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Abstract: We present a control design to solve the global output feedback
stabilization problem of a class of uncertain nonlinear systems. Each system
in this class consists of some dynamic uncertainties, linear parametric uncer-
tainties and, most importantly, output-dependent uncertain integrator gains or
virtual coefficients. To solve the problem, an observer design is proposed, and
the robust adaptive backstepping and the nonlinear small gain techniques are
applied to construct an output feedback dynamic controller. The controller
guarantees that all the closed-loop signals are bounded and also the output of
the systems can be made arbitrarily small. If extra conditions are imposed on
the systems, regulation of the systems’ states can also be achieved.
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1. Introduction

In dealing with the control design for uncertain strict feedback systems, there
are two commonly used techniques; namely the adaptive backstepping (see,
e.g., [8]), and the robust backstepping (see, e.g., [2]), techniques. In order to
take advantage of each of the techniques, a natural approach is to merge them
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(see, e.g., [10] and [4]). Consequently, based on the combined approach, the
control design developed by the adaptive backstepping is robustified and, at
the same time, the information required for robust backstepping is reduced
thanks to the adaptive capability.

The objective of this paper is to study the global output feedback stabiliza-
tion problem of the class of uncertain nonlinear systems described by

ζ̇ = q(ζ, y, t) ,

ξi = aigiξi+1 + θTφi(y) + wi, i = 1, 2, · · · , n− 1 ,

ξn = angnu+ θTφn(y) + wn ,

y = ξ1 ,

(1)

where ξ = [ξ1, ξ2, · · · , ξn]
T ∈ R

n, ζ ∈ R
q, u ∈ R is the control, y ∈ R is

the output, θ ∈ R
m is an unknown constant parameter vector, and the vector

function φi(y) = [φi,1(y), φi,2(y), · · · , φi,m(y)]T (i = 1, · · · , n) is known and
consists of smooth functions depending on y only. The uncertain system (1)
contains not only the unknown parameters θ, the uncertain nonlinearity wi(·)
(i = 1, 2, · · · , n); but also the uncertain integrator gains aigi(y) (i = 1, 2, · · · , n).
Each integrator gain aigi(y), for i = 1, 2, · · · , n, consists of two components:
the unknown scaling constant ai and the known smooth function gi(y).

The systems previously studied in the works, e.g., [4, 3, 7, 6, 11] were
assumed to be free of uncertainties in the integrator gains, i.e., the terms aigi(y),
i = 1, 2, . . . , n, in system (1) are certain. Therefore, the main contribution of
this paper is that we allow the integrator gains in system (1) to be uncertain
and solve its global stabilization problem using output feedback. This paper,
in particular, extends the works [4, 3].

This paper is organized as follows: Section 2 contains some useful defini-
tions, preliminary results and notation. In Section 3, the problem statement of
this paper and some standing assumptions are stated. Since only the output
of the system is measurable, we present an observer design for (1) in Section 4.
In Section 5 a stabilizing controller is constructed for (1) to solve the proposed
problem. Then, the main results of this paper are stated in Section 6. In order
to demonstrate the usefulness of our design, an illustrative example is presented
in Section 7. Finally, some concluding remarks are drawn in Section 8.
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2. Preliminaries

Before proceeding, we provide some useful notation, definitions and results
which are frequently employed throughout this paper.

Notation 2.1. The matrix N and vectors b, c are defined as: N :=
[

0 I
0 0T

]

, b := [0, · · · , 0, 1]T , c := [1, 0, · · · , 0]T , respectively, where I is an

identity matrix and 0 is a zero vector. The dimensions of N , b and c depend
upon the context. diagx denotes a diagonal matrix with vector x on the diag-
onal. The usual Euclidean norm for vectors is denoted by | · |. |A| denotes the
induced norm of matrix A, i.e., |A| := sup|x|=1{|Ax|}. A

T denotes the trans-
pose of matrix A and Ai,j represents the (i, j)-th component of matrix A. A
partial vector ~xi of x∈R

n is defined as ~xi := [x1, x2, · · · , xi]
T , where i ≤ n.

Notation 2.2. We say (see [1]): 1) A vector or a matrix function f of x
has lower triangular dependence (LTD) in x if the i-th component or row is a
function of ~xi only. Then, f is said to be LTD in x. 2) A vector or a matrix
function f of x has strictly lower triangular dependence (SLTD) in x if the i-th
component or row is a function of ~xi−1 only1. Then, f is said to be SLTD in
x. 3) A matrix is said to be lower triangular if its elements above the main
diagonal are zero.

Definition 2.1. (Input-to-State Practically Stable, see [4])) A control sys-
tem ẋ = f(x, u) is input-to-state practically stable (ISpS) if there exist a function
β of class2 KL, a function γ of class K, and a nonnegative constant d such that,
for any initial condition x(0) and each measurable essentially bounded control
u(t) defined for all t ≥ 0, the associated solution x(t) exists for all t ≥ 0 and
satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(||ut||) + d, (2)

where ut is the truncated function of u at t and ||·|| stands for the L∞ supremum
norm.

1That is, the first element or row is independent of x.
2A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. It is said to belong to class ∞ if a = ∞ and α(r) → ∞ as r → ∞. A
continuous function β : [0, a) × [0,∞)→[0,∞) is said to belong to class KL if, for each fixed
s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞ (see [5, p. 144]).
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3. Problem Statement

The purpose of this paper is to study the global output feedback stabilization
problem of the systems described by (1). Throughout this paper, the following
assumptions are imposed on (1).

Assumption 3.1. For i = 1, · · · , n, the unknown scaling factor ai in the
integrator gain is assumed to be non-zero, and the sign of the product of them
is assumed to be positive, namely

∏n
i=1 ai > 0.

Assumption 3.2. For all y ∈ R, the smooth output-dependent functions
in the integrator gains satisfy the following conditions:

gi(y) ≥ σ > 0, 1 ≤ i ≤ n; gi+1(y) ≤ gi(y), 1 ≤ i ≤ n− 2, (3)

for some scalar σ > 0.

