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1. Introduction

Throughout this paper, we use the sets of n-dimensional vectors over the reals
(n ≥ 2), real number field by Rn, and Rn

+ = {(x1, x2, · · · , xn) : xi > 0, i =
1, 2, · · · , n} and R = R1.

For x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn
+ and α > 0, we denote

by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn),

xy = (x1y1, x2y2, · · · , xnyn),

αx = (αx1, αx2, · · · , αxn),

xα = (xα
1 , xα

2 , · · · , xα
n),
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1

x
= (

1

x1
,

1

x2
, · · · ,

1

xn
),

log x = (log x1, log x2, · · · , log xn),

and

ex = (ex1 , ex2, · · · , exn).

For x = (x1, x2, · · · , xn) ∈ Rn
+ and w ≥ 0, the generalized Heronian mean

Hw(x) of x is defined by K.Z. Guan and H.T. Zhu [5] as follows:

Hw(x) = Hw(x1, x2, · · · , xn) =

{

nAn(x)+wGn(x)
w+n

, 0 ≤ w < +∞,

Gn(x), w = +∞,
(1.1)

where An(x) = 1
n

n
∑

i=1
xi and Gn(x) = (

n
∏

i=1
xi)

1
n denote the un-weighted arith-

metic and geometric means of x, respectively.

In [5], K.Z. Guan and H.T. Zhu proved that Hw(x) is Schur concave in
Rn

+ for any w > 0, and established several ratio inequalities and Ky Fan type
inequalities involving the mean Hw(x). The main purpose of this paper is to
discuss the Schur multiplicative and harmonic convexities of Hw(x), as appli-
cations, some new inequalities are established in the last section.

2. Preliminary Knowledge

For the sake of readability, in this section we introduce some definitions and
well-known results as follows.

Definition 2.1. Let E ⊆ Rn be a set, a real-valued function F on E is
called a Schur convex function if

F (x1, x2, · · · , xn) ≤ F (y1, y2, · · · , yn)

for each pair of n-tuples x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in E, such
that x ≺ y, i.e.

k
∑

i=1

x
[i]

≤
k

∑

i=1

y
[i]

, k = 1, 2, · · · , n − 1

and
n

∑

i=1

x
[i]

=

n
∑

i=1

y
[i]

,

where x
[i]

denotes the i-th largest component of x. A function F is called Schur
concave if −F is Schur convex.
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Definition 2.2. Let E ⊆ Rn
+ be a set, F : E → R+ is called Schur

multiplicatively convex on E if F (x1, x2, · · · , xn) ≤ F (y1, y2, · · · , yn) for each
pair of n-tuples x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in E, such that
log x ≺ log y. F is called Schur multiplicatively concave if 1

F
is Schur multi-

plicatively convex.

Definition 2.3. Let E ⊆ Rn
+ be a set, F : E → R+ is called Schur

harmonic convex (or Schur harmonic concave, respectively) on E if

F (x1, x2, · · · , xn) ≤ (or ≥ , respectively)F (y1, y2, · · · , yn)

for each pair of n-tuples x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in E, such
that 1

x
≺ 1

y
.

Definitions 2.1, 2.2, and 2.3 have the following consequences.

Remark 2.1. Let E ⊆ Rn
+ be a set, and H = log E = {log x : x ∈ E}.

Then f : E → R+ is Schur multiplicatively convex (or Schur multiplicatively
concave, respectively) on E if and only if log f(ex) is Schur concave (or Schur
convex, respectively) on H.

Remark 2.2. Let E ⊆ Rn
+ be a set, and H = 1

E
= { 1

x
: x ∈ E}. Then

f : E → R+ is Schur harmonic convex (or Schur harmonic concave, respectively)
on E if and only if 1

f( 1
x
)

is Schur concave (or Schur convex, respectively) on H.

Schur convexity was introduced by I. Schur in 1923 [9], it has many ap-
plications in inequality theory [6], [12], [1]. Recently, the Schur multiplicative
convexity was investigated in [2], [4], [7], but no one has ever researched the
Schur harmonic convexity.

