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Abstract: Maass cusp forms of the Fuchsian group are eigenfunctions of the
hyperbolic Laplacian representing bound states. It is known that the Maass
cusp forms can only be solved numerically. The aim of this paper is to ex-
tend Hejhal’s algorithm to compute Maass cusp form on the modular group
SL(2,R)\H using Mathematica with the intent of exploiting its graphical and
symbolic capabilities. We compute the eigenvalues of the Maass cusp forms em-
ploying a graphical scheme to locate the approximate value of the eigenvalue.
We also plotted Maass cusp forms corresponding to selected eigenvalues.
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1. Introduction

The computational work of Maass waveforms on PSL(2,Z)\H has been consid-
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ered by many authors, for example see [7], [3] and [13] and the references listed
therein. Nevertheless their work remained known only to the specialists in the
area given the intricacy of the algorithm involved. On the other hand, scientific
computational softwares such as Mathematica has continually improved over
the years, making many difficult computations accessible to a wider audience.
It is then our intent to implement the computation of Maass waveforms in
Mathematica, which would be of interest to many physicists. We compute the
eigenfunctions of the hyperbolic Laplacian and the eigenvalues for the first few
Maass cusp forms on PSL(2,Z)\H. Since there is no known analytical formula
for the eigenfunction, numerical approximation is necessary. For this purpose,
we develop a Mathematica program to compute their Fourier coefficients and
the eigenvalues. In the following section we discuss some background concern-
ing the hyperbolic plane, modular group and Maass waveforms. In Section 4
we recall the method due to [7] for computation of Maass waveforms and de-
scribe how we restructure the algorithm to locate and find the eigenvalues. We
take note that Hejhal’s algorithm was a huge step forward in the numerical
stability and range of applicability of such computations, see [13, 12, 3, 4]. We
present its numerical implementation in Mathematica and the method of locat-
ing the eigenvalues. In Section 5 we show some of the numerical results of the
eigenvalues, plots of the eigenfunctions or the cusp forms.

2. Mathematical Setting

Maass waveforms are square integrable, nonconstant, Γ-invariant eigenfunctions
of the hyperbolic Laplacian

∆ = y2

(

∂2

∂x2
+

∂2

∂y2

)

,

defined on the Poincare upper half plane H = {z ∈ C : Im(z) > 0} and Γ is
some specified (discrete) group. The eigenfunctions have a simple expansion in
terms of modified Bessel functions in [5], p. 22, and they satisfy

∆ψ + λψ = 0, (1)

with λ = 1
4 + r2. At the same time Maass waveforms are required to satisfy the

automorphy condition

ψ(z) = ψ(γz) for all γ ∈ Γ.

For completeness, we begin with the Poincare upper half plane H which comes
with a hyperbolic metric of ds2 = 1

y2 (dx2 + dy2). All the isometries of the
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Figure 1: The fundamental domain F for the modular group

hyperbolic metric are given by the group of linear fractional transformations,

PSL(2,R) =

{

z → γz =
az + b

cz + d

∣

∣

∣

∣

a, b, c, d ∈ R, ad− bc = 1

}

.

The group Γ will be the discrete Fuchsian subgroup of PSL(2,R) and it realizes
the needed hyperbolic surface as the quotient space S = Γ\H. The surface
S = Γ\H can be illustrated by use of a fundamental domain, which is a con-
nected domain F ⊂ H with the following properties: an arbitrary point of
the hyperbolic plane is the image of a point in the interior of the fundamental
domain by the action of an element of Γ and two different points inside the
fundamental domain cannot be connected by a transformation of the group.
The image of F under action of Γ in fact gives a perfect tiling (cover) of H. In
this work, the subgroup is the modular group Γ = PSL(2,Z), i.e.

PSL(2,Z) =

{(

a b
c d

)

/{±I}
∣

∣

∣

∣

ad− bc = 1, a, b, c, d ∈ Z

}

.

Its fundamental domain is F = {z = x + iy ∈ H; |x| < 1
2 , |z| > 1}, see Figure

1 (see [1, 11]). The modular group is generated by inversion and translation,
respectively given by

S =

(

0 1
−1 0

)

: z 7→ −1

z
, and T =

(

1 1
1 0

)

: z 7→ z + 1.

