(t, Yn, yn) + [Fx(ta Yn, yn) + Fy(ta Yn, Zn)](ynJrl - yn)
t

+ ) {Q(t’ Saynayn) + [Qﬂc(ta Saymyn) + Qy(t’ S5 Yn, Zn)](yn—l—l - yn)}dsv

Yn+1(to) = 7o,

Z;1+1 - F(t7 Zn, Zn) + [Fx(t7 yn7 yn) + Fy(t7 yn7 Zn)](szrl - Zn)
t
+ {Q(t7 Sy Zn,y ZTZ) + [Q$(t7 Sy Yn, yn) + Qy(t’ Sy Yn,s Zn)](2n+1 - zn)}ds,

to
zn+1(to) = o,
which converge uniformly to the unique solution of problem (3.1) on J, and the
convergence is quadratic.

Theorem 3.3. For problem (3.1), assume that (By)-(B1) hold. Then
conditions (C3)-(C3) imply that there exist monotone sequences {yn}, {zn},
such that

y;7,+1 - F(t, Yn, yn) + [Fx(ta Yn, Zn) + Fy(ta Zny Zn)](ynJrl - yn)
t
+ {Q(t7 Sy Yn, yn) + [Qx(ta Sy Yn, yn) + Qy(t7 Sy Yn, Zn)](ynJrl - yn)}dsa

to

Yn+1(to) = 2o,

Z;erl = F(t7 Zn Zn) + [Fx(t7 Yn, Zn) + Fy(t7 Zn Zn)](ZnJrl - Zn)
t
+ {Q(t7 Sy Zn,y Zn) + [Q$(t7 Sy Yn, yn) + Qy(t’ Sy Yn,s Zn)](2n+1 - Zn)}dS,

to
zZn+1(to) = o,
converge uniformly to the unique solution of problem (3.1) on J, and the con-
vergence is quadratic.
Theorem 3.4. For problem (3.1), assume that (Cp)-(Cy) hold. Then
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conditions (Bg)-(Bs) imply that there exist monotone sequences {yn}, {zn},
such that

y;wrl = F(ta Yn, yn) + [Fa:(ta Yn, yn) + Fy(tv Yn,s Zn)](yn-i-l - yn)
t

+ \ {Q(ta Saynayn) + [Q$(t7 Sy Yn, Zn) + Qy(ta Sy Zn, zn)](?/n—f—l - yn)}ds’

Ynt1(to) = o,
Z;z—f—l = F(t,2n, 2n) + [Fﬂﬁ(t’ YnsYn) + Fy(t’ Yn, Zn)](zn-l—l — Zn)

t

+ {Q(t, Sy Zn, Zn) + [Qx(ty S, Yn,s Zn) + Qy(ty S, Zn,, Zn)](ZnJrl - Zn)}d57
to

Znt1(to) = o,
converge uniformly to the unique solution of problem (3.1) on J, and the con-
vergence is quadratic.

Remark 3.1. If ¢ € C[J x J x R, R] is monotone nonincreasing in x for
each (t,s) € J x J, then one can also extend the method of quasilinearization
to problem (1.1).

Remark 3.2. Assume that ¢ = 0, then Theorem 3.1 and Theorem 3.2
would include the results of [9], [5] as special cases.
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