Assumption 3.3. For i = 1, 2, · · · , n, each uncertain nonlinear function
wi satisfies

|wi| ≤ ν∗i ψi1(|y|) + ν∗i ψi2(|ζ|), 1 ≤ i ≤ n, (4)

where ν∗i is an unknown positive constant, ψi1(·) and ψi2(·), with ψi2(0) = 0,
are known positive smooth functions.

Assumption 3.4. The ζ-dynamics in (1) is input-to-state practically
stable (ISpS) and thus, it has an ISpS Lyapunov function Vζ , i.e., for all
(ζ, y, t) ∈ R

q × R × R
+,

αl(|ζ|) ≤ Vζ ≤ αu(|ζ|) ,

∂Vζ
∂ζ

q(ζ, y, t) ≤ −αζ(|ζ|) + γζ(|y|) + dζ ,
(5)

where dζ > 0, αζ , αl, αu and γζ are class K∞ functions.

Under the above assumptions, our objective is to construct a robust adap-
tive output feedback controller

χ̇ = η(χ, y), u = γ(χ, y) (6)

for system (1), so that the solutions of the closed-loop system (ζ, ξ, χ) are
globally uniformly bounded, and also the output y can be rendered arbitrarily
small. Furthermore, with extra conditions imposed on (1), regulation of states
ξ and ζ can also be achieved.

Remark 3.1. Assumption 3.1 can be relaxed so that only the sign of
∏n
i=1 ai is known. The conditions of ai > 0 and gi(·) > 0 (i = 1, 2, · · · , n) in

Assumptions 3.1 and 3.2 guarantee that (1) is always controllable. The second



OUTPUT FEEDBACK STABILIZATION OF... 77

condition in Assumption 3.2 on gi (i = 1, 2, · · · , n) allows us to construct an
observer as shown later.

It is worthwhile to mention that the following example shows another reason
why systems in the form of (1) are considered.

Example 3.1. Consider the nonlinear system

η̇1 = a1η2 ,

η̇2 = a2η3 + a1ψ2(y)η
2
2 + ΨT

2 (y)θ ,

η̇3 = a3η4 + a1ψ3(y)η2η3 + ΨT
3 (y)θ ,

...

η̇n = anu+ a1ψn(y)η2ηn + ΨT
n (y)θ ,

y = η1.

(7)

In system (7), the nonlinearities, which multiply with the unknown param-
eter a1, i.e., ψi(y)η2ηi (i = 2, 3, · · · , n), depend not only on y, but also on
the unmeasured state variables ηi (i = 2, · · · , n). Such nonlinearities violate a
standard assumption of the existing adaptive output feedback designs (see, for
instance, [8]). However, we will show that after a suitable transformation, the
transformed system is a special case of (1).

We define a coordinate transformation as follows:

ξ1 = η1, ξi = e−
R y

0
ψi(s)dsηi, i = 2, · · · , n. (8)

Therefore, the transformed system becomes

ξ1 = a1e
R y

0
ψ2(s)dsξ2 =: a1g1(y)ξ2,

ξ2 = a2e
−

R y

0
ψ2(s)dse

R y

0
ψ3(s)dsξ3 + e−

R y

0
ψ2(s)dsΨT

2 (y)θ =: a2g2(y)ξ3 + φT2 (y)θ,

ξ3 = a3e
−

R y

0
ψ3(s)dse

R y

0
ψ4(s)dsξ4 + e−

R y

0
ψ3(s)dsΨT

3 (y)θ =: a3g3(y)ξ4 + φT3 (y)θ,
(9)

...
...

ξn = ane
−

R y

0
ψn(s)dsu+ e−

R y

0
ψn(s)dsΨT

n (y)θ =: angn(y)u+ φTn (y)θ,

y = ξ1.

System (9) turns out to be a special case of (1); in fact, it has a cascade of
integrators with uncertain gains aigi(y) (i = 1, 2, · · · , n) and with the para-
metric uncertainties φTi (y)θ (i = 2, . . . , n). Furthermore, if, for all y ∈ R,
g1(y) ≥ · · · ≥ gn−1(y), then Assumption 3.2 holds.
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4. An Observer Design

In this section, we propose an observer design for system (1). By utilizing this
observer, a dynamic controller can then be constructed via the robust adaptive
backstepping technique described in the following sections and, consequently,
it solves the problem as stated in Section 3.

First, we define the scaling transformation

Xi := ξi/

n
∏

j=i

aj, i = 1, · · · n, (10)

to eliminate the unknown constants in the integrator gains. By using transfor-
mation (10), and writing X := [X1, · · · ,Xn]

T , system (1) becomes

ζ̇ = q(ζ, y, t) ,

Ẋ = G(y)(NX + bu) + ∆(y, ζ, t) ,

y = γX1,

(11)

where b = [0, · · · , 0, 1]T , and αi :=
∏n
j=i aj, γ :=

∏n
j=1 aj ,

∆(y, ξ, t) := [α−1
1 (θTφ1(y) + w1), α

−1
2 (θTφ2(y) + w2), · · · , α

−1
n (θTφn(y) + wn)]

T .

Lemma 4.1. Consider the matrix

G(y) = diag [g1(y), g2(y), · · · , gn(y)], (12)

and suppose that the elements of matrix G(y) satisfy Assumption 3.2. Then,
there exist a positive scalar ǫ > 0, a vector l(y) = [l1(y) · · · ln(y)]

T , and a
constant matrix P = P T > 0 such that the inequality

P
(

G(y)N − l(y)cT
)

+
(

G(y)N − l(y)cT
)T
P ≤ −ǫI (13)

holds for all y ∈ R, where cT = [1, 0, · · · , 0].

Proof. See Appendix A.1.

By utilizing Lemma 4.1, we are able to construct an observer to estimate
X, and it is defined as

˙̂
X = (G(y)N − l(y)cT )X̂ +G(y)bu, X̂(0) = 0, (14)

where X̂ := [X̂1, · · · , X̂n]
T and l(y) := [l1(y), · · · , ln(y)]

T . As a matter of fact,
this observer is simply a generalization of the well-known Luenberger’s observer
(see, for instance, [9]) with time-varying gain l(y) and matrix G(y)N .