Identifying the sides of F using the maps S and T we get topologically a sphere
with one cusp i∞. The modular surface Γ\H is a Riemann surface of constant
negative curvature −1 having one puncture (cusp) at i∞ with finite hyperbolic
area. The group PSL(2,Z) acts on H without limit, which means we can use
the generator T and S to pull back any z ∈ H to the fundamental domain
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F of PSL(2,Z). The presence of a cusp i∞ in Γ\H means that the Laplacian
operator ∆ possesses both discrete and continuous spectra. The continuous part
is spanned by Eisenstein series while the discrete part is spanned by Maass cusp
forms, which vanish at the cusp. If their eigenvalues are ordered in an increasing
sequence 0 = λ0 < λ1 ≤ λ2 ≤ λ3..., accumulating at infinity with the number of
eigenvalues counted with multiplicity, then Weyl’s law asserts that the counting
function of the eigenvalue obeys

NΓ(λ) ∼ Area |F |
4π

λ− 2κ

π

√
λ log

√
λ+A

√
λ

for λ→ ∞, where κ is the number of cusps, and A is a certain constant. With
the identification map Tz = z + 1 ∈ Γ, we may expand any eigenfunction in
a Fourier series. It is well known that discrete eigenfunctions with eigenvalues
λ ≥ 1

4 have no constant term in their Fourier expansion [5, 9] and hence

ψ(x+ iy) =
∑

n∈Z

any
1

2Kir (2πny) e(2πinx), (2)

for some Fourier coefficients an and Kir (2πny) is the modified K-Bessel func-
tion. This Fourier series is the main tool in the computation of the eigen-
functions. In the modular group, there is an obvious reflection symmetry with
respect to the y-axis which allows us to write the eigenfunction ψ as

ψ(x+ iy) =
∑

n∈Z

any
1

2Kir (2πny) cs(2πnx) , (3)

where cs(2πmx) is cos(2πmx) for even class and sin(2πmx) for the odd class.

3. Computing Cusp Forms

3.1. The Algorithm

This subsection is to introduce the algorithm for computing the Maass cusp
forms for which Hejhal’s algorithm is an essential part. The algorithm is based
on Fourier expansion and the use of what we call implicit automorphy. We
will write the Maass cusp form (3) for the symmetric fundamental domain as
follows:

ψ(x+ iy) =
∞
∑

m=1

any
1

2Kir(2πmy) cs(2πmx).
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Note that one could also have used

ψ(x+ iy) =
∞
∑

m=−∞
n 6=0

any
1

2Kir(2π |m| y)e(2πimx).

Since we are interested in the groups that have symmetric fundamental domain
we will use the former, while the latter form can be applied to asymmetric
groups. Due to the exponentially decay of the K-Bessel function for large
arguments (see Section 4.2) and the bound

|an| ≤ d(n)
1

4 ,

for the coefficients (where d(n) counts the number of divisor of n), we can
truncate the absolutely convergent Fourier expansion any time we bound y
from below and we can always find M = M(ε, r, y) such that

2πMy ≥ r and Kir(2πmy) ≤ εmax
x

Kir(x)

holds (see [7] and [13]). Here larger y will allow smaller M . We denote

[[ε]] =

∞
∑

M+1

amy
1

2Kir(2πmy) cs(2πmx),

for all terms whose absolute value is less than ε. Due to the K-Bessel function
decays exponentially in m, the summand can be truncated for some large M
and the remaining terms are smaller than ε, i.e.

ψ(z) =

M
∑

m=1

amy
1

2Kir(2πmy) cs(2πmx) + [[ε]]. (4)

The next step is to solve the above Fourier expansion for its coefficients by
using a finite Fourier transform:

amy
1

2Kir(2πmy) =
1

2Q

∑

x∈X

ψ(x+ iy) cs(−2πmx) + [[ε]], (5)

where X is an equidistributed set of Q numbers

X =

{

1
2

2Q
,

3
2

2Q
, ...,

Q− 3
2

2Q
,
Q− 1

2

2Q

}

.

The above actually performs an inverse transform over the following set of
sampling points along a horocycle, with 2Q > M +m:

2Q ≥M +M, and Q =
M +M

2
+ 1 = M + 1.

