SCROLLAR INVARIANTS OF PENCILS ON BINARY CURVES

E. Ballico

Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Here for all positive integers \(k_1, k_2, g \) such that \(g \geq 2(k_1 + k_2 - 1) \) we prove the existence of a binary curve \(X \) and a line bundle \(L \) on \(X \) with multidegree \((k_1, k_2)\) and expected scrollar invariants, i.e. with \(h^0(X, L^c) = c + 1 \) for all \(c \) such that \(1 \leq c \leq \lfloor g/(k_1 + k_2 - 1) \rfloor \).

AMS Subject Classification: 14H51, 14H10, 14H20
Key Words: binary curve, scrollar invariant

1. Introduction

Let \(X \) be a reduced projective curve and \(L \in \text{Pic}(X) \). The knowledge of the scrollar invariants of \(L \) in the classical sense is essentially equivalent to the knowledge of the sequence \(\{h^0(X, L^c)\}_{c>1} \). In the classical case \(h^0(Y, L) = 2 \). In this case it is very important to know for which integers \(c \geq 2 \) we have \(h^0(Y, L^c) = c + 1 \) (see [1], [3], [4]). Here we consider the case of a binary curve \(X \) of genus \(g \), i.e. \(X \) is nodal, \(X = X_1 \cup X_2, X_1 \cong X_2 \cong \mathbb{P}^1 \) and \#(X_1 \cap X_2) = g+1 (see [2]). Each line bundle on \(X \) has a multidegree \((\deg(L|X_1), \deg(L|X_2))\). As in [2] we only consider line bundles with sections and multidegree \(k_1 > 0, k_2 > 0 \). We first prove the following result.

Theorem 1. Fix positive integers \(k_1, k_2, c, g \). There are a binary curve \(X = X_1 \cup X_2 \) and \(L \in \text{Pic}(X) \) such that \(\deg(L|X_i) = k_i, i = 1, 2 \), and \(h^0(X, L^c) = c + 1 \) if and only if \(c \leq \lfloor g/(k_1 + k_2 - 1) \rfloor \).
The geometrical interpretation of the scrollar invariants of a line bundle requires that the line bundles induces a finite morphism \(X \to \mathbb{P}^1 \). In the spanned case we are only able to prove the following result.

Theorem 2. Fix integers \(k \geq 3 \) and \(g \geq 2k \). There are a binary curve \(X = X_1 \cup X_2 \) of genus \(g \) and \(L \in \text{Pic}(X) \) of multidegree \((1, k - 1) \) such that \(L \) is spanned and \(h^0(X, L^{\otimes c}) = c + 1 \) for all positive integers \(c \leq \lfloor g/(k - 1) \rfloor \).

See [2], Lemma 21 and Proposition 22, for much more in the case \(k_1 = k_2 = 1 \), i.e. the case of hyperelliptic binary curves.

2. The Proofs

Lemma 1. Let \(Y \) be a reduced and projective curve. Let \(L \) be a spanned line bundle on \(Y \) such that \(L \neq \emptyset \). Then \(h^0(X, L^{\otimes c}) \geq c + 1 \) for all integers \(c \geq 1 \).

Proof. Since \(\dim(X) = 1 \) and \(L \) is a spanned line bundle and its not trivial \(h^0(X, L) \geq 2 \). Since \(\dim(X) = 1 \) and \(L \) is a spanned line bundle, there is a linear subspace \(V \subseteq H^0(X, L) \) such that \(V \) spans \(L \) and \(\dim(V) = 2 \). Thus \(V \) induces a surjective morphism \(f : X \to \mathbb{P}^1 \). Fix any irreducible component \(T \) of \(X \) such that \(f(T) = \mathbb{P}^1 \). Notice that \(\dim(S^c(V)) = c + 1 \) (symmetric product). It is sufficient to prove that the evaluation map \(\rho : S^c(V) \to H^0(X, L^{\otimes c}) \) has image of dimension \(c + 1 \). Let \(\beta : H^0(X, L^{\otimes c}) \to H^0(T, L^{\otimes c}|T) \) be the restriction map. Since \(f(T) = \mathbb{P}^1 \), the restriction map \(\eta : V \to H^0(T, L|T) \) is injective. Since the lemma is obvious for the integral curve \(T \), the map \(\alpha : S^c(\eta(V)) \to H^0(T, L^{\otimes c}|T) \) has image of dimension \(c + 1 \). Thus \(\beta \circ \rho \) has image of dimension \(c + 1 \). \(\square \)

