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1. Introduction

Most pairs of random vectors in high dimensional Euclidean space are almost
orthogonal. We make this statement precise by deriving the pdf (probability
density function) of the inner product of random unit vectors in the n + 1
dimensional Euclidean space En+1. We also derive a general formula for the
moments of the inner product.

Geometrically, the correlation coefficient of random variables X and Y is
the cosine of the angle between X−E(X) and Y −E(Y ), that is, the inner prod-
uct of the unit vectors representing them in the variable space. Our results are
applicable for studying time series [4] and the hypothesis testing of correlated-
ness [3] between random variables. A common practice of using [−2/

√
n, 2/

√
n]

as the 95 % confidence interval for the acf (autocorrelation function) of a time
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series of length n being white Gaussian noise is only approximately correct. We
give precise numerical values for the confidence interval.

2. Inner Product of Random Unit Vectors in E
n+1

Let U and V be random vectors uniformly distributed on the standard unit
n-sphere

Sn = {x ∈ En+1 : |x| = 1}.
Let Z = 〈U, V 〉, the inner product of U and V . It is a random variable on the
outcome space Sn × Sn with values in [−1, 1]. The pdf and and the moments
of Z are given in the following theorems.

Theorem 1. The pdf of Z, denoted by fn, is given as

fn(z) =







Γ(n+1

2
)

Γ(n

2
)
√

π

√
1 − z2n−2

, for − 1 < z < 1,

0, elsewhere,
(1)

where n = 1, 2, 3, . . .

Proof. Let u and v be unit vectors in En+1. We may assume (after a
rotation) u = (0, . . . , 0, 1) so that 〈u, v〉 = vn+1. Fn(z) = Pr(Z ≤ z), the
cumulative distribution function of Z, is given as

Fn(z) =
vol (Rz)

vol (Sn)
, (2)

where Rz = {v ∈ Sn : vn+1 ≤ z} for z ∈ R. Recall the volume of the n-sphere
with radius r is given as

vol (Sn

r
) =

2
√

π
n+1

Γ(n+1
2 )

rn.

Substitution of the volume of Rz

vol (Rz) =

∫

z

−1
vol (Sn−1

√

1−x
2
)

dx√
1 − x2

(3)

=

∫

z

−1

2
√

π
n

Γ(n

2 )

√

1 − x2
n−2

dx (4)

into (2) yields
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Fn(z) =

∫

z

−1

Γ(n+1
2 )

Γ(n

2 )
√

π

√

1 − x2
n−2

dx,

hence

fn(z) =
Γ

(

n+1
2

)

Γ
(

n

2

)√
π

√

1 − z2
n−2

. �

Remarks. Note f2(z) is constant, that is, Z is uniformly distributed for
n = 2. We can also write

fn(z) =
Γ

(

n+1
2

)

Γ
(

n

2

)

Γ
(

1
2

)

√

1 − z2
n−2

.

Substitution of Γ(1
2) =

√
π and Γ(x + 1) = xΓ(x) into the equation (1)

gives

f1 =
1

π
√

1 − z2
,

f2 =
1

2
,

fn =
2 · 4 · · · (n − 1)

1 · 3 · · · (n − 2)π

√

1 − z2
n−2

for n = 3, 5, 7, . . .,

=
1

2

3 · 5 · · · (n − 1)

2 · 4 · · · (n − 2)

√

1 − z2
n−2

for n = 4, 6, . . . .

for −1 < z < 1. Obviously, all the odd order moments of Z vanish as fn is
even. The even order moments are given in the following

Theorem 2. Under the same hypothesis, the even order moments

E(Z2m) =
Γ

(

n+1
2

)

Γ
(

1
2 + m

)

Γ
(

n+1
2 + m

)

Γ(1
2)

,

where m = 1, 2, 3 . . ..

Proof. By definition,

E
(

Z2m
)

=

∫ 1

−1
fn(z) z2m dz

=

∫ 1

−1

Γ
(

n+1
2

)

Γ
(

n

2

)

Γ
(

1
2

)

√

1 − z2
n−2

z2mdz

=
Γ

(

n+1
2

)

Γ
(

n

2

)

Γ
(

1
2

)

∫ π

2

−
π

2

(cos t)n−1(sin t)2m dt
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=
Γ

(

n+1
2

)

Γ
(

1
2

)

Γ
(

2m+1
2

)

Γ
(

2m+n+1
2

) .

We used the following identity in the last step to derive the formula.
∫ π

2

−
π

2

(cos t)r(sin t)s dt =
Γ

(

r+1
2

)

Γ
(

s+1
2

)

Γ
(

r+s+2
2

) . �

Substitution of

Γ

(

2m + 1

2

)

=
2m − 1

2
· 2m − 3

2
· · · 3

2
· 1

2
Γ

(

1

2

)

,

Γ

(

2m + n + 1

2

)

=
2m + n − 1

2
· 2m + n − 3

2
· · · n + 3

2
· n + 1

2
Γ

(

n + 1

2

)

yields

E
(

Z2m
)

=
1 · 3 · · · (2m − 1)

(n + 1) (n + 3) · · · (n + 2m − 1)
.

In particular, E(Z) = 0, E(Z2) = 1/(n + 1), and E(Z4) = 3/(n + 1) (n + 3).

fn obviously is not Gaussian. The kurtosis B2 = 3(n + 1)/(n + 3) of fn is
less than 3 for all n, that is, fn has a flatter top (platykurtic). However, the
common practice of using ±2σ = ±2/

√
n for the 95% confidence interval of

Z = 0 is problematic, specially for small values of n. The confidence interval
should be narrower. Even for n large, the interval [−2/

√
n, 2/

√
n] covers more

than 95% as the following numerical estimation shows. The table below gives
the values of

p =

∫ 2
√

n

−2
√

n

fn−1(x)dx.

n 4 5 6 7 8 9 10

p 1.0000 0.98391 0.97496 0.96998 0.96688 0.96469 0.96321

n 1000 1200 1400 1600 1800 2000

p 0.95455 0.95457 0.95457 0.95453 0.95456 0.95455
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