For simplification, we write zj = xj + iy | xj = 1
2Q

(j − 1
2), 1 ≤ j ≤ Q.
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The next step is to use the automorphy of ψ(z) under the group Γ,

ψ(z) = ψ(z∗) ,

where z∗ is the Γ−pullback of the point z into the fundamental domain D (see
Section 2), i.e. z∗ = γz, γ ∈ Γ, z∗ ∈ F. Any Maass cusp form can now be
approximated by

ψ(x+ iy) = ψ(x∗ + iy∗) =

M0
∑

n=1

any
1

2Kir(2πny
∗) cs(2πnx∗) + [[ε]], (6)

where we have setM0 = M(ymin) and choose any y < ymin = y0 in the expansion
where y∗ ≥ ymin. For the modular group PSL(2,Z), y0 is the lowest point in the

fundamental domain F , i.e. y0 = min
z∈F

(y) =
√

3
2 . By a familiar flip flop through

the generators of Γ, Γ-pullback of any point into the fundamental domain make
use of the inversion z 7→ −1

z
at least once, and possibly together with the

transformation z 7→ z + 1. It guarantees the invariance

ψ(z) = ψ(−1

z
).

The implicit automorphy (cf. [5]) is what enables us to determine the whole
Fourier series. We now use this relation and replace ψ(x + iy) in (5) with the
right-hand side of (6), yielding

amy
1

2Kir(2πmy)

=
1

2Q

Q
∑

j=1

M0
∑

n=1

any
∗ 1

2Kir(2πny
∗) cs(2πnx∗j ) cs(−2πmxj) + 2[[ε]] ,

where 1 ≤ m ≤ M, which is the central identity in the algorithm. Taking
1 ≤ m ≤M0, and neglecting the error [[ε]] we have the set of equations

M0
∑

n=1

Vmn(r, y)an = 0 , m ≥ 1, (7)

where the matrix V = (Vmn) is given by

Vmn(r, y) = amy
1

2Kir(2πmy)δmn

− 1

2Q

Q
∑

j=1

M0
∑

n=1

y∗
1

2Kir(2πny
∗) cs(2πnx∗j ) cs(−2πmxj) . (8)

We now have a linear system that can be used to obtain the Fourier coef-
ficients an and the eigenvalues r. Note that the matrix Vmn can be small due
to the K-Bessel function decay and this can be avoided by choosing a suitable
y < y0. Since the eigenvalues r are unknown, we discretize the r−axis and solve
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for each value on the grid, the equation
M0
∑

n=2

Vmn(r, y#1)an = −Vm(r, y#1), for 2 ≤ m ≤M0. (9)

After dropping one of the equations, we may introduce a normalization in order
to avoid the trivial solution. This is done by setting for an = 1 (see [10]). The
variable y#1 < y0 is chosen such that the Bessel function is not too small for
2 ≤ m ≤M0. This is the final system of equations and it depends on y and M0,
but the results should be independent of the choice of these values. One may
choose the following as a good value for y#1:

2πM0y
#1 = r.

Hejhal solves the above system repeatedly by using a different set of y, and
checks whether the coefficients are independent of the choice of y. At this
juncture, we can now make use of Mathematica in-built functions to solve the
linear system of equations (equation (9)), written now as matrix equation

V C = Y ,

for the Fourier coefficient matrix C.

3.2. Finding the Eigenvalues

The eigenvalues λ = 1
4 + r2 to be sought for are in the form of the values r. We

compute equation (7) for an independent value of y by defining gm

gm =

M0
∑

n=1

Vmn(r, y#1) a#1
n , 1 ≤ m ≤M0 ,

where we have used the Fourier coefficients an = a#1
n and y#2 = 9

10y
#1. It is

clear from (7) that the computed an be the Fourier coefficients of a Maass cusp
form and r is an eigenvalue only if all the gm’s vanish simultaneously. But the
probability of finding an r value such that all gm vanished is zero, because the
discrete eigenvalues are of measure zero in the real numbers. Therefore, we let
r run through a grid of discretized r values and look for simultaneous changes
of sign in the gm.

It is crucial to find a suitable r-grid to minimize computer time without
missing any eigenvalue. We try to minimize gm and search for the simultaneous
sign changes. Once we have found such simultaneous change in at least half of
all the gm’s, we have found a candidate interval which contains an eigenvalue r
with high probability. We let the candidate interval be [ri−1, ri]. The next step
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is to check whether this interval really contains an eigenvalue. If an eigenvalue
is in between ri−1 and ri, then

gm(ri−1, y) · gm(ri, y) ≤ 0

for almost all m. We then bisect the interval and re-examine the sign changes.
We zoom in the interval with the most sign changes in gm. If there is an eigen-
value contained in the bisected interval, the number of gm’s that simultaneously
change their sign increases from step to step in the iteration until the size of
the interval approaches zero. In this event, we declare that r is an eigenvalue
of the Laplacian and that our an’s are close to the Fourier coefficients of the
corresponding Maass cusp form.

