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Abstract: Exact solutions are given for the steady flow of a second grade
fluid occupying the halfspace S past the plane z = 0 uniformly rotating about
a fixed normal axis (≡ z−axis). No conditions on the sign of the material
parameters characterizing the second grade fluid are imposed. The solutions
are obtained in a velocity field of the form considered by Berker in [2]. Then
a uniform magnetic field H0 orthogonal to the (electrically non conducting)
rotating plane is impressed. The induced magnetic field is supposed depending
only on z. The results are compared with those corresponding to the Newtonian
case [3] and some numerical simulations are given.
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1. Introduction

During the past years there has been considerable interest in rotating magneto-
hydrodynamic flows of non Newtonian fluids. Actually magnetohydrodynamics
finds practical use in many areas of engineering, biology and medicine: viscous
fluids with polymer additives and blood flowing in the cardiovascular system
can be influenced by the application of an external magnetic field (see [13],
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[12]). Moreover generalizations of the Navier-Stokes model in order to explain
a lot of non-standard features of real fluids have been proposed starting from
Rivlin-Ericksen fluids of differential type (see [19]).

In this paper we consider second-grade fluids which have been object of
many papers in the last few years (see [20], [9], [22], [8], etc.). The most
important applications of these fluids concern biological fluids, liquid foams,
slurries, food products and many others materials. The second grade fluids can
be seen either as a self-consistent model or as a second order approximating
model of the simple fluids with fading memory. In the first case all the flows have
to meet the Clausius-Duhem inequality (see [5]) so that the material moduli
characterizing the fluid must verify the conditions

µ ≥ 0, α1 + α2 = 0.

Moreover if µ > 0, α1 ≥ 0, then the fluid exhibits asymptotic stability (see [4]
and the references quoted herein) and the specific Helmoltz free energy has a
minimum at equilibrium if and only if α1 ≥ 0 (see [5]). However some experi-
mental studies have not confirmed the previous restrictions. A comprehensive
discussion of this argument as well as a critical review on the fluids of differ-
ential type can be found in [6]. In any case we develop our study without any
assumptions on the sign and on the size of the normal stress moduli α1, α2 and
we show that the conclusions are not influenced, in a significant manner, by the
sign of α1, α2.

The flow induced by an infinite disk (the plane z = 0) rotating in its own
plane in a fluid occupies a central position in fluid dynamics beginning from
the work of T. von Karman (see [11]) (swirling flow) because it has immediate
technical applications (i.e. rotating machines) and, from a mathematical point
of view, the geometry of the flow is so simple to make possible the determination
of an exact solution. The solutions relative to this problem, apart from the rigid
rotation, can be divided into two classes: solutions such that the velocity field
is symmetric and solutions such that the velocity field is asymmetric about the
z−axis (i.e. the rotation axis): von Karman flow belongs to the first family
while the flow we are going to study belongs to the second one. So we are
interested to velocity fields which are not symmetric about the rotation axis
and we suppose the induced magnetic field depending only on z.

In order to clarify the characteristics of the motion taken into consideration,
we recall that asymmetric solutions were introduced in [2] in the study of the
steady motion for a Newtonian incompressible fluid confined between two par-
allel planes rotating about a fixed normal axis with the same angular velocity.
These flow problems have relevance to the determination of the material moduli
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in viscometric experiments (rheometers).

We follow the procedure outlined in [14], [3] in which Newtonian non electri-
cally conducting and electrically conducting fluids respectively are considered.
These papers treat the problem in a significant physical manner different from
that followed in [2]. More precisely a modified pressure field (i.e. fluid pressure
plus a suitable term) is assigned in order to generalize its expression relative to
the rigid motion. Therefore we assume the modified pressure independent of z
and the velocity field such that the streamlines are concentric circles in planes
parallel to rigid boundary and the locus of the circles centers is no longer the
z−semi-axis (as in the rigid rotation) but a curve Λ. The gradient of this pres-
sure field differs from that corresponding to the rigid motion through a constant
vector field which is parallel to the rotating plane and is arbitrarily fixed. As
in Poiseuille flow between two fixed planes there is a pressure drop to allow a
non-trivial flow (i.e. with non-zero velocity field), here we have the constant
term of pressure gradient to determine a non-trivial flow (i.e. non-rigid rota-
tion) and the deformation of the locus of the streamlines centers into the curve
Λ.