The following well-known result was proved by A.W. Marshall and I. Olkin
[8].

Theorem A. Let E ⊆ Rn be a symmetric convex set with nonempty
interior int E and f : E → R be a continuous symmetric function. If f is
differentiable on intE, then f is Schur convex on E if and only if

(xi − xj)(
∂f

∂xi
− ∂f

∂xj
) ≥ 0 (2.1)

for all i, j = 1, 2, · · · , n and x = (x1, x2, · · · , xn) ∈ int E. Here E is a symmetric
set means that x ∈ E implies Px ∈ E for any n × n permutation matrix P .

Remark 2.3. Since f is symmetric, the Schur’s condition in Theorem A,
i.e. (2.1) can be reduced as

(x1 − x2)(
∂f

∂x1
− ∂f

∂x2
) ≥ 0.



28 S. Tianchuan, L. Yupei, C. Yuming

The following Theorems B and C can be derived from Remarks 2.1-2.3 and
Theorem A.

Theorem B. (see [2]) Let E ⊆ Rn
+ be a symmetric multiplicatively convex

set with nonempty interior int E and f : E → R+ be a continuous symmetric
function. If f is differentiable on int E, then f is Schur multiplicatively convex
on E if and only if

(log x1 − log x2)(x1
∂f

∂x1
− x2

∂f

∂x2
) ≥ 0

for all (x1, x2, · · · , xn) ∈ int E. Here E ⊆ Rn
+ is a multiplicatively convex set

means that x
1
2 y

1
2 ∈ E whenever x, y ∈ E.

Theorem C. Let E ⊆ Rn
+ be a symmetric harmonic convex set with

nonempty interior int E and f : E → R+ be a continuous symmetric function.
If f is differentiable on int E, then f is Schur harmonic convex on E if and only
if

(x1 − x2)(x
2
1

∂f

∂x1
− x2

2

∂f

∂x2
) ≥ 0

for all (x1, x2, · · · , xn) ∈ int E. Here E ⊆ Rn
+ is a harmonic convex set means

that 2xy
x+y

∈ E whenever x, y ∈ E.

3. Main Results

Theorem 3.1. If w ≥ 0, then Hw(x) is:

(i) Schur multiplicatively convex in Rn
+;

(ii) Schur harmonic convex in Rn
+.

Proof. It is easy to see that Hw(x) is symmetric and has continuous partial
derivatives in Rn

+ for w ≥ 0.

If 0 ≤ w < +∞, then (1.1) leads to that

∂Hw(x)

∂xi
=

1

w + n

(

1 +
wGn(x)

nxi

)

, i = 1, 2, · · · , n, (3.1)

(log x1 − log x2)

(

x1
∂Hw(x)

∂x1
− x2

∂Hw(x)

∂x2

)

=
1

w + n
(log x1 − log x2)(x1 − x2) ≥ 0 (3.2)

and
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(x1 − x2)

(

x2
1

∂Hw(x)

∂x1
− x2

2

∂Hw(x)

∂x2

)

=
1

(w + n)
(x1 − x2)

2
(

x1 + x2 +
w

n
Gn(x)

)

≥ 0. (3.3)

If w = +∞, then (1.1) yields that

∂Hw(x)

∂xi

=
w

nxi

Gn(x), i = 1, 2, · · · , n, (3.4)

(log x1 − log x2)

(

x1
∂Hw(x)

∂x1
− x2

∂Hw(x)

∂x2

)

= 0 (3.5)

and

(x1 − x2)

(

x2
1

∂Hw(x)

∂x1
− x2

2

∂Hw(x)

∂x2

)

=
w

n
(x1 − x2)

2Gn(x) ≥ 0. (3.6)

Therefore, Theorem 3.1 (i) follows from (3.2), (3.5) and Theorem B, and The-
orem 3.1 (ii) follows from (3.3), (3.6), and Theorem C.

Theorem 3.2. The function φw(x) = Hw(x)
Hw−1(x) is Schur multiplicatively

concave in Rn
+ for w ≥ 1.

