ON THE MULTIPLICATION MAP FOR
RANK 1 SHEAVES ON NODAL CURVES

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Here we consider the multiplication map for depth 1 sheaves with
pure rank 1 on curves with only ordinary nodes or ordinary cusps as singulari-

ties.

AMS Subject Classification: 14H20, 14H51
Key Words: rank 1 sheaf, multiplication of sections, singular curves

1. Introduction

Let X be a projective curve and F a depth 1 sheaf on X with pure rank 1. Here
we look at the multiplication map $H^0(X, F) \otimes H^0(X, F) \to H^0(X, F^{\otimes 2})$. Of
course, $\text{Im}(\mu_F)$ is the image of the symmetric multiplication map $S^2(H^0(X, F))$
$\to H^0(X, F \otimes F)$. When X is a smooth curve, then F is a line bundle. In this
case the surjectivity of μ_F is a classical problem related to projectively normal
curves ([1], [3] and references quoted there or quoting these papers). There are
extensions of the classical case to the case in which X is singular (and in some
extensions X is allowed to be reducible). Here we show that the general case
may be reduced to this case for sheaves which are locally free at each point
of X which is not an ordinary node or an ordinary cusp. Here we prove the
following result.

Theorem 1. Let X be a reduced projective curve and F a depth 1
sheaf on X with pure rank 1. Set $S := \text{Sing}(F)$ and assume that X has
an ordinary node or an ordinary cusp at each point of S. Let $v : C \to X$ be the partial normalization of X in which we only normalize the points of S. Let $L := v^*(F)/\text{Tors}(v^*(L))$. Then $L \in \text{Pic}(C)$. Let $\mu_F : H^0(X, F) \otimes H^0(X, F) \to H^0(X, F \otimes F)$ and $\mu_L : H^0(C, L) \otimes H^0(C, L) \to H^0(C, L^\otimes 2)$ denote the multiplication maps. Let $a_F : H^0(X, F \otimes F) \to H^0(X, F \otimes F/\text{Tors}(F \otimes F))$ be the natural map. Set $\sigma_F : a_F \circ \mu_F$. Then:

(a) a_F is surjective, $\text{rank}(\mu_L) = \text{rank}(a_F)$ and $\text{corank}(\mu_L) = \text{corank}(a_F)$.
(b) If μ_F is surjective, then μ_L is surjective.
(c) If μ_L is injective, then μ_F is injective.
(d) If μ_L is surjective and $h^1(X, I_S \otimes F) = h^1(X, F)$, then μ_F is surjective.
(e) If $\sharp(S) = 1$, F is spanned and μ_L is surjective, then μ_F is surjective.

2. The Proof

Lemma 1. Let X be a reduced projective curve. Fix $S \subseteq \text{Sing}(X)$ and assume that each point of S is either an ordinary node or an ordinary cusp of X. Let $v : C \to X$ be the partial normalization of X in which we only normalize the points of S. We have $\chi(\mathcal{O}_C) = \chi(\mathcal{O}_X) + \sharp(S)$.

(a) For any coherent sheaf G on C with depth 1 and pure rank 1 the sheaf $v_*(G)$ has depth 1, pure rank 1, $\text{deg}(v_*(G)) = \text{deg}(G) + \sharp(S)$, and $h^i(X, v_*(G)) = h^i(X, G)$, $i = 1, 2$.

(b) For any depth 1 sheaf on X with pure rank 1 set $F_S := v^*(F)/\text{Tors}(v^*(F))$. The sheaf F_S has depth 1, pure rank 1, $\text{Sing}(F_S) = v^{-1}(\text{Sing}(F)\setminus S)$, $\text{deg}(F_S) = \text{deg}(F) - \sharp(S)$, $F_S \cong v_*(F_S)$ and $h^i(X, F_S) = h^i(C, F_S)$, $i = 0, 1$.

(c) If F is spanned, then F_S is spanned.

