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1. Introduction

In this paper, we study the admissibility of the nonhomogeneous equation
Bxn+1 = Axn + yn where A and B are closed, densely defined, linear, gen-
erally unbounded operators.

The question of regular admissibility of a subspace M in BUC(R, E) (the
space of all bounded and uniformly continuous functions on R with values in the
Banach space E) plays an important role in the study of asymptotic behavior
of solutions of differential equations. A classical approach to the question of
regular admissibility of a subspace M is to use the so called Green’s function.
An alternative way to study the admissibility is to use a method introduced by
Vu et al [8], which connects the regular admissibility of the space M with the
solvability of the operator equation of the form

AX − XDM = C, (1)

where D is the differentiation operator, DM is its restriction to the space M,
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C is a bounded operator from M to E and X : M → E is the unknown
bounded operator. We generalize their result to the nonhomogeneous equation
Bxn+1 = Axn+yn. A sequence (xn)n∈Z ⊂ E is called a solution, if the equation
is satisfied for all n, n ∈ Z.

2. The Generalized Spectrum and Resolvent

Assume that D := D(A) ∩ D(B) is dense in E. Let λ be a complex number,
such that (λB − A) is one-to-one on D. Define Cλ by

D(Cλ) = {x ∈ D : there exists a unique y ∈ D

such that Bx = λBy − Ay}

Cλx = y.

Define the resolvent set of (A,B) by

ρ(A,B) := {λ ∈ C : Cλ is densely defined and bounded},

and the spectrum by σ(A,B) := C \ ρ(A,B). For λ ∈ ρ(A,B), define the gen-
eralized resolvent by Rλ := closure of the operator Cλ. Thus, Rλ is a bounded
operator on X.

Moreover, ρ(A,B) is an open set, Rλ satisfies the resolvent identity and is
an analytic function in ρ(A,B).

We denote by Sp(x) the spectrum of x. That is Sp(x) consists of λ (|λ| = 1)
such that for every neighborhood U of λ there exists a numerical sequence
ϕ = (ϕn) ∈ l1 with supp(ϕ̂) ⊂ U and ϕ ∗ x is not identically zero, where

(ϕ ∗ x)n ≡
∞∑

i=−∞

ϕn−ixi, n ∈ Z.

We recall the following theorem from Alsulami et al [1]:

Theorem 1. Assume that x = (xn)∞n=−∞ is a bounded solution of
Bxn+1 = Axn + yn. Then, Sp(x) ⊂ σ(A,B) ∪ Sp(y).

3. Operator Equation AX − BXD = C

Let A and B be closed operators on a Banach space E with D(A)∩D(B) dense
in E, D be a closed operator on Banach space F and C be a bounded operator
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from F to E.

Definition 2. A bounded operator X : F → E is called a bounded solution

of the operator equation

AX − BXD = C (2)

if Range(X) ⊆ D(B) and for each f ∈ D(D), Xf ∈ D(A), and AXf −
BXDf = Cf .

Note that the operator equation AX−XD = C is a special case of equation
(2), where B is the identity operator. If B is bounded and invertible, then we
can convert equation (2) into equation of the form

AX − XB = C (3)

by multiplying both sides of (2) by B−1.

Equation (3) has been considered by many authors. It was first studied
intensively for bounded operators by Daleckii et al [3] and Rosenblum [5]. For
unbounded operators, the case when A and B are generators of C0-semigroups
was considered in Arendt et al [2] and Vu [7] and the general case was considered
in Ruess et al [6] and Vu et al [9]. The following Theorem is a brief summary
of known results about the unique solvability of equation (3)

Theorem 3. (1) If A and D are bounded operators, the equation (3) has
a unique solution for every bounded C if and only if σ(A) ∩ σ(D) = ∅. In this
case, the solution is given by

X = −
1

2πi

∫

Γ

(λ − A)−1C(λ − D)−1dλ, (4)

where Γ is a Cauchy contour which separates σ(A) and σ(D) such that σ(D)
is inside of Γ.

Note. If we take Γ as a contour around σ(A), then the solution is the same
integral (now over new Γ) but with positive sign, i.e.