As far as second grade fluids are concerned, Rajagopal-Gupta investigated
the flow of a homogeneous incompressible second grade fluid between two par-
allel rotating plates in [16]. The results obtained are similar to those of [2], the
normal stress modulus α1 influences the velocity field and the pressure field de-
pends on z. For motions confined between two parallel infinite plates rotating
about two noncoincident axes perpendicular to them we refer to [17]. There are
some papers in the literature in which the second grade fluid (in steady motion)
is permeated by a uniform magnetic field (see [12], [18], [21], [1], [10]). In these
studies the geometry of the problem is different from that here considered and
the induced magnetic field is neglected completely.

In the present paper first we determine the exact solution for the steady flow
of a homogeneous incompressible second grade fluid in a halfspace, bounded by
a rigid infinite plane rotating with constant angular velocity Ω about a fixed
axis (z−axis) normal to it. Then the exact solution is found when the fluid
is supposed electrically conducting and an external magnetic field of constant
strength H0 is applied in the z−direction. The plane is assumed to be non
electrically conducting.

The exact solutions are found imposing no-slip condition for the velocity
field on the rotating plane. As far as the magnetic field is concerned it is
continuous across the boundary z = 0 because we suppose the halfspace S− =
{(x, y, z) ∈ R

3 : z < 0} to be vacuum (free space) and the magnetic permeability
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of the fluid is taken equal to that of free space. Moreover we assume the fields
bounded with respect to z.

We find that in both cases there is a boundary layer for the velocity (BLV)
in which the flow is not a rigid rotation. As one can see by means of numerical
simulations, the thickness of (BLV) increases if the viscoelastic parameter Γ
increases and decreases if the angular velocity Ω increases. Outside this layer,
as z → +∞, the flow tends to a rigid rotation about the straight line Λ∞,
parallel to the z−axis. It is interesting to remark that the constant pressure
drop in the (x, y)−direction determines the translation of rotation axis from
the z−axis, as z → +∞.

In the second case there is also a boundary layer (BLH) for the total mag-
netic field H in which the angle ϕ ∈ (0, π

2 ), between H and the the external
magnetic field H0 depends on z.

We notice that (BLH) is larger than (BLV) and if the angular velocity
increases, then its thickness grows thinner. Moreover outside (BLH) the total
magnetic field tends to the external one.

We find that (BLV) becomes thinner when an external magnetic field is
impressed to the fluid. The influence of H0 is less evident if the angular velocity
increases.

The paper is organized in the following manner:

In Section 2 we formulate the problem and prescribe the form of the modified
pressure field in which we include also a term depending on the symmetric part
of the velocity gradient.

In Section 3 we obtain the exact solution of the problem. It depends on the
material constants, on the angular velocity Ω and on the constant part of the
modified pressure gradient.

In Section 4 we illustrate some interesting consequences of the solution and
we furnish some numerical examples of the results.

Sections 5, 6 are devoted to study the analogous problem when an uniform
magnetic field H0 orthogonal to the (electrically non conducting) plane is im-
pressed. The induced magnetic field is supposed depending only on z. The
results obtained are compared with those corresponding to the Newtonian case
and some numerical simulations are given.
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Figure 1: Description flow

2. Statement of the Problem

Consider the stationary flow of a second-grade fluid confined in the halfspace
S bounded by a rigid infinite plane rotating with constant angular velocity Ω

about a fixed axis normal to it. A Cartesian rectangular coordinate system
Oxy z, with the z−axis coincident with the axis of rotation, is introduced so
that S = {(x, y, z) ∈ R

3 : z ≥ 0}, z = 0 is the equation of the rigid wall and
Ω = Ω(0, 0, 1), Ω > 0, without loss of generality. The equations governing the
steady flow of the homogeneous incompressible fluid (supposing the body forces
to be conservative) are (see [19], [5])

ν△v + α1v · ∇△v − v · ∇v − α1∇ · [∇vA]

+(2α1 + α2){∇ · A2 − 1

2
∇|A|2} = ∇p,

∇ · v = 0, onS. (1)

In (1) v is the velocity field, A = ∇v + ∇vT ,

p =
1

ρ

(

p∗ + P
)

− (2α1 + α2)
1

2
|A|2,

p∗ is the pressure field and −∇P is the external body force, ρ is the constant
mass density; ν > 0 is the kinematic viscosity coefficient and α1, α2 are material
constants (normal stress moduli).