Proof. Since each point of S is an ordinary node or an ordinary cusp of X, $\chi(\mathcal{O}_C) = \chi(\mathcal{O}_X) + \sharp(S)$ ([4], pp. 164–166, for an ordinary node, [2] for both cases). Let G be a coherent sheaf G on C with depth 1 and pure rank 1. Since G has depth 1 and v is finite, $v_*(G)$ has no non-zero subsheaf supported by a finite subset of X. Hence $v_*(G)$ has depth 1. It has pure rank 1, because G has pure rank 1 and v is an isomorphism outside a finite subset. Obviously, $h^0(X, v_*(G)) = h^0(C, G)$. Since v is finite, $R^1v_*(G) = 0$. Hence the Leray spectral sequence of v gives $h^1(X, v_*(G)) = h^1(C, G)$. Applying Riemann-Roch to X and to G we get $\text{deg}(G) - \text{deg}(v_*(G)) = -\chi(\mathcal{O}_C) + \chi(\mathcal{O}_X) = -\sharp(S)$, concluding the proof of part (a). Take F as in (b). By construction F_S has
depth 1. Obviously, it has pure rank 1. Since \(C \) is locally free at each point of \(v^{-1}(S) \) and \(v|C \backslash v^{-1}(S) \) is an isomorphism, \(\text{Sing}(F_S) = v^{-1}(\text{Sing}(F) \backslash S) \). Fix any \(P \in S \). Since \(C \) is smooth at each point of the classification of depth 1 modules with pure rank 1 singularities shows that the germ of \(F \) at \(P \) is an \(\mathcal{O}_{X,P} \)-module isomorphic to the maximal ideal of the local ring \(\mathcal{O}_X \). Hence a local computation gives \(\deg(F_S) = \deg(F) - \sharp(F_S) \) and \(F \cong v_*(F) \). Hence the remaining assertions of part (b) follow from part (a). Now assume that \(F \) is spanned. Since the tensor product is a right exact functor, \(v^*(F) \) is spanned. Hence any quotient of \(v^*(F) \) is spanned. Since \(F_S \) is a quotient of \(v^*(F) \), we get part (c).

Lemma 2. Let \(R \) be the completion of the local ring of an ordinary node or an ordinary cusp and \(\mathfrak{m} \) its maximal ideal. Then:

(a) \(\text{Tor}_1^R(\mathfrak{m}, \mathfrak{m}) \cong \mathbb{K} \).

(b) The multiplication map \(\mathfrak{m} \otimes \mathfrak{m} \to \mathfrak{m}^2 \) is surjective and its kernel is a 1-dimensional \(\mathbb{K} \)-vector space.

Proof. Part (a) is a local computation. Part (b) follows from part (a) by tensoring the exact sequence of \(R \)-modules

\[
0 \to \mathfrak{m} \to R \to \mathbb{K} \to 0 \tag{1}
\]

with \(\mathfrak{m} \).

Remark 1. Let \(Y \) be a reduced projective curve and \(G \) a coherent sheaf on \(Y \). Look at the exact sequence

\[
0 \to \text{Tors}(G) \to G \to G/\text{Tors}(G) \to 0. \tag{2}
\]

The sheaf \(G/\text{Tors}(G) \) has depth 1. Since \(\text{Tors}(G) \) is supported by a finite subset of \(Y \), \(h^1(Y, \text{Tors}(G)) = 0 \). Hence (2) gives \(h^0(Y, G) = h^0(Y, \text{Tors}(G)) + h^0(Y, G/\text{Tors}(G)) \) and the surjectivity of the natural map

\[
H^0(Y, G) \to H^0(Y, G/\text{Tors}(G)).
\]

Proof of Theorem 1. The surjectivity of \(a_F \) is the last line of Remark 1. Lemma 1 applied to \(F \) and to \(F \otimes F/Tors(F \otimes F) \) gives the second assertion of part (a). Part (a) implies parts (b) and (c). Assume the surjectivity of \(\mu_L \). Lemma 1 and Remark 2 show that \(\mu_F \) is surjective if and only if \(\text{Im}(\mu_F) \) contains the image \(\Gamma \) of \(H^0(X, \text{Tors}(F \otimes F)) \). Since \(\dim(X) = 1 \), \(h^1(X, \mathcal{I}_S \otimes F) = h^1(X, F) \) if and only if the restriction map \(\rho_{F,S} : H^0(X, F) \to H^0(S, F|S) \cong F|S \) is surjective. Hence (e) is a particular case of (d). Assume the surjectivity of \(\rho_{F,S} \). Obviously, the map \(\alpha : H^0(S, F|S) \otimes H^0(S, F|S) \to H^0(X, F \otimes F) \) is bijective. Since \(S \) is affine, the natural map \(\Gamma \to H^0(X, F \otimes F) \) is injective. The
surjectivity of $\rho_{F,S}$ implies that $\text{Im}(\mu_F)$ surjects onto $H^0(S,F|S) \to H^0(X,F \otimes F)$. Hence the bijectivity of α gives $\Gamma \subset \text{Im}(\mu_F)$, concluding the proof. \hfill \Box

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