Proof. We clearly see that φw(x) is symmetric and has continuous partial
derivatives in Rn

+. If w = +∞, then Theorem 3.2 is trivial. If 1 ≤ w < +∞,
then (3.1) implies that

∂φw(x)

∂xi
=

Gn(x)

(w + n)(w − 1 + n)H2
w−1(x)

(

An(x)

xi
− 1

)

, i = 1, 2, · · · , n, (3.7)

and

(log x1 − log x2)

(

x1
∂φw(x)

∂x1
− x2

∂φw(x)

∂x2

)

= − (x1 − x2)(log x1 − log x2)

(w + n)(w − 1 + n)H2
w−1(x)

Gn(x) ≤ 0. (3.8)

Therefore, Theorem 3.2 follows from (3.8) and Theorem B together with Defi-
nition 2.2.

Theorem 3.3. If n = 2, then the function φw(x) = Hw(x)
Hw−1(x) is Schur

harmonic concave in R2
+ for w ≥ 1.

Proof. If w = +∞, then Theorem 3.3 is trivial. If 1 ≤ w < +∞, then (3.7)
leads to that

(x1 − x2)

(

x2
1

∂φw(x)

∂x1
− x2

2

∂φw(x)

∂x2

)

= − (x1 + x2)(x1 − x2)
2

n(w + n)(w + n − 1)H2
w−1(x)

Gn(x)

≤ 0. (3.9)
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Therefore, Theorem 3.3 follows from (3.9) and Theorem C together with Defi-
nition 2.3.

Remark 3.1. It is not difficult to see that Hw(x)
Hw−1(x) is neither Schur harmonic

convex nor Schur harmonic concave in Rn
+ for any w ≥ 1 and n ≥ 3.

4. Inequalities Involving Hw(x)

Theorem 4.1. Suppose that x = (x1, x2, · · · , xn) ∈ Rn
+, and

n
∑

i=1
xi = s.

If c ≥ s and w ≥ 0, then

Hw(
1

x
) ≥

(nc

s
− 1

)

Hw(
1

c − x
).

Proof. According to [3, Lemma 2.3] we have

c − x
nc
s
− 1

=

(

c − x1
nc
s
− 1

,
c − x2
nc
s
− 1

, · · · ,
c − xn
nc
s
− 1

)

≺ (x1, x2, · · · , xn) = x. (4.1)

Therefore, Theorem 4.1 follows from (4.1) and Theorem 3.1 (ii).

Theorem 4.2. Suppose that x = (x1, x2, · · · , xn) ∈ Rn
+, and

n
∑

i=1
xi = s.

If c ≥ 0 and w ≥ 0, then

Hw(
1

x
) ≥

(nc

s
+ 1

)

Hw(
1

c + x
).

Proof. According to [3, Lemma 2.4] we have

c + x
nc
s

+ 1
=

(

c + x1
nc
s

+ 1
,
c + x2
nc
s

+ 1
, · · · ,

c + xn
nc
s

+ 1

)

≺ (x1, x2, · · · , xn) = x. (4.2)

Therefore, Theorem 4.2 follows from Lemma (4.2) and Theorem 3.1(ii).

Theorem 4.3. Suppose that x = (x1, x2, · · · , xn) ∈ Rn
+, and

n
∑

i=1
xi = s.

If 0 ≤ λ ≤ 1 and w ≥ 0, then:

(i) Hw( 1
x
) ≥ (n − λ)Hw( 1

s−λx
);

(ii) Hw( 1
x
) ≥ (n + λ)Hw( 1

s+λx
).

Proof. A result due to S.H. Wu [11, Lemma 2] gives

s − λx

n − λ
=

(

s − λx1

n − λ
,
s − λx2

n − λ
, · · · ,

s − λxn

n − λ

)

≺ (x1, x2, · · · , xn) = x. (4.3)
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It is not difficult to verify that

s + λx

n + λ
=

(

s + λx1

n + λ
,
s + λx2

n + λ
, · · · ,

s + λxn

n + λ

)

≺ (x1, x2, · · · , xn) = x. (4.4)

Therefore, Theorem 4.3(i) follows from (4.3) and Theorem 3.1 (ii), and Theorem
4.3 (ii) follows from (4.4) and Theorem 3.1 (ii).