In the opposite case, the number of gm’s which simultaneously change their
sign decreases from step to step in the iteration until we suspect that there is
no eigenvalue contained in the interval [ri−1, ri]. The condition of no eigenvalue
can be written as follows

gm(ri−1, y) · gm(ri, y) > 0 ,

for almost all m. One may need to plot gm against r-axis to find the candidate
intervals to save the computing time. The plot also may give a reasonable small
interval to make our search easier faster (see Figure 2). If we assume that there
are two eigenvalues of Maass cusp forms lie close together then their Fourier
coefficients change rapidly and we may miss one of them. In order not to miss
any eigenvalue which lies close together, at least one point of the r-grid lies
between any two successive eigenvalues.

4. Numerical Results

4.1. The Parameters

As stressed in previous section, with sharp parameters M0, Q, y, the algorithm
should succeed in finding correct data for all existing cusp forms and that it
should never give false cusp forms. This has been corroborated by the experi-
ments carried out so far (see [3, 7, 13] as well as our experiments in Section 7.
First, we set the parameters M0, Q, y to find the values of y = y#1, y#2, Q2, and
M . It is very important to determine the smallest truncation pointM = M(r, y)
and we know that

2πMy ≥ r.
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We choose the lowest point in the fundamental domain y0 =
√

3
2 , and solve the

following

2πM0y0 = r and 2πMy0 = r.

Taking an independent value of y for which y#2 defined earlier is a good choice,
we now have the following parameters M,M0, y

#1, y#2. With 2Q ≥ M + m,
we get Q = M+m

2 + 1 = M+M
2 + 1 = M + 1 and the second value of Q2 = 9

10Q.
Using similar observation as in Hejhal [5] one also can take

M =
r +Ar

1

3

2πy

for some constant A. In practice it turns out that A = 8 is good enough.

4.2. K-Bessel Test

In the computations, the accuracy of evaluation of the K-Bessel function is
crucial. Here, we have tested the Mathematica K-Bessel function against Then’s
Bessel function routine written in C-language [13] but now implemented in
Mathematica. Our test extends to the imaginary order, unlike previous tests
that concern the Bessel function of integral order [14]. We found that the in-
built Mathematica K-Bessel is limited for large order of r; Mathematica failed
to plot the Bessel function if r = 22850. Notice that we have to compensate the
Bessel function Kir with e

πr

2 and it is working well with small r values and have
the advantage of working with higher accuracies but slower computing time. On
the other hand, K-Bessel function of Then subroutine has the accuracy of 10−7,
but with advantage of a very wide range and slightly faster computation than
the Mathematica built-in function. Table 1 shows example of the test out put.
When implementing the algorithm outlined above in a Mathematica software
or more generally other programs, the most time consuming task is by far, that
of computing the values of the K-Bessel function Kir(2πmy).

4.3. The Module

We developed two modules for even and odd separtely to ease the usage of the
program. In order to compute any Maass cusp we make use of the following
Mathematica built-in functions, BesselK[order, argument] and LinearSolve[ ].
The Linear solve function is to calculate the Fourier coeffeicients. One can
compute Maass cusp forms with wisely choosing the interval [ri, rf ]. Large in-
terval will result in a longer computation time. The third input for the module
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r Holger kbes routine Mathematica K-Bessel n y

0.25 0.005279493017928984 0.00527952836892597 2 0.4
0.5 0.011062511961735346 0.011062513299103535 2 0.4
1 0.042285153343279036 0.04228520796401373 2 0.4
10 6.98257*10ˆ-17 0 20 0.4
20 -0.044436983296885564 -0.044436983296885495 2 0.4
20 0.0343102 0.03431021351361238 10 0.5
50 0.389677 0.3896772381471491 10 0.5
100 0.267158 0.2671576415303035 30 0.2
500 -0.110422 -0.11042150985910876 40 0.2
1000 -0.0569238 -0.056923783169770384 50 0.2
5000 -0.0144842 -0.014484213209317818 300 0.4
10000 0.0250919 0.025091909877987786 300 0.5
20000 0.000196072 0.0001960722974269738 1000 0.5
20000 0.02631 0.0263100442621 6207 0.5
40000 -0.0117288 Indeterminate 0.4

