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Abstract: Let X = C ∪ D be a stable curve of genus g ≥ 4 with C,D

irreducible, ♯(C ∩D) = 1 and pa(D) = 1. Here we describe the very ample line
bundles L on X and give for which integer p, L has Property Np.
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1. Introduction

Let X be a stable curve. The Brill-Noether theory of X consider depth 1
coherent sheaves on X with pure rank 1 (see [6]) which are ωX-semistable, or,
equivalently (see [5], Theorem 10.3.1) balanced line bundles of all quasistable
curves which have X as their stable model. We recall the latter definition (see
[1], [2]). Let Y be a quasistable curve. Set g := pa(Y ). Fix L ∈ Pic(Y ) and
set d := deg(L). For any subcurve Z ⊆ Y , Z 6= ∅, set wZ := deg(ωX |Z) and
dZ := deg(L|Z). L is called semibalanced if

|wY dZ − wZd| ≤ ♯(Z ∩ Y \Z) · (g − 1) (1)

for every proper subcurve Z of Y . It is sufficient to test (1) for all proper con-
nected subcurves of X. The line bundle L is called balanced if it is semibalanced
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and dE = 1 for every exceptional curve E ⊂ Y .

Theorem 1. Fix integers g ≥ 4, a ≥ 3 and d ≥ 5(g − 1). Let X be a

projective curve with 2 irreducible components C,D. Assume pa(C) = g − 1,
pa(D) = 1, and that C ∩ D is a unique point, P , which is an ordinary node

of X. Fix L ∈ Pic(X) such that deg(L|D) = a and deg(L|C) = d − a. Then

h1(X,L) = 0, L is very ample, it has property Np for p ≤ a− 2, but it has not

Property Na−1.

Theorem 2. Let X be a stable curve with 2 irreducible components C,D.

Assume pa(C) = g−1 ≥ 3, pa(D) = 1, and t♯(C∩D) = 1. Fix L ∈ Pic(X) such

that L is very ample and semibalanced. Set a := deg(L|D) = a and d := deg(L).
Then a ≥ 3, (2a − 1)(g − 1) ≤ d ≤ (2a + 1)(g − 1) and h1(X,L) = 0. The line

bundle L has property Np if and only if p ≤ a − 2.

Then we consider the line bundles on the quasistable curve associated to
depth 1 sheaves on X with pure rank 1 and not locally free at P (see Example
4 and Theorem 3.).

2. The Proofs

Let X be a stable curve. For any depth 1 sheaf F on X set Sing(F ) := {P ∈
X : F is not locally free at P . Let uF : XF → X be the quasistable curve
such that uF induces a bijection E 7→ uF (E) of the set of all exceptional
components of XF and Sing(F ). There is a unique line bundle LF on X such
that uF∗(LF ) ∼= F and deg(F |E) = 1 for every exceptional component E of
XF . F is ωX-semistable if and only if LF is balanced (see [5], Theorem 10.3.1),
deg(LF ) = deg(F ) and h0(X,F ) = h0(XF , LF ).

Example 1. Let X be the stable curve with 2 irreducible components,
C,D such that pA(D) = 1, pa(C) = g − 1 ≥ 4 and ♯(D ∩ C) = 1. Hence
pa(X) = 1 and P := C ∩D is a disconnecting node of X. Fix integers d, a such
that d ≥ a ≥ 0. Let Ld,a be any line bundle on X such that deg(Ld,a) = d

and deg(Ld,a|D) = a. Thus deg(L|C) = d − a, wC = 2g − 3, wD = 1 and
kC = kD = 1. Ld,a is balanced if and and only if it is semibalanced if and only
if

|(2g − 2)a − d| ≤ g − 1 . (2)

Thus if Ld,a is balanced for some a < 0, then d < 0 and h0(Y,L) = 0. The line
bundle Ld,0 is balanced if and only if |d| ≤ g − 1, while Ld,1 is balanced if and
only if g−1 ≤ d ≤ 3g−3. If a ≥ 2 and Ld,a is balanced, then d ≥ 3g−3 ≥ g. For
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each integer a ≥ 2 let da (resp. Da) be the minimal (resp. maximal) integer a

such that Ld,a is balanced. We have da = (g−1)(2a−1) and Da = (g−1)(2a+1).
For eall integers a, d such that a ≥ 2 and da ≤ d ≤ Da the line bundle Ld,a is
balanced.