Next, the state estimation errors are defined as

ei :=
1

k∗
(X̂i −Xi), i = 1, 2, · · · , n, (15)
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where k∗ > 0 is an unknown scalar. This unknown scalar is defined as:

k∗ :=

max

{

α−1
1 ,

(

1 + π

ǫ

)

α−1
i |P ||θ|,

(

1 + π

ǫ

)

α−1
i |P |ν∗i , i = 1, 2, · · · , n

}

, (16)

where ǫ and P are obtained from (13), and π > 0 is an arbitrary constant which
will be defined later. As a consequence, the estimation error dynamics become:

ė = (G(y)N − l(y)cT )e−
1

γk∗
l(y)y −

1

k∗
∆(y, ζ, t), (17)

where e := [e1, e2, · · · , en]
T .

By applying the scaling transformation (10) and the filtered transforma-
tion (15), the original system (1) becomes the following augmented system:

ζ̇ = q(ζ, y, t) ,

ė = (G(y)N − l(y)cT )e−
1

γk∗
l(y)y −

1

k∗
∆(y, ζ, t) ,

ẋ = AG(y)(Nx+ bu) + ΦT (y)θ̄ +w(y, ζ, t) + v(y, e) ,

y = x1,

(18)

where θ̄ := [θ, γ−1]T , A := diag [γ, 1, · · · , 1], x:=[y, X̂2, X̂3, · · · , X̂n]
T , w(y, ζ, t)

:= [w1(y, ζ, t), 0, · · · , 0]T ,

ΦT (y) :=















φ1(y)
T 0

0 −l2(y)y
0 −l3(y)y
...

...
0 −ln(y)y















, v(y, e) :=















−γk∗g1(y)e2
−k∗l2(y)e1
−k∗l3(y)e1

...
−k∗ln(y)e1















. (19)

When defining the new state vector x, we have used y instead of using
the estimate X̂1, since y can be related to X̂1 via y = γX̂1 − γk∗e1. This is
preferable because the output of the x-dynamics, i.e., y, becomes the input to
the (ζ,e)-dynamics. In turns, the signals ζ and e can be treated as external
dynamic disturbances acting on the x-subsystem.

By Assumption 3.4, ζ−dynamics are ISpS. On the other hand, the stability
of the error dynamics can be analyzed by defining a positive definite function

Ve(e) :=

(

1 + π

ǫ

)

eTPe, (20)

where π > 0 is an arbitrary constant, which will be defined later, ǫ and P are
obtained directly from (13).

After some manipulation (see Appendix A.2), the time derivative of Ve
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in (20) can be over-bounded as follows:

V̇e ≤ −π|e|2 + δ1(y)y
2 + δ2(|ζ|

2) + d1, (21)

where the functions δ1(·) and δ2(·) are some smooth nonnegative functions both
vanishing at zero, and additionally, δ2(·) is of class ∞.

5. Controller Design

In this section, we design a dynamic controller, using the robust adaptive back-
stepping technique, to render the (e, x)-dynamics in (18) ISpS with respect to
the ζ dynamic disturbance input.

First, by using (20), we define a positive definite function

V1 := V +

(

1 + π

ǫ

)

Ve =
1

2

n
∑

i=1

ηi(z
2
i )

+
1

2
θ̃TΓ−1

1 θ̃ +
1

2λ1
γ̃2 +

1

2λ2
p̃2 +

1

2λ3
γr̃2 +

(

1 + π

ǫ

)

eTPe , (22)

where ηi = z2
i for 2 ≤ i ≤ n, η1(z

2
1) is a smooth class ∞ function, Γ1 is a positive

definite diagonal matrix, and λ1, λ2 and λ3 are strictly positive scalars. At the
moment, we do not specify what η1 is, but it will be chosen at the later stage.

To perform backstepping, we define a nonlinear transformation as

z = x+NT R̂f(x, θ̂, γ̂, r̂, p̂),

0 = u+ bT R̂f(x, θ̂, γ̂, r̂, p̂),
(23)

where γ̂ is an estimate of γ, r̂ is an estimate of r := γ−1, whereas p̂ is an
estimate of the unknown positive constant p := max{(γk∗)2, (k∗)2, (ν∗1)2}.
Here, the diagonal matrix R̂ is defined as R̂ := diag [r̂, 1, · · · , 1]. The vector
f = [f1, · · · , fn]

T is LTD in x and r̂, and is SLTD in γ̂. We also estimate the
inverse of γ, i.e., r with an estimate of r̂. This is because we will utilize r̂,
instead of γ̂−1, in the controller in order to preventing the division of zero. We
call the nonlinear transformation (23) as the backstepping transformation.

As a result, by using transformation (23) and V̇e (21), V̇1 (22) becomes

V̇1 = zTSGÂNz − zTSGf + zTSWΦT θ̂ + zTSNT R̂∇xfGdiagNxcγ̂

+ zTSWΦT θ̃ + zTS(cg1z2 +NT R̂∇xfGdiagNxc)γ̃ + zTSGγcf1r̃

+ zTSNT R̂(∇
θ̂
f

˙̂
θ + ∇γ̂f ˙̂γ + ∇r̂f ˙̂r + ∇p̂f ˙̂p) + zTSNT cf1

˙̂r + zTSW (w + v)
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− θ̃TΓ−1
1

˙̂
θ −

1

λ1
γ̃ ˙̂γ −

1

λ2
p̃ ˙̂p−

1

λ3
γr̃ ˙̂r − π|e|2 + zT δ1(y)cc

T z + δ2(|ζ|
2)

+ d1 , (24)

where

S := diag [η′1(z
2
1), 1, . . . , 1], Â := diag [γ̂, 1, · · · , 1],

c := [1, 0, · · · , 0]T , W := (I +NT∇xf).

The function η′1(z
2
1) is the value of derivative of η at z2

1 . We will later choose
η1 so that η′1(·) is strictly positive.