For sake of simplicity, in the sequel, p will be called modified pressure field.

At the moment we do not impose any restriction to the values of the material
coefficients α1, α2.
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To (1) we adjoin the no-slip boundary condition

v = Ω(−y, x, 0), at z = 0. (2)

We notice that the equations of motion are higher order than the Navier-
Stokes equations: so the usual no-slip boundary conditions could not be suffi-
cient for determinacy (see [15]). Nevertheless, in many cases the no-slip bound-
ary conditions can be sufficient to avoid ill-posed problems. An example for
that is the flow studied in the present paper.

As it is easy to verify, under condition (2), system (1) admits the simple
solution (rigid body motion)

vR = Ω(−y, x, 0), pR =
1

2
Ω2(x2 + y2) + p0 , (3)

where p0 is an arbitrary constant.

Moreover, as is well known, the streamlines in any z = constant plane are
concentric circles with center on the z−axis.

In our analysis we fix f0, g0 ∈ R arbitrarily and we assume that the fluid is
subjected to a modified pressure field p given by

p =
1

2
Ω2[(x − f0)

2 + (y − g0)
2] + p0 , (4)

where p0 is an arbitrary inessential constant.

We shall search classical solutions (v, p) of (1) with p given by (4) such that:

i) the streamlines in any z = constant plane are concentric circles;

ii) v satisfies the boundary condition (2);

iii) v ∈ M, M being the class of functions which are bounded with respect
to z, z ∈ [0,+∞).

We notice that ∇p = ∇pR + ∇pΛ with ∇pΛ ≡ (−Ω2f0,−Ω2g0, 0).

Because of i), we shall seek sufficiently smooth solutions of (1), (2) satisfying
the previous conditions with the components of v given by

v1 = −Ω(y − g(z)), v2 = Ω(x − f(z)), v3 = 0, ∀z ≥ 0. (5)

Of course v is divergence free.

By virtue of assumptions (5) the space curve Λ, given by the locus of the
points at which the velocity is zero in each of the plane parallel to the plane
z = 0, has Cartesian equations

x = f(z), y = g(z), z ∈ [0,+∞). (6)
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3. Exact Solution

On substituting (4), (5) into (1) and taking into account (2), we obtain

νg′′ − Ωf − α1Ωf ′′ = −Ω f0,

νf ′′ + Ωg + α1Ωg′′ = Ω g0, (7)

together with

f(0) = g(0) = 0.

Moreover we notice that

p∗ + P = ρ p + ρ(2α1 + α2) Ω2(f ′2 + g′2) ≡ ρ p + p1. (8)

Therefore f, g determine the pressure term p1.

Now we have to find f, g. To this end put

F = f + i g, F0 = f0 + i g0.

The equations (7.1), (7.2) can be written as:

(ν − iα1Ω) F ′′ − i Ω F = −iΩ F0. (9)

Define now the following parameters:

k1 =
Ω

ν
, Γ = α1k1 =

α1Ω

ν
.

We notice that the non-dimensional parameter Γ is a viscoelastic parameter
characterizing the ratio of the elastic forces to the viscous forces and k−1

1 has
the physical dimensions of the square of a length.

After some calculations, we obtain that the general solution to equation (9)
is given by

F = C1 e−(β+iγ)z + C2 e(β+iγ)z + F0 , (10)

where C1, C2 are arbitrary constants and

β =

√

k1

2(1 + Γ2)

(

√

1 + Γ2 − Γ
)

, γ =

√

k1

2(1 + Γ2)

(

√

1 + Γ2 + Γ
)

. (11)

Since we do not make any hypothesis on the sign of α1, then the parameter Γ
can be either ≥ 0 or < 0. In any case β, γ are positive.

