International Journal of Pure and Applied Mathematics

Volume 55 No. 1 2009, 131-136

PROPERTY N_p FOR BALANCED LINE BUNDLES ON A STABLE CURVE $C \cup D$ WITH C, DINTEGRAL, $\sharp(C \cap D) = 1$ and $p_a(D) = 1$

E. Ballico

Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Let $X = C \cup D$ be a stable curve of genus $g \geq 4$ with C, D irreducible, $\sharp(C \cap D) = 1$ and $p_a(D) = 1$. Here we describe the very ample line bundles L on X and give for which integer p, L has Property N_p .

AMS Subject Classification: 14H51

Key Words: stable curve, balanced line bundle, Property N_p , Koszul cohomology

1. Introduction

Let X be a stable curve. The Brill-Noether theory of X consider depth 1 coherent sheaves on X with pure rank 1 (see [6]) which are ω_X -semistable, or, equivalently (see [5], Theorem 10.3.1) balanced line bundles of all quasistable curves which have X as their stable model. We recall the latter definition (see [1], [2]). Let Y be a quasistable curve. Set $g := p_a(Y)$. Fix $L \in \text{Pic}(Y)$ and set $d := \deg(L)$. For any subcurve $Z \subseteq Y$, $Z \neq \emptyset$, set $w_Z := \deg(\omega_X|Z)$ and $d_Z := \deg(L|Z)$. L is called semibalanced if

$$|w_Y d_Z - w_Z d| \le \sharp (Z \cap \overline{Y \backslash Z}) \cdot (g - 1) \tag{1}$$

for every proper subcurve Z of Y. It is sufficient to test (1) for all proper connected subcurves of X. The line bundle L is called balanced if it is semibalanced

Received: July 14, 2009 © 2009 Academic Publications

132 E. Ballico

and $d_E = 1$ for every exceptional curve $E \subset Y$.

Theorem 1. Fix integers $g \geq 4$, $a \geq 3$ and $d \geq 5(g-1)$. Let X be a projective curve with 2 irreducible components C, D. Assume $p_a(C) = g - 1$, $p_a(D) = 1$, and that $C \cap D$ is a unique point, P, which is an ordinary node of X. Fix $L \in Pic(X)$ such that deg(L|D) = a and deg(L|C) = d - a. Then $h^1(X, L) = 0$, L is very ample, it has property N_p for $p \leq a - 2$, but it has not Property N_{a-1} .

Theorem 2. Let X be a stable curve with 2 irreducible components C, D. Assume $p_a(C) = g - 1 \ge 3$, $p_a(D) = 1$, and $t\sharp(C \cap D) = 1$. Fix $L \in Pic(X)$ such that L is very ample and semibalanced. Set $a := \deg(L|D) = a$ and $d := \deg(L)$. Then $a \ge 3$, $(2a - 1)(g - 1) \le d \le (2a + 1)(g - 1)$ and $h^1(X, L) = 0$. The line bundle L has property N_p if and only if $p \le a - 2$.

Then we consider the line bundles on the quasistable curve associated to depth 1 sheaves on X with pure rank 1 and not locally free at P (see Example 4 and Theorem 3.).

2. The Proofs

Let X be a stable curve. For any depth 1 sheaf F on X set $\mathrm{Sing}(F) := \{P \in X : F \text{ is not locally free at } P$. Let $u_F : X_F \to X$ be the quasistable curve such that u_F induces a bijection $E \mapsto u_F(E)$ of the set of all exceptional components of X_F and $\mathrm{Sing}(F)$. There is a unique line bundle L_F on X such that $u_{F*}(L_F) \cong F$ and $\deg(F|E) = 1$ for every exceptional component E of X_F . F is ω_X -semistable if and only if L_F is balanced (see [5], Theorem 10.3.1), $\deg(L_F) = \deg(F)$ and $h^0(X,F) = h^0(X_F,L_F)$.