Before choosing the update laws for the uncertain parameter estimates,
the term zTSW (w + v) has to be analyzed first. By following the procedure
presented in Appendix A.3, this term can be over-bounded by

zTSW (w + v) ≤ zTSDSzp+ ρ1z
T ccT z + ρ2|e|

2 + ρ3ψ
2
12(|ζ|)

+ ρ4ψ
2
11(0) , (25)

where ρi (i = 1, 2, 3, 4) are some strictly positive constants and the diagonal
matrix D(·) is LTD in x and SLTD in f .

Now, we are in a position to choose the update laws. The update laws, ˙̂γ,
˙̂r, ˙̂p and

˙̂
θ, are chosen such that the terms involving γ̃, r̃, p̃ and θ̃ in (24) are

eliminated. In other words, we choose the update laws as
˙̂
θ = Γ1(WΦT )TSz − Γ1σθ(θ̂ − θ0) ,

˙̂γ = λ1(g1z2c
T + (NT R̂∇xfGx2c)

T )Sz − λ1σγ(γ̂ − γ0) ,

˙̂p = λ2z
TSDSz − λ2σp(p̂− p0) ,

˙̂r = λ3f1c
TGSz − λ3σr(r̂ − r0),

(26)

where θ0, a0, p0 and r0 are some design parameters.

Essentially, by using V̇ (24), the backstepping technique is to set up a vector
H(x, f) := [H1(~x1) H2(~x2, ~f1) . . .Hn(~xn, ~fn−1)]

T , that is LTD in x and SLTD in
f , such that the closed-loop system has a desired property. Due to the structure
of H(x, f), each element of f can be evaluated recursively, via f = H(x, f), in
the following way:

f1 = H1(~x1), f2 = H2(~x2, ~f1), . . . , fn = Hn(~xn, ~fn−1), (27)

and hence a control u can be obtained via the transformation (23). From now
on, if the vector H(x, f) is LTD in x and SLTD in f , we will say H(x, f) has
the right structure. When substituting the update laws (23) into V̇1 (24), we
have:

zTSNT R̂∇γ̂f ˙̂γ = zTSNT R̂∇γ̂fλ1((N
T R̂∇xfGx2c)

T )Sz
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+ zTSNT R̂∇γ̂f(λ1g1z2c
TSz − λ1σγ(γ̂ − γ0))

=: zTSUSz + zTSNT R̂∇γ̂f(λ1g1z2c
TSz − λ1σγ(γ̂ − γ0));

zTSNT R̂∇
θ̂
f

˙̂
θ = zTSNT R̂∇

θ̂
f(WΦT )TSz − zTSNT R̂∇

θ̂
fΓ1σθ(θ̂ − θ0)

=: zTSY Sz − zTSNT R̂∇
θ̂
fΓ1σθ(θ̂ − θ0); (28)

zTSNT R̂∇p̂f ˙̂p = zTSNT R̂∇p̂fλ2z
TSDSz − zTSNT R̂grad pλ2σp(p̂− p0)

=: zTSMSz − zTSNT R̂grad pλ2σp(p̂ − p0) ,

where

U := NT R̂∇γ̂fλ1((N
T R̂∇xfGx2c)

T ) ,

Y := NT R̂∇
θ̂
f(WΦT )T ,

M := NT R̂∇p̂fλ2z
TSD.

However, the matrices Y , M and U in (28) do not have the right structure, i.e.,
they are not LTD in x and SLTD in f . In other words, these matrices cannot
be used to construct H(x, f) directly. Fortunately, they can be decomposed in
the following manner:

U = Ul + Uu, Y = Yl + Yu, M = Ml +Mu, (29)

where Ul, Yl and Ml are the lower triangular matrix parts, and Uu, Yu and Mu

are the strictly upper triangular matrix parts, of the matrices U , Y , and M ,
respectively. Due to the structure of U , Y and M , the matrices Ul, Yl, Ml, U

T
u ,

Y T
u , and MT

u are in fact LTD in x and SLTD in f .

Consequently, by using (26)–(29), V̇1 (24) becomes

V̇1 ≤ zTS

(

GÂNz −Gf +DSzp̂+ ρ1S
−1ccT z + S−1δ1(y)cc

T z

+WΦT θ̂ +NT R̂∇xGdiagNxcγ̂ +NT R̂∇γ̂fλ1g1z2c
TSz

+ (NT R̂∇r̄fr +NTdiag fc)λ3f1c
TGSz

+ (Ul + UTu )Sz + (Yl + Y T
u )Sz + (Ml +MT

u )Sz

− (NT R̂∇r̄fr +NTdiag fc)λ3σr(r̂ − r0)

−NT R̂∇
θ̂
fΓ1σθ(θ̂ − θ0) −NT R̂∇γ̂fλ1σγ(γ̂ − γ0)

−NT R̂∇p̂fλσp(p̂− p0)

)

−
σr
2
γr̃2 +

σr
2
γ(r − r0)

2

−
σθ
2
θ̃T θ̃ +

σθ
2
|θ − θ0|

2 −
σγ
2
γ̃2 +

σγ
2

(γ − γ0)
2 −

σp
2
p̃2 +

σp
2

(p− p0)
2

− π|e|2 + δ2(|ζ|
2) + d1 + ρ2|e|

2 + ρ3ψ
2
12(|ζ|) + ρ4ψ

2
11(0). (30)
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Next, we define a positive definite matrix

C(y) := diag [c1v(y), c2, · · · , cn], (31)

where ci > 0 (i = 1, 2, · · · , n) and v(y) > 0 for all y ∈ R. With this positive
definite matrix, we choose f = H(x, f), where

H(x, f) := G−1

(

C(y)z+S−1NT ÂGSz+DSzp̂+ ρ1S
−1ccT z+S−1δ1(y)cc

T z

+WΦT θ̂ +NT R̂∇xfGdiagNxcγ̂ +NT R̂∇γ̂fλ1g1z2c
TSz

+ (NT R̂∇r̄fr +NTdiag fc)λ3f1c
TGSz

+ (Ul + UTu )Sz + (Yl + Y T
u )Sz + (Ml +MT

u )Sz

− (NT R̂∇r̄fr +NTdiag fc)λ3σr(r̂ − r0)

−NT R̂∇
θ̂
fΓ1σθ(θ̂ − θ0) −NT R̂∇γ̂fλ1σγ(γ̂ − γ0)

−NT R̂∇p̂fλσp(p̂ − p0)

)

. (32)

Remark 5.1. In fact, the decompositions in (29), and using the transpose
of the upper diagonal parts of U , Y and M in the construction of vector H(x, f),
can be associated with the tuning functions technique (see, e.g., [8]).