On the other hand

F(0) = 0, F bounded as z → +∞, (12)

so that the solution F(z) of our problem becomes

F(z) = F0[1 − e−(β+iγ)z ], ∀z ≥ 0. (13)
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Finally we can separate the real and imaginary parts of (13) to obtain

f(z) = f0(1 − e−βz cos γz) − g0e
−βz sin γz ,

g(z) = g0(1 − e−βz cos γz) + f0e
−βz sin γz , (14)

and calculate p1(z) from (8) to get

p1(z) =
(2α1 + α2)ρΩ2k1√

1 + Γ2
(f2

0 + g2
0) e−2βz. (15)

We summarize the previous results in the following:

Theorem 1. Let a second grade homogeneous incompressible fluid oc-
cupy the halfspace S = {(x, y, z) ∈ R

3 : z ≥ 0} bounded by the rigid plane
z = 0 rotating about the fixed z−axis with constant angular velocity Ω =
(0, 0,Ω), (Ω > 0). If the modified pressure field has the form (4), then the ve-
locity field solution to the problem (1), (2) satisfying i), ii), iii) is given by (5),
(14), (11).

We notice that ∀(f0, g0) (i.e. for any choice of the pressure field of the form
(4)) there exists a unique flow satisfying the previous conditions.

4. Remarks and Numerical Simulations

In this section we discuss some properties of the solution and analyze some
numerical examples.

1. First of all we note that f , g do not depend on α2. Moreover we recall
that in Sections 2, 3 no sign hypotheses on α1, α2 have been made. If we suppose
that the thermodynamical restrictions are satisfied (i.e. µ ≥ 0, α1 + α2 = 0),
then f, g have the same expression (14) while the modified pressure field is
slightly different because α1 + α2 = 0 in p1(z).

2. We observe that if Γ = 0, i.e. α1 = 0, but α2 6= 0, then we find the results
concerning the Newtonian case (see [14]) as far as v is concerned. Actually we
deduce

β = γ =

√

Ω

2ν
= m ,

so that f, g of (14) reduce to f∗, g∗ respectively given by

f∗(z) = f0(1 − e−mz cos mz) − g0e
−mz sin mz ,

g∗(z) = f0 e−mz sin mz + g0(1 − e−mz cos mz), ∀z ≥ 0 ,

which are the functions found in (see [14]).
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Figure 2: Figure 2a shows the comparison between f, f∗ and g, g∗ when
Γ = 0.6, Ω = 1 rad sec−1. Figure 2b shows Λ and its projections λ, f, g.

3. As far as the pressure field p∗ + P is concerned we find that it depends
on z by means of p1(z) unlike the Newtonian case. Of course in order to obtain
the results of [14] also α2 has to be assumed equal to zero.

The fact that ∂(p∗+P )
∂z 6= 0 states that the contribution due to the pressure

to the normal forces exerted on the planes z =constant is different at any plane
and decreases with z if 2α1 + α2 > 0.

In any case this contribution tends to zero as z → +∞.

4. If we take the limit as z → +∞ in both members of (14), (15) we get

lim
z→+∞

f(z) = f0, lim
z→+∞

g(z) = g0, lim
z→+∞

p1(z) = 0.

These results state that, as z → +∞, v differs from the rigid body velocity vR

through the constant vector v0 = Ω(g0,−f0, 0) orthogonal to the pressure drop
∇pΛ and the pressure p∗ + P tends to

p∞ =
1

2
ρΩ2[(x − f0)

2 + (y − g0)
2] + ρp0.

Moreover the curve Λ tends, as z → +∞, to the straight line Λ∞, parallel
to the z−axis, passing through the point of coordinates (f0, g0, 0).

5. Here we give some numerical examples.
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Figure 3: Figure 3a shows the comparison between f, f∗ and g, g∗ when
Γ = −0.6, Ω = 1 rad sec−1. Figure 3b shows Λ and its projections
λ, f, g.

The graphs are given for f0 = 10.0m, g0 = 2.0m, and supposing the pa-
rameter k1 equal to 103 m−2(Ω = 1 rad sec−1) and 104 m−2(Ω = 10 rad sec−1)
while the viscoelastic parameter Γ assumes the values −0.6, 0.6 respectively.

We recall that the values given for f0, g0 are purely indicative because they
are completely arbitrary.

Figures 2a, 3a, 4a, 5a show the comparison between f∗, f and g∗, g when
the values of Γ,Ω increase. We see that the maximum value of f and g is less
than the maximum value of f∗, g∗ when Γ < 0, while it is greater when Γ > 0.
Figures 2b, 3b, 4b, 5b show the curve Λ and its projections.