Example 1. Let X be the stable curve with 2 irreducible components, C, D such that $p_A(D) = 1$, $p_a(C) = g - 1 \ge 4$ and $\sharp(D \cap C) = 1$. Hence $p_a(X) = 1$ and $P := C \cap D$ is a disconnecting node of X. Fix integers d, a such that $d \ge a \ge 0$. Let $L_{d,a}$ be any line bundle on X such that $\deg(L_{d,a}) = d$ and $\deg(L_{d,a}|D) = a$. Thus $\deg(L|C) = d - a$, $w_C = 2g - 3$, $w_D = 1$ and $k_C = k_D = 1$. $L_{d,a}$ is balanced if and only if it is semibalanced if and only if

$$|(2g-2)a - d| \le g - 1. (2)$$

Thus if $L_{d,a}$ is balanced for some a < 0, then d < 0 and $h^0(Y, L) = 0$. The line bundle $L_{d,0}$ is balanced if and only if $|d| \le g - 1$, while $L_{d,1}$ is balanced if and only if $g - 1 \le d \le 3g - 3$. If $a \ge 2$ and $L_{d,a}$ is balanced, then $d \ge 3g - 3 \ge g$. For

each integer $a \geq 2$ let d_a (resp. D_a) be the minimal (resp. maximal) integer a such that $L_{d,a}$ is balanced. We have $d_a = (g-1)(2a-1)$ and $D_a = (g-1)(2a+1)$. For eall integers a, d such that $a \geq 2$ and $d_a \leq d \leq D_a$ the line bundle $L_{d,a}$ is balanced.

Example 2. Take the set-up of Example 1 and let $v: U \to X$ be the partial normalization of X in which we normalize only the point P. Thus $U \cong C \sqcup D$. Hence $h^0(X, v_*(\mathcal{O}_U)) = h^0(U, \mathcal{O}_U) = 2$. The depth 1 sheaf $v_*(\mathcal{O}_U)$ is a depth 1 sheaf on X with pure rank 1. Riemann-Roch applied to U and to X gives $\deg(v_*(\mathcal{O}_U)) = 1$. Obviously any line bundle with a subsheaf isomorphic to $v_*(\mathcal{O}_U)$ has at least 2 linearly independent section. We may take as such line bundle a line bundle $\mathcal{O}_X(Z)(W)$, where Z is an effective Cartier divisor such that length(Z) = 2 and $Z_{red} = \{P\}$ and W is any effective (or empty) Cartier divisor. Since $\deg(\mathcal{O}_X(Z)|C) = \deg(\mathcal{O}_X(Z)|D) = 1$, among these line bundles we find all numerical types of line bundles $L_{d,a}$ with d > a > 0. Taking a = 1 we get an (g-1)-dimensional irreducible subset of $W_{g-1}^1(X)$: Z depends from 1-parameter and we may take as W a general subset of C with $\sharp(W) = g - 2$. Notice that many of these line bundles have $h^0 \geq 3$, but that decreasing their degree we lose their balancedeness.

Example 3. Take the set-up of Example 1. For any $L \in Pic(X)$ we have an exact sequence

$$0 \to L \to L|C \otimes L|D \to L\{P\} \to 0. \tag{3}$$

From (3) we get the inequalities

$$h^i(C, L|C) + h^i(D, L|D) - 1 \le h^i(X, L) \le h^i(C, L|C) + h^i(D, L|D)$$
 (4) for $i = 0, 1$ and the first inequality is an equality for $i = 0$ if and only if it is an equality for $i = 0$ if and only if at least one of the line bundles $L|C$ and $L|D$ have not P in their base locus. Thus if $L|D \cong \mathcal{O}_D$ we have $h^0(X, L) = h^0(C, L|C)$. To get a balanced line bundle $L_{d,0}$ we need $-g + 1 \le d \le g - 1$. Thus we get in this way elements of $W_d^1(X)$ with d lower than the ones coming from Example 3. For each integer $a \ge 2$ let δ_a (resp. Δ_a) be the minimal (resp. maximal) integer a such that $M_{d,a}$ is balanced.

Lemma 1. Fix integers $a \ge 1$, $d \ge 2g + a - 1$. If a = 1 assume $d \ge 2g + 1$. Then $h^1(X, L_{d,a}) = 0$.

Proof. Set $L := L_{d,a}$. Since $\deg(|C|) = d - a \ge 2(g - 1) - 1$, we have $h^1(C, L|C) = 0$. Since $\deg(L|D) = a > 0$ and $p_a(D) = 1$, $h^1(D, L|D) = 0$. Our assumptions implies that at least one of the restriction maps $H^0(C, L|C) \to H^0(\{P\}, L|\{P\})$, $H^0(D, L|D) \to H^0(\{P\}, L|\{P\})$. Apply (3).