For a given η1(y
2), the smooth strictly positive function v(y) is chosen such

that

η1(y
2) ≤ η′1(y

2)v(y)y2, ∀y ∈ R. (33)

We then pick π > ρ2 in (22) and define τ := π − ρ2. Therefore, by using (32)
and substituting f = H(x, f) (32) into (30), we have

V̇1 ≤ −zTSC(y)z − (π − ρ2)|e|
2 −

σθ
2
θ̃T θ̃ −

σγ
2
γ̃2 −

σp
2
p̃2 −

σr
2
γr̃2

+
σr
2
γ(r − r0)

2 +
σθ
2
|θ − θ0|

2 +
σγ
2

(γ − γ0)
2 +

σp
2

(p− p0)
2 + d1 + ρ4ψ

2
11(0)

+ δ2(|ζ|
2) + ρ3ψ

2
12(|ζ|) ≤ −ǫ2V1 + δ3(|ζ|

2) + κ, (34)

where

ǫ2 :=

min

{

2ci,
τ

(1+π
ǫ

)λmax(P )
,

σθ

λmax(Γ
−1
1 )

, λ1σγ , λ2σp, λ3σr; 1 ≤ i ≤ n

}

, (35)

κ > 0 is some constant. The smooth function δ3(|ζ|
2) can be chosen to be class

∞ function and, at the same time, to satisfy δ3(|ζ|
2) ≥ δ2(|ζ|

2)+ ρ2ψ
2
12(|ζ|), for

all ζ ∈ R
q, since δ2(0) = ψ12(0) = 0.
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Finally, it is straightforward to show that H(x, f) is LTD in x and SLTD
in f , and hence fn can be evaluated recursively from f = H(x, f). Therefore,
by applying the control

u = −fn(x, θ̂, γ̂, r̂, p̂), (36)

and together with the inverse transformation of (23), the (e, x)-subsystem
in (18) is rendered ISpS with respect to the disturbance ζ (cf. inequality (34)).

6. Main Results

From the previous section, we have designed a dynamic controller (given by (36),
(26) and (14)) so that the (e, x)-subsystem in (18) is rendered ISpS with respect
to the disturbance ζ. On the other hand, by Assumption 3.4, the uncertain ζ-
dynamics in (18) are ISpS with respect to the input y. Therefore, we have an
interconnected system with two ISpS subsystems, namely, (e, x)-subsystem and
ζ-dynamics. Our next task is to robustify the control design, which presented
in the previous section, so that the interconnected system satisfies a small-gain
condition. In fact, the main idea is to choose an appropriate function η1 in the
ISpS Lyapunov function of (22) based on the nonlinear small-gain theory [3].
In order to determine the required η1, we follow [3]. Consequently, by following
the procedure presented in Sections 4–5, we have the following result.

Theorem 6.1. If Assumptions 3.1–3.4 hold, the dynamic controller given
by (36), (26) and (14) guarantees the global uniform boundedness of all closed-
loop signals. Furthermore, if the bounds on the unknown parameters, ν∗i , θ,
ai (i = 1, · · · , n) are known, the output y of system (18) can be steered to an
arbitrarily small neighborhood of the origin.

Proof. First of all, we focus on the (e, x)-subsystem in (18) by observing its
V̇1 as shown in (34). For any given λ1 with 0 < λ1 < ǫ2, we have V̇1 ≤ −λ1V1 if

V1 ≥ max

{

2

ǫ2 − λ1
δ5([α

−1
l (Vζ(ζ))]

2),
2κ

ǫ2 − λ1

}

, (37)

where αl and Vζ are obtained from (5). Next, for any given β of class ∞, we
choose η1 in (22) to satisfy

β−1 ◦ γ0(|y|) ≤
1

4
η1(y

2) + ǫ3, ∀y ∈ R, (38)

where ǫ3 > 0 is an arbitrary scalar. At this stage, we have not yet defined the
function β, but it will be chosen so that a simple contraction holds for the gains
of the two subsystems of the interconnected system. We then move to the ζ-



OUTPUT FEEDBACK STABILIZATION OF... 85

dynamics. Similarly, for any given λ2 ∈ (0, 1) and ǫ4 > 0, we have ˙̃Vζ ≤ −a(Ṽζ)
if

Ṽζ ≥ max

{

2ǫ4αu ◦ α
−1
ζ

(

2β(V1)

1 − λ2

)

, 2ǫ4αu ◦ α
−1
ζ

(

2dζ + 2β(2ǫ3)

1 − λ2

)}

, (39)

where Ṽζ := ǫ4Vζ , and a is a class ∞ function.

Let χ1 and χ2 be the gain functions of the (e, x)-subsystem and the ζ-
dynamics, respectively. Therefore, by observing (37) and (39), these gain func-
tions are defined by:

χ1(s) :=
2

ǫ2 − λ1
δ3([α

−1
l (

1

ǫ4
s)]2), χ2(s) := 2ǫ4αu ◦ α

−1
ζ

(

2

1 − λ2
β(s)

)

. (40)

Therefore, if we choose the smooth function β(·) as

β(s) <
1 − ǫ4

2
◦ αζ ◦ α

−1
u ◦

1

2
αl

(

√

δ−1
3 (

ǫ2 − λ1

2
)s

)

, ∀s > 0, (41)

then the composition of the gain functions in (40) is a contraction mapping,
i.e.,

χ1 ◦ χ2(s) = χ1(χ2(s)) < s, ∀s > 0. (42)

Thus, the small-gain condition is satisfied and the solutions of the intercon-
nected system are uniformly bounded. From (37) and (39), the residual set de-

pends on the constants 2κ
ǫ2−λ1

and 2ǫ4αu ◦α
−1
ζ (

2dζ+2β(2ǫ3)
1−λ2

), and these constants
can be rendered small if the control parameters are chosen appropriately. This
completes the proof of Theorem 6.1.