We notice that there is a boundary layer whose thickness increases if Γ
increases and decreases if Ω increases. Outside this layer Λ tends, as z → +∞,
to the straight line Λ∞.

By observing also the curve λ (projection of Λ in the (x, y)-plane), we note
that the distortion of Λ is more accentuated as Γ increases.
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Figure 4: Figure 4a shows the comparison between f, f∗ and g, g∗ when
Γ = −0.6, Ω = 10 rad sec−1. Figure 4b shows Λ and its projections
λ, f, g.

5. Preliminaries in the Presence of the Magnetic Field

In this section we assume that a uniform magnetic field H0 = (0, 0,H0) is
impressed upon the fluid. The magnetic field is orthogonal to the rotating
plane which is supposed non-electrically conducting. In this case the governing
equations are (see [7]):

ν△v + α1v · ∇△v − v · ∇v − α1∇ · [∇vA]

+(2α1 + α2){∇ · A2 − 1

2
∇|A|2} + µ∗ H · ∇H = ∇p,

η△H + ∇× (v × H) = 0,

∇ · v = 0,

∇ ·H = 0 on S. (16)

In (16) H is the magnetic field,

p =
1

ρ

(

p∗ + P +
µeH

2

2

)

− (2α1 + α2)
1

2
|A|2,
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Figure 5: Figure 5a shows the comparison between f, f∗ and g, g∗ when
Γ = 0.6, Ω = 10 rad sec−1. Figure 5b shows Λ and its projections λ, f, g.
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Figure 6: Description MH-flow

µ∗ = µe

ρ , µe magnetic permeability (it is not restrictive to take µe equal to the

magnetic permeability of free space), η = 1
µeσe

is the magnetic resistivity and
σe is the electrical conductivity.

To (16) we adjoin the boundary conditions

v = Ω(−y, x, 0), Hτ = 0, at z = 0. (17)
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The second condition of (17) means that the tangential component Hτ of
the magnetic field is continuous across the boundary z = 0.

As it is easy to verify, under conditions (17), system (16) admits the simple
solution (rigid body motion)

vR = Ω(−y, x, 0), HR = (0, 0,H0), pR =
1

2
Ω2(x2 + y2) + p0. (18)

We shall search classical solutions (v,H, p) of (16) with p given by (4), such
that:

i) the streamlines in any z = constant plane are concentric circles;

ii) (v,H) satisfies the boundary conditions (17);

iii) (v,H) ∈ M, M being the class of functions (vM,HM) which are
bounded with respect to z, z ∈ [0,+∞), and HM → (0, 0,H0) as z → +∞,
uniformly in x, y.

Therefore, we shall seek sufficiently smooth solutions of (16), (17) belonging
to M of the form

v1 = −Ω(y − g(z)), v2 = Ω(x − f(z)), v3 = 0, (19)

H1 = h1(z), H2 = h2(z), H3 = H0 + h3(z) ∀z ≥ 0, (20)

where (h1(z), h2(z), h3(z)) is the unknown induced magnetic field.

6. Exact Solution in the Presence of H0

First of all we note that (16.4) implies that h3 is constant so that

h3 = 0, ∀z ≥ 0 (21)

by virtue of condition iii) and (20.3).

On substituting (19), (20), (4) into (16) and taking into account (17), after
putting

k2 =
Ω

η

(k−1
2 has the physical dimensions of the square of a length) we obtain

g′′ − k1f − Γf ′′ +
µ∗ H0

νΩ
h′

1 = −k1 f0,

f ′′ + k1g + Γg′′ − µ∗ H0

νΩ
h′

2 = k1 g0, (22)

h′′
1 + k2H0 g′ − k2 h2 = 0,
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Figure 7: Figure 7a shows f , g when H0 = 105Am−1,Γ = 0, Ω =
1 rad sec−1. Figure 7b shows Λ and its projections.
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Figure 8: Figure 8a shows f , g when H0 = 105Am−1,Γ = 0.6, Ω =
1 rad sec−1. Figure 8b shows Λ and its projections.
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Figure 9: Figure 9a shows f , g when H0 = 105Am−1,Γ = 0, Ω =
10 rad sec−1. Figure 9b shows Λ and its projections.
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Figure 10: Figure 10a shows f , g when H0 = 105Am−1,Γ = 0.6, Ω =
10 rad sec−1. Figure 10b shows Λ and its projections.
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h′′
2 − k2H0 f ′ + k2 h1 = 0 , z ∈ (0,+∞) ,

together with

f(0) = g(0) = 0, h1(0) = h2(0) = 0.