Theorem 4.4. Suppose that A = A1A2 · · ·An+1 be an n-dimensional
simplex in Rn (n ≥ 3). Let P be an arbitrary point in the interior of A, and
Bi stand for the intersection point of straight line AiP and the hyperplane
Σi = A1A2 · · ·Ai−1Ai+1 · · ·AnAn+1, i = 1, 2, · · · , n + 1. If w ≥ 0, then:

(i) Hw

(

A1B1
PB1

, A2B2
PB2

, · · · ,
An+1Bn+1

PBn+1

)

≥ n + 1;

(ii) Hw

(

A1B1
A1P

, A2B2
A2P

, · · · ,
An+1Bn+1

An+1P

)

≥ n+1
n

.

Proof. One can easily see that
n+1
∑

i=1

PBi

AiBi
= 1 and

n+1
∑

i=1

AiP
AiBi

= n. Therefore,

Theorem 4.4 follows from Theorem 3.1 (ii) and (1.1) together with the fact that

(
1

n + 1
,

1

n + 1
, · · · ,

1

n + 1
) ≺

(

PB1

A1B1
,

PB2

A2B2
, · · · ,

PBn+1

An+1Bn+1

)

and

(
n

n + 1
,

n

n + 1
, · · · ,

n

n + 1
) ≺

(

A1P

A1B1
,

A2P

A2B2
, · · · ,

An+1P

An+1Bn+1

)

. �

Theorem 4.5. Suppose that A ∈ Mn(C) (n ≥ 2) is a complex matrix,
λ1, λ2, · · · , λn and σ1, σ2, · · · , σn are the eigenvalues and singular values of A,
respectively. If A is a positive definite Hermitian matrix and w ≥ 0, then:

(i) Hw( 1
λ1

, 1
λ2

, · · · , 1
λn

) ≥ n
tr A

;

(ii) Hw (λ1, λ2, · · · , λn) ≥ n
√

det A;

(iii) Hw (1 + λ1, 1 + λ2, · · · , 1 + λn) ≥ n

√

det (I + A);

(iv) Hw(σ1, σ2, · · · , σn) ≥ Hw(λ1, λ2, · · · , λn);

(v) Hw+1(σ1,σ2,··· ,σn)
Hw(σ1,σ2,··· ,σn) ≤ Hw+1(λ1,λ2,··· ,λn)

Hw(λ1,λ2,··· ,λn) .

Proof. We clearly see that λi > 0, σi > 0 (i = 1, 2, · · · , n),
n
∑

i=1
λi = tr A,

n
∏

i=1
λi = det A and

n
∏

i=1
(1 + λi) = det (I + A). These lead to that

(

tr A

n
,
tr A

n
, · · · ,

tr A

n

)

≺ (λ1, λ2, · · · , λn), (4.5)
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log
(

n
√

det A,
n
√

detA, · · · ,
n
√

detA
)

≺ log(λ1, λ2, · · · , λn) (4.6)

and

log( n

√

det (I + A), n

√

det (I + A), · · · , n

√

det (I + A) )

≺ log(1 + λ1, 1 + λ2, · · · , 1 + λn).
(4.7)

A result due to H. Weyl [10] gives

log(λ1, λ2, · · · , λn) ≺ log(σ1, σ2, · · · , σn). (4.8)

Therefore, Theorem 4.5 (i) follows from (4.5), Theorem 3.1 (ii) and (1.1);
Theorem 4.5 (ii) follows from (4.6), Theorem 3.1 (i) and (1.1); Theorem 4.5
(iii) follows from (4.7), Theorem 3.1 (i) and (1.1); Theorem 4.5 (iv) follows
from (4.8) and Theorem 3.1 (i); and Theorem 4.5 (v) follows from (4.8) and
Theorem 3.2.
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