Similar to [3], if certain additional conditions hold for the original sys-
tem (1), regulation of the states ξ and ζ in (1) can also be achieved. This result
is stated as follows:

Theorem 6.2. If system (1) satisfies Assumptions 3.1–3.4 together with
the following extra conditions:

lim sup
s→0+

γζ(s)

s2
< +∞; lim sup

s→0+

ψ2
i2(s)

αζ(s)
< +∞; (43)

and

φi(0) = 0;ψi1(0) = ψi2(0) = dζ = 0, for i = 1, · · · , n, (44)

then the dynamic controller given by (36), (26) and (14) can be modified so
that it guarantees the states ξ and ζ in (1) asymptotically converging to 0,
while maintaining the boundedness of the rest of the signals in the resulting
closed-loop system.
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Proof. With φi(0) = 0 and ψi1(0) = 0 (i = 1, 2, · · · , n), the positive constant
d1 in V̇e (21) becomes 0. Also, if the control parameters: σθ, σγ , σp and σr are
set to zero, then V̇1 (34) turns out to be

V̇1 ≤ −c1η1(y
2) −

n
∑

i=2

ciz
2
i − τ |e|2 + 6

n
∑

i=1

ψ2
i2(|ζ|) + ρ3ψ

2
12(|ζ|). (45)

We follow the lines of [3] to show the regulation property. First, we define a
new positive definite and proper function for the ζ-dynamics in the following
form:

U(ζ) =

∫ Vζ(ζ)

0
q(t)dt, (46)

where q : [0,∞) → [0 : ∞) is a smooth non-decreasing function, which also
satisfies q(t) > 0 for all t > 0. With this new function U , we have

U̇ ≤ q(Vζ(ζ)(−αζ(|ζ|) + γζ(|y|))

≤ −
1

2
q ◦ αl(|ζ|)αζ(|ζ|) + q ◦ αu ◦ α

−1
ζ ◦ 2γζ(|y|γζ(|y|). (47)

Next, we define a new positive definite function

V2 = V1 + U (48)

for the interconnected system and, by using (45) and (47), its time derivatives
can be written as

V̇2 ≤ −c1η1(y
2) −

n
∑

i=2

ciz
2
i − τ |e|2 + 6

n
∑

i=1

ψ2
i2(|ζ|) + ρ3ψ

2
12(|ζ|)

−
1

2
q ◦ αl(|ζ|)αζ(|ζ|) + q ◦ αu ◦ α

−1
ζ ◦ 2γζ(|y|γζ(|y|). (49)

By using the fact that lim sups→0+ ψ2
i2(s)/αζ(s) < +∞, we can choose the

function q(t) in (46) such that

1

4
q ◦ αl(|ζ|)αζ(|ζ|) ≥ 6

n
∑

i=1

ψ2
i2(|ζ|) + ρ3ψ

2
12(|ζ|), ∀ζ ∈ R

q. (50)

Once the function q(t) is chosen, we will then use it to choose η1 in V1 (22)
as it has not yet been defined. By observing V̇2 (49) and using the condition
that lim sups→0+ γζ(s)/s

2< +∞, we choose η1 such that

1

2
c1η1(y

2) ≥ q ◦ αu ◦ α
−1
ζ ◦ 2γζ(|y|γζ(|y|), ∀y ∈ R. (51)

With the chosen q and η1 functions, V̇2 (49) becomes
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V̇2 ≤ −

(

1

2
c1η1(y

2) +

n
∑

i=2

ciz
2
i + τ |e|2 +

1

4
q ◦ αl(|ζ|)αζ(|ζ|)

)

=: −W0(y, z2, · · · , zn, e, ζ), (52)

where W0(·) is a positive definite function. We can then conclude that all the
closed-loop signals are bounded, and also limt→∞

∫ t

0 W0(s)ds < +∞.

Through the use of transformation (23), it is not hard to show that the
state vector x =[y, X̂2, · · · , X̂n]

T is bounded. Since the signals x, z, u, e
and ζ are bounded, the boundedness of ẋ and ż can be established via (18),
(23) and (26). Furthermore, boundedness of ζ̇ and ė can be shown from (18).
Thus, by applying Barbalat’s Lemma (see, e.g., [5]), we have limt→∞W0(t) = 0
which then gives limt→∞(|y(t)| + |z(t)| + |e(t)| + |ζ(t)|) = 0. Hence, by using
transformation (23) and observing (18), x(t) and X̂(t) converge to the origin
as t → ∞. Finally, based on the above argument together with transforma-
tions (10) and (15), states ξ and ζ can be regulated, namely limt→∞ |ξ(t)| = 0
and limt→∞ |ζ(t)| = 0. This completes the proof of Theorem 6.2.

7. An Illustrative Example

In this section, we provide an illustrative example to demonstrate the usefulness
of our design presented in this paper. Consider the following second-order
uncertain nonlinear system:

η̇1 = a1η2; η̇2 = a2u+ a1ψ2(y)η
2
2 + Ψ2(y)θ, y = η1, (53)

where a1, a2, and θ are unknown constant parameters with a1 and a2 are strictly
positive. The functions ψ2(y) = cos y and Ψ(y) = y are known. We assume
that the only measurable variable is the output y. It is clear that the uncertain
nonlinear term a1ψ2(y)η

2
2 in the second equation of (53) consists of not only

the output y, but also the unmeasured state η2. Such nonlinearity violates the
assumption imposed by [8] for their adaptive output feedback control design.
However, as mentioned in Example 3.1, system (53) can be transformed into
the form of (1) as shown in Example 3.1. Furthermore, the transformed system
satisfies Assumptions 3.1–3.2. Therefore, by applying Theorem 6.2, we can
construct an output feedback adaptive controller, presented in Sections 4 and 5,
to regulate the states η1 and η2 to zero and, at the same time, all the closed-loop
internal signals remain bounded for all time.