Lemma 2. Let \(X \) be a stable curve of genus \(g \) such that there is an ample and spanned degree 2 line bundle \(R \) on \(X \) such that \(R^{\otimes (g-1)} \cong \omega_X \) and \(h^0(X, R) = 2 \). Assume that the natural map \(\eta : S^{(g-1)}(H^0(X, R)) \to H^0(X, \omega_X) \) (symmetric product) is surjective, i.e. assume that the canonical map factors through the morphism \(f : X \to \mathbb{P}^1 \) induced by \(|D|\). Fix integers \(a \geq 0, b \geq 0 \) such that \(2a + b \leq 2g - 2 \) and an effective degree \(b \) divisor \(D \) of \(X \) supported by \(X_{\text{reg}} \) and such that no point appearing with multiplicity of \(\geq 2 \) in \(D \) is a ramification point of \(D \) and no two points in the same fiber of \(f \) appears in \(D \). Then \(h^0(X, R^{\otimes a}(D)) = a + 1 \).

Proof. Since \(h^0(X, \omega_X) = g \), the surjectivity of \(\eta \) is equivalent its injectivity.
By Riemann-Roch we need to prove \(h^0(X, R^{g-1-a})(-D)) = \max\{0, g-a-b\}. \) We know that \(R \) is spanned and that the natural map \(S^{(g-1-a)}(H^0(X, R)) \to H^0(R^{g-1-a}) \) is bijective. Hence it is sufficient to use that \(f(D) \) is an effective degree \(b \) divisor of \(\mathbb{P}^1 \) seen as embedded as a rational normal curve of \(\mathbb{P}^{g-1-a} \) and use that any effective divisor of degree \(x \leq r+1 \) of a rational normal curve of \(\mathbb{P}^r \) spans an \((x-1)\)-dimensional linear space.

Since \(h^0(X, \omega_X) = g \), the surjectivity of \(\eta \) is equivalent its injectivity. It would be easy to modify the statement of Lemma 2 assuming the injectivity of \(\eta \), but dropping the condition \(h^0(X, R) = 2 \). However, this generalization would be illusory.

As an immediate consequence of Lemma 2 we get the following results (in the third one we may even drop that \(X \) is nodal).

Corollary 1. Let \(X = X_1 \cup X_2 \) be a hyperelliptic binary curve of genus \(g \). Let \(R \) be the hyperelliptic line bundle and \(f : X \to \mathbb{P}^1 \) be the degree 2 associated covering. Fix non-negative integers \(a, b \) such that \(2a + b \leq 2g - 2 \). Take an effective degree \(b \) divisor \(D \subset X_{reg} \) such that no two points in the support of \(D \) are in the same fiber of \(f \). Then \(h^0(X, R^{\otimes b}(D)) = a + 1 \).

Corollary 2. Let \(X = X_1 \cup X_2 \) be a hyperelliptic binary curve of genus \(g \) and \(R \) its hyperelliptic line bundle. Fix integers \(k_1, k_2, c \) such that \(2 \leq k_1 \leq g-1 \), \(2 \leq k_2 \leq g-1 \) and \(1 \leq c \leq |g/(k_1 + k_2 - 1)| \). Fix a general \(S_i \subset X_i \) such that \(\sharp(S_i) = k_i - 2 \) and set \(L := R(S_1 \cup S_2) \). Then \(h^0(X, L^{\otimes c}) = c + 1 \).