E. Ballico

Lemma 2. Take the set-up of Example 1. A balanced $L_{d,a}$ is very ample if and only if $a \geq 3$. If $a \geq 3$ and $d \geq d_a$, then any $L_{d,a}$ is very ample.

Proof. Since $L_{d,a}|D$ is a degree a line bundle on the integral genus 1 curve D, the "only if" part is obvious. Fix integers $a \geq 3$ and d such that $d \geq d_a =$ (2a-1)(g-1). Fix any $L \cong L_{d,a}$ and any zero-dimensional scheme $Z \subset X$ such that length(Z) = 2. First assume $Z \subset D \setminus \{P\}$. Since $a \geq 3$ and $p_a(D) = 1$, we have $h^1(D, \mathcal{I}_Z \otimes (R|D)) = 0$. Hence the restriction map $H^0(D, R|D) \to R|Z$ is surjective. Then we use the surjectivity of the restriction map $H^0(X,R) \to$ $H^0(D,R|D)$, which follows from the exact sequence (3) for L:=R and the surjectivity of the restriction map $\rho: H^0(C,R|C) \to H^0(P,R|P)$; ρ is surjective, because C is integral, $p_a(C) = g - 1$, $P \in C_{reg}$ and $\deg(\mathcal{I}_{\{P\}} \otimes$ $(R|C) = d - a - 1 \ge (2a - 1)(g - 1) - a - 1 \ge 3g - 4 \ge 2g - 1$. In a similar way we check the case $Z \subset C \setminus \{P\}$. Even the case Z reduced and $P \in Z_{red}$ is similar, taking as first curve the curve containing Z. Now assume $Z_{red} = \{P\}$. If either $Z \subset C$ or $Z \subset D$, then we do the same proof. If none of these containement is true, then Z is a Cartier divisor. We have $\mathcal{I}_Z \otimes R \cong L_{d-1,a-1}$. Hence it is sufficient to use Lemma 1.

We may also describe the very ampleness and Property N_p for balanced line bundles associated to ω_X -semistable sheaves (see [1]) which are not locally free at P. If Y and D are smooth, then these sheaves are all the non-locally free depth 1 sheaves with pure rank 1 on X. We first describe them.

Example 4. Let X be the stable curve with 2 irreducible components, C, D such that $p_A(D) = 1$, $p_a(C) = g - 1 \ge 3$ and $\sharp(D \cap C) = 1$. Hence $p_a(X) = g$ and $P := C \cap D$ is a disconnecting node of X. Let Y be the only quasistable curve with a unique exceptional component E, X as its stable model and such that the contracting map $u: Y \to X$ satisfies $u(E) = \{P\}$. Call A, B the irreducible components of Y such that u(A) = C and u(B) = D. Fix integers d, a. Let $M_{d,a}$ be any line bundle on Y such that $\deg(M_{d,a}|E) = 1, \deg(M_{d,a}) = d$ and $\deg(M_{d,a}|B) = a$. Thus $\deg(M_{d,a}|A) = d - a - 1$, $w_A = w_{A \cup E} = 2g - 3$, $w_B = w_{B \cup E} = 1$, and $k_A = k_B = k_{A \cup E} = k_{B \cup E} = 1$. The line bundle $M_{d,a}$ is balanced if and only if it is semibalanced if and only if the inequalities (2) and

$$|(2g-2)(a+1) - d| \le g - 1 \tag{5}$$

hold. If a < 0 and $M_{d,a}$ is balanced, then d-1 < 0 (at least if $g \ge 4$). Thus $h^0(Y, M_{d,a}) = 0$ if a < 0 and $M_{d,a}$ is balanced. The line bundle $M_{d,0}$ is balanced if and only if d = g-1, while if $M_{d,a}$ is balanced and $a \ge 1$, then $d \ge 3g-3 \ge g$.

Lemma 3. Take the set-up of Example 4. A balanced $M_{d,a}$ is very ample

if and only if $a \geq 3$.

Proof. Adapt the proof of Lemma 1. Fix any $M \in Pic(Y)$. Here we need to use two Mayer-Vietoris exact sequence, for instance the following ones

$$0 \to M | (B \cup E) \to M | B \oplus M | E \to M | E \cap B \to 0, \tag{6}$$

$$0 \to M \to M | (B \cup E) \oplus M | A \to M | E \cap A \tag{7}$$

in which the scheme-theoretic intersections $E \cap B$ and $E \cap A$ are just one point with the reduced structure. One could also interchange the role of B and A, i.e. first use the pair (A, E) and then the pair $(A \cup E, B)$.