In the process of constructing the output feedback controller, we construct
an observer (14) with g1(y) = esin y, g2(y) = e− sin y, l1(y) = 2.5esin y + 0.1e−2,
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Figure 1: (a) Time responses of states η1 and η2, (b) time responses of

observer states X̂1 and X̂2
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control input u
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l1(y) = esin y + 0.3e−3. Next, an output feedback adaptive controller is con-
structed by using this observer and following the design procedure in Section 5.
For simulation purposes, we set the system, and the control, parameters as fol-
lows: a1 = 2, a2 = 3, θ = −1, c1 = c2 = 0.001, Γ = diag [0, 1], λ1 = 1, λ2 = 0.1,
λ3 = 0.001. Furthermore, the initial values of the closed-loop system are de-
fined as: η1(0) = η2(0) = 1, X̂1(0) = X̂2(0) = 0, θ̂ = 0, γ̂(0) = p̂(0) = r̂(0) = 0.
Finally, the time response of each closed-loop signal as well as the control input
are shown in Figures 1–2. It is clear that all the signals are bounded, and also
the regulation of states η1 and η2 is achieved.

8. Conclusion

We have presented a control design to solve the global output feedback stabi-
lization problem of a class of uncertain nonlinear systems consisting of uncer-
tain integrator gains. This class of systems includes, as special cases, various
other systems considered previously in the literature. To solve the stabiliza-
tion problem, an observer design has been proposed, and then a controller has
been constructed by utilizing such an observer together with the robust adaptive
backstepping technique. In this paper, the uncertain output-dependent integra-
tor gains are assumed to be linearly parametrized, and this assumption allows
us to construct an observer for the systems via a scaling procedure. However,
if the uncertain integrator gains are nonlinearly parametrized, the construction
of an observer becomes challenging. Therefore, it remains to develop a control
design for systems with nonlinearly parametrized, output-dependent uncertain
integrator gains.
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A. Appendices

A.1. Proof of Lemma 4.1

Proof. First of all, we define a system

˙̃x = (G(y)N − l(y)cT )x̃. (54)

Next, define the following state-space transformation for system (54):

z = x̃−NTSx̃ =: T−1(s)x̃, (55)
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where S is a diagonal matrix defined as S := diag [s1, s2, · · · , sn−1, 0], si > 0
(i = 1, 2, · · · , n − 1), and

T (s) :=















1 0 0 · · · 0
s1 1 0 · · · 0
s1s2 s2 1 · · · 0

...
...

...
. . . 0

s1s2 · · · sn−1 s2 · · · sn−1 s3 · · · sn−1 · · · 1















. (56)

It is clear that the constant matrix T (s) is SLTD in s. Here, we replace f(x̃)
with −Sx̃. By observing the matrix T in (55), we have, for i, j = 1, 2, · · · , n

Ti,j











= 1, when i = j ,

= 0, when i < j ,

= Ti,j(sj, · · · , si−1), otherwise.

(57)

This observation is very useful when evaluating si, i = 1, 2, · · · , n. Then, we
define a positive definite function V := zT z/2, and its time derivative becomes

V̇ = zTG(y)NT (s)z − zTNTSG(y)NT (s)z − zT (I −NTS)l(y)z1. (58)

The first two terms on the right-hand side of (58) can be written as

zTG(y)NT (s)z = zT















g1(y)T2,1

g2(y)T3,1
...

gn−1(y)Tn,1
0















z1 + zT















g1(y)T2,2z2
g2(y)(T3,2z2 + T3,3z3)

...
gn−1(y)(Tn,2z2 + · · · + Tn,nzn)

0















=: zTU1(y, s)z1 + zTU2(y, s, z), (59)

and

− zTNTSG(y)NT (s)z

= −zT



















0
s1g1(y)T2,1

s2g2(y)T3,1

s3g3(y)T4,1
...

sn−1gn−1(y)Tn,1



















z1 − zT



















0
0

s2g2(y)T3,2z2
s3g3(y)(T4,2z2 + T4,3z3)

...
sn−1gn−1(y)(Tn,2z2 + · · · + Tn,n−1zn−1)


















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− zT



















0
s1g1(y)z2
s2g2(y)z3
s3g3(y)z4

...
sn−1gn−1(y)zn



















=: −zTV1(y, s)z1 − zTV2(y, s, z) − zTD(y, s)z. (60)

The terms U2 and V2 in (59) and (60), respectively, can be over-bounded
as follows:

zTU2(y, s, z) ≤

n−1
∑

i=1

i+1
∑

j=2

(

gi(y)z
2
i

2
+
gi(y)T

2
i+1,jz

2
j

2

)

, since gi(·) > 0,

=: zT∆3(y)z + zT∆4(y, s)z, (61)

where

∆3(y) := diag [g1(y)/2, 2g2(y)/2, · · · , (n − 1)gn−1(y)/2, 0] ,

∆4(y, s) := diag



0,
1

2

n−1
∑

j=1

gj(y)T
2
j+1,2, · · · ,

1

2

n−1
∑

j=n−1

gj(y)T
2
j+1,n



 .
(62)

Similarly,

− zTV2(y, s, z) ≤

n−1
∑

i=2

i
∑

j=2

(

gi(y)z
2
i+1

2
+
gi(y)s

2
iT

2
i+1,jz

2
j

2

)

, since gi(·) > 0

=: zT∆1(y)z + zT∆2(y, s)z, (63)

where

∆1(y) := diag [0, 0, g2(y)/2, 2g3(y)/2, · · · , (n − 2)gn−1(y)/2] ,

∆2(y, s) := diag







[0,
1

2

n−1
∑

j=2

gj(y)s
2
jT

2
j+1,2, · · · ,

1

2

n−1
∑

j=n−1

gj(y)s
2
jT

2
j+1,n−1, 0]







.