Moreover we have that p∗ + P = ρp − µeH
2

2
+ p1.

Now we have to find f, g.

On setting

F = f + i g, H = h1 + i h2, F0 = f0 + i g0,

the system (22) can be written as:

(1 − iΓ)F ′′ + i
µ∗ H0

Ων
H′ − i k1F = −i k1F0,

H′′ − iH0k2F ′ + i k2H = 0. (23)

After some calculations, from (23) we deduce that F satisfies the following
4-th order ODE:

(1 − iΓ)FIV − [N − Γk2 + i(k1 − k2)]F ′′ + k1k2F = k1k2F0 , (24)

where N =
µ∗ H2

0

νη (N−1 has the physical dimensions of the square of a length).

We notice that, from a physical point of view, k1 ≫ k2. Therefore, in the
sequel, we shall suppose

k1 − k2 > 0.

Moreover at this point we assume

Γ ≥ 0, i.e. α1 ≥ 0.

By means of long and cumbersome algebraic calculations we obtain that
the four complex roots of the characteristic equation associated to (24) have
the following form

m1 = β1 + i γ1, −m1, m2 = β2 − i γ2, −m2

with β1, β2, γ1, γ2 > 0 given by

2β1 = 1
4
√

2
√

1+Γ2

{[

ρ
+

√
1 + Γ2 +

√
2
(

N − Γk1

)

+
√

ρ + a − Γ
√

ρ − a
]}1/2

,

2γ1 = 1
4
√

2
√

1+Γ2

{[

ρ
+

√
1 + Γ2 −

√
2
(

N − Γk1

)

−√
ρ + a + Γ

√
ρ − a

]}1/2
,

2β2 = 1
4
√

2
√

1+Γ2

{[

ρ
−

√
1 + Γ2 +

√
2
(

N − Γk1

)

−√
ρ + a + Γ

√
ρ − a

]}1/2
,

2γ2 = 1
4
√

2
√

1+Γ2

{[

ρ
−

√
1 + Γ2 −

√
2
(

N − Γk1

)

+
√

ρ + a − Γ
√

ρ − a
]}1/2

, (25)
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where

ρ =
√

a2 + b2,

a = (N − Γk2)
2 − (k1 + k2)

2, b = 2[N(k1 − k2) + Γk2(k1 + k2)],

ρ
+

=
{[√

2(N − Γk2) +
√

ρ + a
]2

+
[√

2(k1 − k2) +
√

ρ − a
]2}1/2

,

ρ
−

=
{[√

2(N − Γk2) −
√

ρ + a
]2

+
[√

2(k1 − k2) −
√

ρ − a
]2}1/2

. (26)

Therefore the solution of (24) satisfying the conditions

F(0) = 0, F bounded as z → +∞,

is

F(z) = C(e−m1z − e−m2z) + F0(1 − e−m2z), ∀z ≥ 0, C ∈ C. (27)

At this point we integrate (23.1) taking into account (27) and the hypothesis
H(z) → 0 as z → +∞.

We get

H(z) =
H0k2

N

[

C
(

− k1 + (Γ + i)m2
1

m1
e−m1z +

k1 + (Γ + i)m2
2

m2
e−m2z

)

+F0
k1 + (Γ + i)m2

2

m2
e−m2z

]

, ∀z ≥ 0. (28)

The boundary condition H(0) = 0 allows to determine the complex constant
C:

C =
m1[k1 + (Γ + i)m2

2]

(m2 − m1)[k1 − (Γ + i)m1m2]
F0. (29)