Lemma 4. Take $X = C \cup D$ as in the statement of Theorem 1. Fix an embedding $X \hookrightarrow \mathbb{P}^n$ such that $\langle C \rangle \cap \langle D \rangle = \{P\}$. Fix a spanned vector bundle G on \mathbb{P}^n such that the restriction maps $H^0(\mathbb{P}^n, G) \to H^0(C, G|C)$ and $H^0(\mathbb{P}^n, G) \to H^0(D, G|D)$ are surjective. Then the restriction map $H^0(\mathbb{P}^n, G) \to H^0(X, G|X)$ is surjective.

Proof. Use the Mayer-Vietoris exact sequence (3) with L := G|X.

Proof of Theorem 1. Since $deg(L|Y) \geq 2p_a(Y) - 1$, $h^1(Y, L|Y) = 0$. Since $a = \deg(L|D) \ge 1$ and $p_a(Y) = 1$, $h^1(D, L|D) = 0$ and the restriction map $H^0(D,L|D) \to H^0(\lbrace P \rbrace,L|\lbrace P \rbrace)$ is surjective. Hence (3) gives $h^1(X,L) = 0$. The very ampleness of L may be proved as in Lemma 2. See X as embedded into \mathbb{P}^n , $n := h^0(X, L) - 1 = d - g$, by the complete linear system |L|. By assumption X is linearly normal in \mathbb{P}^n and $h^1(X,L)=0$. To prove Property N_p for $p \le a - 2$ (with N_0 meaning that X is arithmetically Cohen-Macaulay) apply Lemma 4 with respect to the spanned vector bundle $G := \Omega_{\mathbb{P}^n}^p(p+2)$. We use that C (resp. D) has property N_p with $p := d - a - 1 - (g - 1) \ge a - 2$ (resp. p = a - 2) in its linear span, because the proof given in [4] for the case of a smooth curve works for an arbitrary integral curve. Now we check that Xhas not Property N_{a-1} . Let $\eta: H^0(X, \Omega_{\mathbb{P}^n}^{a-1}(a+1)|X) \to H^0(D, \Omega_{\mathbb{P}^n}^{a-1}(a+1)|D)$ denote the restriction map. Since $\Omega_{\mathbb{P}^n}^{a-1}(a+1)$ is spanned, ther Mayer-Vietoris exact sequence (3) with $L:=\Omega_{\mathbb{P}^n}^{a-1}(a+1)|X$ gives the surjectivity of η . The curve D has not Property N_{a-1} in its linear span $\langle D \rangle \cong \mathbb{P}^{a-1}$. Hence it is sufficient to use the surjectivity of the map η .

Proof of Theorem 2. Use Example 2, Lemma 2 and the statement of Theorem 1. $\hfill\Box$

Theorem 3. Take Y as in Example 4 and let $M \in Pic(Y)$ such that $M \cong M_{d,a}$. If M is balanced, then it is very ample if and only if $a \geq 3$. If $a \geq 3$ and $d \geq (2a-1)(g-1)$, then M is very ample. If $a \geq 3$ and $d \geq (2a-1)(g-1)$, then L is arithmetically Cohen-Macaulay; it has Property N_p if and only if

136 E. Ballico

 $p \le a - 2$.

Proof. Use Lemma 3 and its proof to adapt the proof of Theorem 1. \Box

Remark 1. A statement similar to Theorem 3 is true if we take the partial normalization $C \sqcup D$ of X in which we normalize only the point P instead of the quasistable curve Y.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, *J. Amer. Math. Soc.*, **7**, No. 3 (1994), 589-660.
- [2] L. Caporaso, Linear series on semistable curves, ArXiv: math/0812.1682.
- [3] M. Green, Koszul cohomology and the geometry of projective varieties, *J. Diff. Geom.*, **19** (1984), 125-171.
- [4] M. Green, R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, *Compositio Math.*, **67** (1988), 301-314.
- [5] R. Pandharipande, A compactification over \overline{M}_g of the universal moduli space of slope-semistable vector bundles, *J. Amer. Math. Soc.*, **9**, No. 2 (1996), 425-471.
- [6] C. Seshadri, Fibrés vectoriels sur les courbes algébriques, *Astérisque*, **96** (1982).