Example 2. Take the set-up of Example 1 and let v : U → X be the
partial normalization of X in which we normalize only the point P . Thus
U ∼= C ⊔D. Hence h0(X, v∗(OU )) = h0(U,OU ) = 2. The depth 1 sheaf v∗(OU )
is a depth 1 sheaf on X with pure rank 1. Riemann-Roch applied to U and to X

gives deg(v∗(OU )) = 1. Obviously any line bundle with a subsheaf isomorphic
to v∗(OU ) has at least 2 linearly independent section. We may take as such line
bundle a line bundle ,OX(Z)(W ), where Z is an effective Cartier divisor such
thatt length(Z) = 2 and Zred = {P} and W is any effective (or empty) Cartier
divisor. Since deg(OX(Z)|C) = deg(OX(Z)|D) = 1, among these line bundles
we find all numerical types of line bundles Ld,a with d > a > 0. Taking a = 1
we get an (g − 1)-dimensional irreducible subset of W 1

g−1
(X): Z depends from

1-parameter and we may take as W a general subset of C with ♯(W ) = g − 2.
Notice that many of these line bundles have h0 ≥ 3, but that decreasing their
degree we lose their balancedeness.

Example 3. Take the set-up of Example 1. For any L ∈ Pic(X) we have
an exact sequence

0 → L → L|C ⊗ L|D → L{P} → 0 . (3)

From (3) we get the inequalities

hi(C,L|C) + hi(D,L|D) − 1 ≤ hi(X,L) ≤ hi(C,L|C) + hi(D,L|D) (4)

for i = 0, 1 and the first inequality is an equality for i = 0 if and only if it is an
equality for i = 0 if and only if at least one of the line bundles L|C and L|D have
not P in their base locus. Thus if L|D ∼= OD we have h0(X,L) = h0(C,L|C).
To get a balanced line bundle Ld,0 we need −g + 1 ≤ d ≤ g− 1. Thus we get in
this way elements of W 1

d (X) with d lower than the ones coming from Example
3. For each integer a ≥ 2 let δa (resp. ∆a) be the minimal (resp. maximal)
integer a such that Md,a is balanced.

Lemma 1. Fix integers a ≥ 1, d ≥ 2g +a− 1. If a = 1 assume d ≥ 2g +1.
Then h1(X,Ld,a) = 0.

Proof. Set L := Ld,a. Since deg(|C) = d − a ≥ 2(g − 1) − 1, we have
h1(C,L|C) = 0. Since deg(L|D) = a > 0 and pa(D) = 1, h1(D,L|D) = 0. Our
assumptions implies that at least one of the restriction maps H0(C,L|C) →
H0({P}, L|{P}), H0(D,L|D) → H0({P}, L|{P}). Apply (3).
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Lemma 2. Take the set-up of Example 1. A balanced Ld,a is very ample

if and only if a ≥ 3. If a ≥ 3 and d ≥ da, then any Ld,a is very ample.

Proof. Since Ld,a|D is a degree a line bundle on the integral genus 1 curve
D, the “only if ” part is obvious. Fix integers a ≥ 3 and d such that d ≥ da =
(2a−1)(g−1). Fix any L ∼= Ld,a and any zero-dimensional scheme Z ⊂ X such
that length(Z) = 2. First assume Z ⊂ D\{P}. Since a ≥ 3 and pa(D) = 1, we
have h1(D,IZ ⊗ (R|D)) = 0. Hence the restriction map H0(D,R|D) → R|Z
is surjective. Then we use the surjectivity of the restriction map H0(X,R) →
H0(D,R|D), which follows from the exact sequence (3) for L := R and the
surjectivity of the restriction map ρ : H0(C,R|C) → H0({P}, R|{P}); ρ is
surjective, because C is integral, pa(C) = g − 1, P ∈ Creg and deg(I{P} ⊗
(R|C)) = d−a− 1 ≥ (2a− 1)(g− 1)−a− 1 ≥ 3g− 4 ≥ 2g− 1. In a similar way
we check the case Z ⊂ C\{P}. Even the case Z reduced and P ∈ Zred is similar,
taking as first curve the curve containing Z. Now assume Zred = {P}. If either
Z ⊂ C or Z ⊂ D, then we do the same proof. If none of these containement
is true, then Z is a Cartier divisor. We have IZ ⊗ R ∼= Ld−1,a−1. Hence it is
sufficient to use Lemma 1.

We may also describe the very ampleness and Property Np for balanced line
bundles associated to ωX-semistable sheaves (see [1]) which are not locally free
at P . If Y and D are smooth, then these sheaves are all the non-locally free
depth 1 sheaves with pure rank 1 on X. We first describe them.