Finally we can separate the real and imaginary parts of (27), (28) with C given
by (29) to obtain

f(z) = f0{1 + e−β1z(u cosγ1z − v sin γ1z) − e−β2z[(1 + u) cosγ2z + v sin γ2z]}
+g0{e−β1z(v cos γ1z + u sin γ1z) + e−β2z [(1 + u) sinγ2z − v cos γ2z]},

g(z) = f0{−e−β1z(v cos γ1z + u sinγ1z) − e−β2z[(1 + u) sin γ2z − v cos γ2z]}
+g0{1 + e−β1z(u cos γ1z − v sin γ1z) − e−β2z[(1 + u) cos γ2z + v sin γ2z]},(30)

h1(z) = H0k2

N

{

f0

[

− e−β1z(c cos γ1z + d sin γ1z) + e−β2z(c cos γ2z − d sin γ2z)
]

+

+g0

[

e−β1z(d cos γ1z − c sinγ1z) − e−β2z(d cos γ2z + c sinγ2z)
]}

,

h2(z) = H0k2

N

{

f0

[

e−β1z(−d cos γ1z + c sinγ1z) + e−β2z(d cos γ2z + c sinγ2z)
]

+

+g0

[

− e−β1z(c cos γ1z + d sinγ1z) + e−β2z(c cos γ2z − d sin γ2z)
]}

, (31)
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with

u =
A1(A2 − A1) + B1(B2 − B1)

(A2 − A1)2 + (B2 − B1)2
, v =

B1A2 − A1B2

(A2 − A1)2 + (B2 − B1)2
,

A1 = (β2
2 − γ2

2)(β1 + Γγ1) + γ1(k1 + 2β2γ2) − 2Γβ1β2γ2,

A2 = (β2
1 − γ2

1)(β2 − Γγ2) − γ2(k1 − 2β1γ1) + 2Γβ1β2γ1,

B1 = (β2
2 − γ2

2)(Γβ1 − γ1) + β1(2β2γ2 + k1) + 2Γβ2γ1γ2,

B2 = (β2
1 − γ2

1)(Γβ2 + γ2) − β2(2β1γ1 − k1) + 2Γβ1γ1γ2,

c = uD1 + vE1 = (1 + u)D2 + vE2, d = uE1 − vD1 = (1 + u)E2 − vD2,

D1 =
k1β1 + (Γβ1 − γ1)(β

2

1
+ γ2

1
)

β2

1
+ γ2

1

, E1 =
−k1γ1 + (β1 + Γγ1)(β

2

1
+ γ2

1
)

β2

1
+ γ2

1

,

D2 =
k1β2 + (γ2 + Γβ2)(β

2

2
+ γ2

2
)

β2

2
+ γ2

2

, E2 =
k1γ2 + (β2 − Γγ2)(β

2

2
+ γ2

2
)

β2

2
+ γ2

2

. (32)

We conclude this section summarizing the previous results in the following:

Theorem 2. Let an electrically conducting homogeneous incompressible
second grade fluid occupy the halfspace S = {(x, y, z) ∈ R

3 : z ≥ 0} bounded
by the rigid plane z = 0 rotating about the fixed z−axis with constant angular
velocity Ω = (0, 0,Ω), (Ω > 0). We suppose that a uniform magnetic field
H0 = (0, 0,H0) orthogonal to the electrically non conducting plane is impressed
upon the fluid and the body forces are conservative. If the modified pressure
field has the form (4), then (v,H) solution to the problem (16), (17) satisfying
i), ii), iii) is given by (19), (20), (21), (30), (31), (32).

We notice that ∀(f0, g0) (i.e. for any choice of the pressure field of the kind
(4)) there exists a unique magnetohydrodynamic flow satisfying the previous
conditions.

7. Remarks and Numerical Examples in the Presence of H0

We conclude with some remark and some numerical examples:

1. The term p1(z) in the pressure field assumes now the expression

p1(z) = ρ(2α1 + α2) Ω2(f ′2 + g′2)

= ρ(2α1 + α2) Ω2(f2
0 + g2

0)
[

(u2 + v2)(β2
1 + γ2

1)e−2β1z

+[(1 + u)2 + v2](β2
2 + γ2

2)e−2β2z
]

. (33)

Also in this case ∂(p∗+P )
∂z 6= 0 so that the contribution due to the pressure to the
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normal forces exerted on the planes z =constant is different at any plane and
decreases with z if 2α1 + α2 > 0. This contribution tends to zero as z → +∞.

2. Also in the presence of the magnetic field we have that, if we take the
limit as z → +∞ in both members of (30), we get

lim
z→+∞

f(z) = f0, lim
z→+∞

g(z) = g0,

lim
z→+∞

h1(z) = lim
z→+∞

h2(z) = 0.