(64)

By Assumption 3.2 (i.e., 0 < σ ≤ gi+1(y) ≤ gi(y), for all y and i = 1, · · · , n−
2), there exists a diagonal matrix ∆(y, s) such that

zT (∆1(y) + ∆3(y))z + zT (∆2(y, s) + ∆4(y, s))z ≤ zT∆(y, s)z, (65)

where

∆(s, y) := diag [g1(y)β1, g1(y)β2, g2(y)β3, · · · , gn−2(y)βn−1, gn−1(y)βn] (66)

with βi = βi(si, · · · , sn−1) (i = 2, · · · , n − 1), β1 and βn are some positive
constants which are independent of s. Specifically, the scalars β1, · · · , βn are
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defined as follows:

β1 = 2, βn =
n− 1

2
,

βi(si, · · · , sn−1) = (i− 1) +
1

2

n−1
∑

j=i−1

T 2
j+1,i +

1

2

n−1
∑

j=i

s2jT
2
j+1,i,

(67)

where i = 2, · · · , n− 1.

As a consequence, equation (58) is in the form of

V̇ ≤ zT∆(y, s)z − zTD(s)z

− zT
(

(I −NTS)l(y) + V1(y, s) − U1(y, s)
)

z1. (68)

Therefore, each si (i = 1, · · · , n) is chosen in reverse order, i.e., starting with
sn−1 which is followed by sn−2, until we get s1. In other words, si (i = 1, · · · , n)
is chosen as follows:

sn−1 = kn + βn ,

sn−2 = kn−1 + βn−1(sn−1) ,

sn−3 = kn−2 + βn−2(sn−2, sn−1) ,

...

s1 = k2 + β2(s2, · · · , sn−1),

(69)

where, for i = 2, · · · , n, ki is an arbitrary positive constant.

Next, the vector l(y) is chosen as

l(y) = NTSl(y) − V1(y, s) + U1(y, s) + ck1 + cg1(y)β1, (70)

where k1 > 0 and c = [1, 0, · · · , 0]T . Since the right-hand side of (70) is LTD in
l, therefore each li, for i = 1, · · · , n, can be chosen recursively. Then, equation
(68) becomes

V̇ ≤ −k1z
2
1 −

n
∑

i=2

kigi−1(y)z
2
i ≤ −k1z

2
1 −

n
∑

i=2

kiσz
2
i ≤ −k1z

T z, (71)

if we choose k1 = min2≤i≤n{σki}, where σ is from Assumption 3.2.

Finally, from the transformation (55), we can define

P :=
1

2
T−TT−1, ǫ := k1λmin(2P ). (72)

Therefore, by defining a Lyapunov function V = x̃TPx̃ for (54), the vector l(y)
(70) and the constant ǫ > 0 (72) satisfy the inequality (13). This completes the
proof of Lemma 4.1.

When comparing our proof with the one presented in [7], our approach is
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clearer and more explicit in demonstrating the procedure for the construction
of the vector l(y).

A.2. Derivation of Inequality (21)

By using equations (20), (18) and (13), and the inequality, |ab| ≤ 2|a|2 + 2|b|2

for all a and b, it can be shown that

V̇e ≤ −π|e|2 + 3

( n
∑

i=1

l2i (y)y
2 +

n
∑

i=1

m
∑

j=1

φ2
i,j(y) + 2

n
∑

i=1

ψ2
i1(|y|)

)

+ 6
n
∑

i=1

ψ2
i2(|ζ|)

≤ −π|e|2 + 3

( n
∑

i=1

l2i (y)y
2 + 2

n
∑

i=1

m
∑

j=1

φ̃2
i,j(y)y

2 + 4

n
∑

i=1

ψ̃2
i1(y)y

2

)

+ 6

n
∑

i=1

ψ2
i2(|ζ|) + 6

( n
∑

i=1

m
∑

j=1

φ2
i,j(0) +

n
∑

i=1

ψ2
i1(0)

)

≤ −π|e|2 + δ1(y)y
2 + δ2(|ζ|

2) + d1, (73)

where φ̃i,j and ψ̃i1 are some smooth functions chosen to be vanishing at zero, and
also to satisfy φ2

i,j(y) ≤ 2φ̃2
i,j(y)y

2 + 2φ2
i,j(0) and ψ2

i1(|y|) ≤ 2ψ̃2
i1(y)y

2 + 2ψ2
i1(0)

for all y ∈ R. Additionally, δ2(·) is chosen to be of class ∞. Both functions δ1
and δ2 can be computed explicitly thanks to the introduction of the scalar k∗

when defining the errors (15).

A.3. Derivation of Inequality (25)

First, since ψ11 is smooth, we can construct a smooth positive function ψ̂11 such
that ψ11(|y|) ≤ |y|ψ̂11(y) + ψ11(0). By using such ψ̂11(y), it can be shown that

zTSWw ≤ p

n
∑

i=1

(

ψ̂2
11(y)

4ǫ1
+

1

4ǫ2
+

1

4ǫ3

)

S2
i,iW

2
i,1z

2
i

+ nǫ1y
2 + nǫ2ψ11(0) + nǫ3ψ

2
12(|ζ|) , (74)

where p := max{(γk∗)2, (k∗)2, (ν∗1)2}, and ǫi > 0 (i = 1, 2, 3) are arbitrary
constants. Similarly, we can show that

zTSWv ≤
p

4ǫ4

n
∑

i=1

z2
i S

2
i,i

i
∑

j=1

W 2
i,jψ

2
j4(y) + ǫ4

n
∑

i=1

i
∑

j=1

|e|2, (75)

where ψ14 := g1(y), ψi4 := li(y) for i = 2, · · · , n. Therefore, we combine (74)
and (75), and hence inequality (25) is obtained. Specifically, each element of
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the diagonal matrix D is defined by Di,i :=

(

ψ̂2
11(y)
4ǫ1

+ 1
4ǫ2

+ 1
4ǫ3

)

W T
i cc

TWi +

1
4ǫ4
W T
i (diag [ψ2

14, · · · , ψ
2
i4, 0 · · · , 0])Wi for i = 1, · · · , n, where W T

i is the i-th

row of the matrix W and Wi is the i-th column of the matrix W T .