Corollary 3. Let \(X \) be an integral genus \(g \geq 2 \) Gorenstein curve such that there is a degree 2 morphism \(f : X \to \mathbb{P}^1 \). Fix integers \(c, k \) such that \(k \geq 2 \) and \(1 \leq c \leq |g/(k-1)| \). Let \(S \subset X \) be a general subset such that \(\sharp(S) = k - 2 \). Set \(L := R(S) \). Then \(h^0(X, L^{\otimes c}) = c + 1 \).

Proof of Theorem 1. Set \(k := k_1 + k_2 \). Assume the existence of \((X, L)\) with \(p_a(X) = g \), \(L \) spanned and \(\deg(L) = k \). Lemma 1 gives \(h^0(X, L^{\otimes c}) \geq c + 1 \). Riemann-Roch gives \(\chi(L^{\otimes c}) = ck + 1 - g \). Notice that \(ck + 1 - g \leq c + 1 \) if and only \(c \leq |g/(k-1)| \). Hence the “only if” part is obvious. Now we prove the “if” part. We take a binary hyperelliptic curve and apply Corollary 2. \(\square \)

Lemma 3. Fix positive integers \(k, a, c \) such that \(c \leq a - 2 \), a reduced curve \(Y \subset \mathbb{P}^1 \times \mathbb{P}^1 \) of type \((k, a)\) and \(S \subset \text{Sing}(Y) \) such that \(Y \) has an ordinary node at each point of \(S \). Let \(u : X \to Y \) be the partial normalization of \(Y \) in which we normalize only the points of \(S \). Set \(L := u^*(O_{\mathbb{P}^1 \times \mathbb{P}^1}(0, 1)) \).

(a) \(L \) is a degree \(k \) spanned line bundle.

(b) \(h^0(X, L^{\otimes c}) = c + 1 + h^1(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{I}_S(k-2, a-2-c)) \).
Proof. Part (a) is obvious. We have $\omega_{\mathbb{P}^1 \times \mathbb{P}^1} \cong \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(-2, -2)$. Hence the adjunction formula gives $\omega_Y \cong \mathcal{O}(k-2, a-2)$. Since $h^1(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(-2, -2)) = 0$ (use Kn"unneth). The restriction map $H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(k-2, a-2)) \to H^0(Y, \omega_Y)$ is surjective. The adjunction theory of nodal singularities gives part (b).

Proof of Theorem 2. Let a be the minimal integer such that $(k-1)(a-1) \geq g$. Hence
\[g \leq (k-1)(a-1) \leq g + k - 2 \quad (1) \]
Let $Y \subset \mathbb{P}^1 \times \mathbb{P}^1$ be a general union of a general curve $Y_1 \subset \mathbb{P}^1 \times \mathbb{P}^1$ of type $(1, a-1)$ and a general curve $Y_2 \subset \mathbb{P}^1 \times \mathbb{P}^1$ of type $(k-1, a)$. Hence $Y_1 \cong Y_2 \cong \mathbb{P}^1$, Y is nodal and $\sharp(Y_1 \cap Y_2) = (k-1)(a-1) + 1$. Fix $S \subset Y_1 \cap Y_2$ such that $\sharp(S) = (k-1)(a-1) - g$. The inequality (1) gives $0 \leq \sharp(S) \leq k - 2$. Let $u : X \to Y$ be the partial normalization of Y in which we normalize only the points of S. Call X_i, $i = 1, 2$, the irreducible component of X such that $u(X_i) = Y_i$. Set $L := u^*(\mathcal{O}_Y(0, 1))$. L has multidegree $(1, k-1)$ and it is spanned. Since $h^0(Y, \mathcal{O}_Y(0, c)) = c + 1$ for all $c \leq a - 2$, it is sufficient to find S such that $h^1(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{I}_S(k-2, 0)) = 0$. This is possible, because the restriction to S of each projection $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ is injective.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References