Moreover

lim
z→+∞

p1(z) = 0.

These results state that, as z → +∞, v differs from the rigid body velocity vR

through the constant vector v0 = Ω(g0,−f0, 0) orthogonal to the pressure drop
∇pΛ and the pressure p∗ + P tends to

p∞ =
1

2
Ω2[(x − f0)

2 + (y − g0)
2] + ρp0 −

µeH
2
0

2
and the curve Λ tends, as z → +∞, to the straight line Λ∞, parallel to the
z−axis, which passes through the point of coordinates (f0, g0, 0).

Finally, being

h3 = H0, ∀z ≥ 0 ,

we have that the pressure drop does not influence the induced magnetic field
in z−direction.

3. If H0 = 0, i.e. N = 0, then we find the results of Section 3 again.
Actually we have

β1 ≡ β, γ1 ≡ γ, β2 =

√

k2

2
= γ2, u = −1, v = 0 ,

so that the expressions of f, g of (30.1), (30.2) reduce to f, g given by (14.1),
(14.2) respectively.

Further a simple calculation shows that hi → 0, i = 1, 2, as H0 → 0.

4. If Γ = 0, i.e. α1 = 0, then the roots m1,m2 reduce to the roots m1,m2

found in [3] for the Newtonian fluids and f, g, h1, h2 are exactly the same as in
[3]. Therefore in the limit α1 → 0, only the pressure field has a different form
because of the presence of the term p1(z) given by (33).

5. Finally we briefly examine the case Γ < 0, i.e. α1 < 0. In this case
the characteristic equation associated to (24) has again four complex roots
m1,−m1,m2,−m2 whose expressions are similar to those given in (25). There-
fore the form of f, g, h1, h2 is analogous to that given in Theorem 2 and there
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Figure 11: Plots showing the behavior of h1, h2 when H0 =
105Am−1, k1 = 103, k2 = 10−1, Ω = 1 rad/sec and Γ = 0, 0.6 re-
spectively.
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Figure 12: Plots showing the behavior of h1, h2 when H0 =
105Am−1, k1 = 103, k2 = 10−1, Ω = 10 rad/sec and Γ = 0, 0.6
respectively.

are no significative changes in the behavior of the solution to the problem.
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6. Here we give some numerical examples assuming f0 = 10.0m, g0 = 2.0m
and and supposing the parameter k1 equal to 103 m−2(Ω = 1 rad sec−1) and
104 m−2(Ω = 10 rad sec−1) while the viscoelastic parameter Γ assumes the
values 0, 0.6.

As far as the external magnetic field is concerned we assume H0 = 105Am−1

(induction magnetic field ∼ 1 Tesla) and suppose k2 = 10−1 m−2, k2 = 1m−2,
i.e. Ω = 1, Ω = 10 rad sec−1 (i.e. ∼ 0.15, ∼ 1.5 revolution/sec) respectively
and N = 103 m−2.

Figures 7a, 8a, 9a, 10a show that the graphs of the functions f and g when
the values of Γ,Ω increase; Figures 7b, 8b, 9b, 10b show the curve Λ (and its
projections) for the values above considered.

We recall that the values given for f0, g0 are purely indicative because they
are completely arbitrary.

We can see that the boundary layer relative to v (BLV) in which the curve
Λ is distorted is thinner in the presence of H0; moreover if the angular veloc-
ity increases then the influence of the external magnetic field is less manifest.
Further the thickness increases if the viscoelastic parameter Γ increases and
decreases if the angular velocity Ω increases. Outside this layer Λ tends, as
z → +∞, to the straight line Λ∞.

Figures 11, 12 show the behavior of h1, h2. We can see that the strength
of the induced magnetic field is much smaller than H0; the angle ϕ = ϕ(z)
between the total magnetic field H and the external magnetic field H0 changes
with z in a boundary layer (BLH) whose thickness depends on Ω and Γ.

This thickness decreases when Ω increases as for the boundary layer relative
to the velocity field. The width of (BLH) is much larger than the width of
(BLV). We can note that ϕ (and hence the direction of H) changes fast near
the boundary while outside the boundary layer, the total magnetic field reduces
to H0 which is parallel to the z−axis.
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