Table 1: Comparison of the Bessel function values

r-value
13.77975135189 31.56627541175 40.54335121050 46.48140241232
17.73856338105 32.50811775990 40.68866444930 46.65331835999
19.42348147082 32.89117021351 41.55557767357 47.42289589850
21.31579590020 34.02788420010 41.88300285420 47.92655833060
22.78590849418 34.45527153303 42.64348841466 48.03933090509
24.11235272984 35.50234977136 42.92222778356 48.74166634760
25.82624371270 35.84167643258 43.26718203880 48.99830765407
26.15208544922 36.67755494959 44.07740476166 49.68352007525
27.33270808314 37.82507229050 44.42634811860 48.99803765407
28.53074769291 38.30327615249 45.28743844310 49.68352007525
28.86339435392 39.16808496792 45.36161360214 49.96169629050
30.41067804650 39.40753186152 45.39846953130
31.52658219679 39.77362261910 46.10145632150

Table 2: r-Values for the even Maass cusp form for the interval I=[0,50]

will be the step of the grid dr. We call the modules maasseven and maassodd
and the output will be the list of possible interval, gm plot, and the computed
eigenvalues. The accuracy can be increased by increasing the iteration in the
bisection module. The input and the output of the module takes the following
forms

In[1]:= maasseven[13.75, 13.79, 0.01]
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r-value
9.533695261353 28.51027770314 37.29558319925 44.29496725330
12.17300832467 29.13758755783 37.74392474203 44.77704595446
14.35850951825 29.54638812414 38.12090078958 45.11220116779
16.13807317152 29.13758755783 38.44200387442 45.68637998246
16.64425920189 30.02790484991 38.86960709783 45.78282106056
18.18091783453 30.40432705404 39.43247710882 45.95441964609
19.48471385474 31.05653396210 39.82686791840 46.56634624132
20.10669468254 31.91618247091 40.27211125778 46.83921936180
21.47905754474 32.01840643362 40.85812755625 47.17836614028
22.19467397757 32.93246556807 40.88046730299 47.54623011832
23.20139618122 33.49233128239 40.99043681909 47.82337315975
23.23611447394 33.57098962762 41.75447366271 48.14980959512
23.26371195379 34.18596993308 42.15273288130 48.35541196866
24.41971544232 34.69531040976 42.48562254312 48.98668260607
25.05085485076 35.43166464634 42.64636287866 49.10572455465
26.05691776066 35.66639637099 42.97865489379 49.43917776522
26.44699641804 35.85867349169 43.38568692359 49.99122049300
27.28438401168 36.33112904749 43.85938217734
27.77592070179 36.98881539054 44.28210989600

Table 3: r-Values for the odd Maass cusp form for the interval I=[0,50]

an

1.00000000000 0.02889375399
0.51088306653 1.89136677301
1.70054792393 -0.69707687997
-0.73917113477 -0.26424696030
-1.35864012264 -1.34528249726
0.86914820432 -0.14725898511

Table 4: The Fourier coefficients for the lowest even and odd Maass
cusp forms where r=47.926558330595

r=13.75 -0.0384855,0.0473493,0.0255451,0.00865618,-0.00744903,0.00716464,
-0. 00709113

r=13.76 -0.0256765,0.0317665,0.016619,0.00572741,-0.00493001,0.00474417,-
0. 00469701

r=13.77 -0.0127383,0.0158517,0.00805034,0.00281748,-0.00242591,0.002335
68,-0. 00231323

r=13.78 0.000326361,-0.000408613,-0.000201649,-0.0000715657,0.000061639,
-0. 000059378,0.0000588273

Possible Interval is (13.77 13.78)

r=13.79 0.0135148,-0.017029,-0.00817429,-0.00293762,0.00253102,-0.00243
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13.76 13.77 13.78 13.79

-0.03

-0.02

-0.01

0.01

953,0. 00241776

(13.77)

Interval= 1 m= 1

25 13.7798

Interval= 1 m= 2

25 13.7798

4.4. Computational Results from Mathematica

We have recalculated the r-values of cusp forms on the modular surface for
0 < r < 50. There are two basic classes of cusp forms depending on whether
the Fourier expansion is even or odd. We have found 122 eigenvalues. These
results are very close with those found in the literature and with Weyl’s law
prediction. For F = PSL(2,Z)\H, the area is |F | = π

3 and with A = 1, Weyl’s
law gives N(λ) = N(1

4 + 502) = 122.8. Our computations are based on both
Mathematica in-built K-Bessel function and the k-Bessel routine used by [13]
implemented in Mathematica.