Example 4. Let X be the stable curve with 2 irreducible components,
C,D such that pA(D) = 1, pa(C) = g−1 ≥ 3 and ♯(D∩C) = 1. Hence pa(X) =
g and P := C ∩D is a disconnecting node of X. Let Y be the only quasistable
curve with a unique exceptional component E, X as its stable model and such
that the contracting map u : Y → X satisfies u(E) = {P}. Call A,B the
irreducible components of Y such that u(A) = C and u(B) = D. Fix integers
d, a. Let Md,a be any line bundle on Y such that deg(Md,a|E) = 1,deg(Md,a) =
d and deg(Md,a|B) = a. Thus deg(Md,a|A) = d − a − 1, wA = wA∪E = 2g − 3,
wB = wB∪E = 1, and kA = kB = kA∪E = kB∪E = 1. The line bundle Md,a is
balanced if and and only if it is semibalanced if and only if the inequalities (2)
and

|(2g − 2)(a + 1) − d| ≤ g − 1 (5)

hold. If a < 0 and Md,a is balanced, then d − 1 < 0 (at least if g ≥ 4). Thus
h0(Y,Md,a) = 0 if a < 0 and Md,a is balanced. The line bundle Md,0 is balanced
if and only if d = g−1, while if Md,a is balanced and a ≥ 1, then d ≥ 3g−3 ≥ g.

Lemma 3. Take the set-up of Example 4. A balanced Md,a is very ample
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if and only if a ≥ 3.

Proof. Adapt the proof of Lemma 1. Fix any M ∈ Pic(Y ). Here we need
to use two Mayer-Vietoris exact sequence, for instance the following ones

0 → M |(B ∪ E) → M |B ⊕ M |E → M |E ∩ B → 0 , (6)

0 → M → M |(B ∪ E) ⊕ M |A → M |E ∩ A (7)

in which the scheme-theoretic intersections E ∩B and E ∩A are just one point
with the reduced structure. One could also interchange the role of B and A,
i.e. first use the pair (A,E) and then the pair (A ∪ E,B).

Lemma 4. Take X = C∪D as in the statement of Theorem 1. Fix an em-

bedding X →֒ P
n such that 〈C〉∩〈D〉 = {P}. Fix a spanned vector bundle G on

P
n such that the restriction maps H0(Pn, G) → H0(C,G|C) and H0(Pn, G) →

H0(D,G|D) are surjective. Then the restriction map H0(Pn, G) → H0(X,G|X)
is surjective.

Proof. Use the Mayer-Vietoris exact sequence (3) with L := G|X.

Proof of Theorem 1. Since deg(L|Y ) ≥ 2pa(Y ) − 1, h1(Y,L|Y ) = 0. Since
a = deg(L|D) ≥ 1 and pa(Y ) = 1, h1(D,L|D) = 0 and the restriction map
H0(D,L|D) → H0({P}, L|{P}) is surjective. Hence (3) gives h1(X,L) = 0.
The very ampleness of L may be proved as in Lemma 2. See X as embedded
into P

n, n := h0(X,L) − 1 = d − g, by the complete linear system |L|. By
assumption X is linearly normal in P

n and h1(X,L) = 0. To prove Property
Np for p ≤ a − 2 (with N0 meaning that X is arithmetically Cohen-Macaulay)
apply Lemma 4 with respect to the spanned vector bundle G := Ωp

Pn(p + 2).
We use that C (resp. D) has property Np with p := d− a− 1− (g − 1) ≥ a− 2
(resp. p = a − 2) in its linear span, because the proof given in [4] for the case
of a smooth curve works for an arbitrary integral curve. Now we check that X

has not Property Na−1. Let η : H0(X,Ωa−1

Pn (a+1)|X) → H0(D,Ωa−1

Pn (a+1)|D)
denote the restriction map. Since Ωa−1

Pn (a+ 1)) is spanned, ther Mayer-Vietoris
exact sequence (3) with L := Ωa−1

Pn (a + 1))|X gives the surjectivity of η. The
curve D has not Property Na−1 in its linear span 〈D〉 ∼= P

a−1. Hence it is
sufficient to use the surjectivity of the map η.

Proof of Theorem 2. Use Example 2, Lemma 2 and the statement of The-
orem 1.

Theorem 3. Take Y as in Example 4 and let M ∈ Pic(Y ) such that

M ∼= Md,a. If M is balanced, then it is very ample if and only if a ≥ 3. If a ≥ 3
and d ≥ (2a−1)(g−1), then M is very ample. If a ≥ 3 and d ≥ (2a−1)(g−1),
then L is arithmetically Cohen-Macaulay; it has Property Np if and only if
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p ≤ a − 2.

Proof. Use Lemma 3 and its proof to adapt the proof of Theorem 1.

Remark 1. A statement similar to Theorem 3 is true if we take the partial
normalization C ⊔ D of X in which we normalize only the point P instead of
the quasistable curve Y .
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