For a given interval I = [ra, rb], we want to find all Maass cusp forms with
eigenvalues r in this interval. The idea is to solve equation (9) and try to find
r ∈ I. In practice we first divide the interval I into a number of equally small
chunks:

ra = r0 < ... < ri < ... < rN = rb .

Then we compute gm and look for sign changes. We plot gm and zoom in in the
intervals that have the most changes in sign for the gm’s. For our experiment
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we search for the eigenvalues in the interval I = [0, 50]. We run the developed
program for r-grid with step size of dr = 5e−5. One may use Weyl’s law as
a starting point to find an estimate of average distance between the eigenval-
ues. But the real computation required increasingly finer grids until no other
candidate eigenvalues are found. All gm will then be plotted against r and the
intervals where most of the gm’s intersect are sought for. These intervals will
then be zoomed-in with a finer grid (see for example Figure 2). We can also reset
the step size if we suspect any missing eigenvalues and plot the gm’s again until
the output interval is very small; for example see Figure 3. Now we are ready
to proceed to the next stage of using the bisection together with ”zooming in”
of the intervals and re-checking the sign changes. We take note instances when
the gm’s that changed their signs increase with the iterations until the size of
the interval approaches zero and the eigenvalues r are considered to have been
found (see Figure 3). We present the obtained eigenvalues which are divided
into even and odd classes in Tables 2 and 3. We have checked the accuracy of
our results with the aid of the multiplicative relation of the Fourier coefficients
where the first few coefficients satisfy amn = am · an. Also the accuracy can
be checked by computing the coefficients a second time with an independent
different value of y. All Fourier coefficients satisfy the Ramanujan-Petersson
conjecture, i.e.

|ap| ≤ 2 for all primes p.

In Table 4, we list the first few Fourier coefficients of the Maass cusp form
corresponding to r = 47.926558330595, and Figure 4 shows a picture of the
Maass cusp form corresponding to the eigenvalue. The computing time to locate
the eigenvalues ranges from few minutes to hours depending on how large the
eigenvalue we are searching for. On the other hand plotting Maass cusp form
picture usually takes much longer time. For example for r = 47.926558330595,
the figure took a CPU time of 11 hours and 59 minutes on a CPU of dual
processor of 1.7 GHz and 1GB of memory. Figure 5 shows the nodal line for
the lowest odd and even cusp forms while Figure 6 shows the picture of the odd
and even Maass cusp form for the lowest third eigenvalues. Figures 4, 5 and 6
show good agreement with some earlier work; see for example [8].

5. Conclusion

We have successfully computed Maass cusp forms for the modular surface and
their eigenvalues using Mathematica and our results are equivalent to those



292 A.A.M. Siddig, H. Zainuddin

23.18 23.20 23.22 23.24 23.26 23.28

-0.03

-0.02

-0.01

0.01

Figure 2: Plot of gm’s shows the small steps size for the grid and close
eigenvalues

13.775 13.780 13.785 13.790

-0.02

-0.01

0.01

0.02

Figure 3: Plot of gm’s shows the small steps size and that interval is
small to search for the eigenvalue

found in the literature (see [2, 7]). We highlight the intention of using a com-
mercially available software, i.e. Mathematica primarily for its wider accessi-
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Figure 4: Maass cusp form for r = 47.926558330595 in the region I =
[−1, 1] × [2.5, 2.5]

Figure 5: Nodal lines for the odd cusp form for r = 9.533695261353
and for the even cusp form for r = 13.779751351890. The illustrated
region is [−1, 1] × [0, 2.5]

bility and not necessarily for effectiveness of computations at all ranges. From
our computations, we amply demonstrate that the chosen software can be used
readily for the complex computations of Maass cusp forms. The computations
for the modular surface also serves as a basis for further development of com-
putations of cusp forms on other surfaces, which are currently in progress.
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Figure 6: Plot of the Maass cusp forms, the left picture corre-
sponds to r = 14.35850951825 and the right picture corresponds to
r=19.42348147082
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