X =
1

2πi

∫

Γ

(λ − A)−1C(λ − D)−1dλ. (5)

(2) If A and −D are generators of C0-semigroup T (t) and S(t) with growth
bound ω(A) and ω(−D) respectively such that ω(A) + ω(−D) < 0, then for
every bounded C, equation (3) has a unique solution, which is given by

X = −

∫
∞

0

T (t)CS(t)dt. (6)

(3) If A and −D are generators of C0-semigroups with σ(A) ∩ σ(D) = ∅
and if one of them is the generator of an analytic semigroup, then equation (3)
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has a unique solution.

(4) If A is the generator of an exponentially dichotomic C0-semigroup T (t)
and −D is the generator of an isometric C0-group S(t), then for every C,
equation (3) has a unique solution given by

X = −

∫
∞

−∞

GA(t)CS(t)dt, (7)

where

GA(t) =

{
T (t)P, t ≥ 0,
−T (t)(I − P ), t < 0,

is the Green function. Here, P denotes the dichotomic projection.

(5) If A and D are closed operators with disjoint spectra and if one of them
is bounded, say D, then for every C, equation (3) has a unique solution given
by

X = −
1

2πi

∫

Γ

(λ − A)−1C(λ − D)−1dλ,

where Γ is a Cauchy contour around σ(D) and disjoint from σ(A).

(6) If for every bounded operator C, equation (3) has a unique solution,
then σ(A) ∩ σ(D) = ∅.

(7) If A and D are closed unbounded operators, then the condition σ(A) ∩
σ(D) = ∅ is, in general, not sufficient for the solvability of (3).

If B of equation (2) is not invertible, then the situation is quite different,
even if B is bounded. We recall the following theorem from Lan [4, Corollary
3.5]:

Theorem 4. If for every bounded operator C : F 7→ E, the equation

AX − BXD = C

has a unique bounded solution, then σ(A,B) ∩ σ(D) = ∅.

The converse of the above theorem is generally false, even for the case when
B = I (see Vu [7, Example 9]). However, it holds in some particular cases.
For example, when B = I, and A and D are generators of C0 semigroups, one
of which is analytic (see Vu [7]), or both are eventually norm continuous (see
Arendt et al [2]).
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4. Admissibility of Degenerate Difference Equations

Consider the following equation:

Bxn+1 = Axn + yn ∀n ∈ Z. (8)

Let x := (xn)n∈Z , y := (yn)n∈Z and z := (zn)n∈Z. We also use the notation
(x)n ≡ xn.

Let l∞(Z, E) be the Banach space of all bounded sequences x := (xn)n∈Z

with the sup-norm. Consider the shift operator S : l∞(Z, E) 7→ l∞(Z, E) via
S : (xn)n∈Z 7→ (xn+1)n∈Z (thus, (Sx)n = xn+1). Below, for convenience of
notation, we also use the notation ϕm = Sm, i.e. (ϕmx)n = (x)n+m. Let M
be a subspace of l∞(Z, E) which is translation invariant, i.e. invariant with
respect to the shift operator S. We denote the restriction of S on M by SM

and define the Dirac operator δ0 : l∞(Z, E) → E by δ0x := x0.

Definition 5. We call M ⊂ l∞(Z, E) a regularly admissible subspace with
respect to (8) if for every y = (yn)∞n=−∞ ∈ M, there exists a unique solution
x = (xn)∞n=−∞ ∈ M of equation (8).

We make the following assumption: M is invariant under any bounded
linear operator commuting with S (and hence with all ϕn, n ∈ Z).

Lemma 6. Let M be admissible with respect to (8) and assume that the
above assumption holds. Let X be the bounded solution operator defined as
Xy = x0 where x := (xn)n∈Z is the solution of (8) for given y := (yn)n∈Z and
S be the shift operator.

Then, X and S are commute in the sense that for y ∈ M, XSy = SXy.

Proof. Given y ∈ M, there exist a unique x satisfies (8). Also, it is not
difficult to see that (Sx) is the unique solution of the same equation with y

replaced by (Sy) := (yn+1)n∈Z.

Let y := (yn)n∈Z ∈ M. Then

SXy = (Sx0) = x1

and

XSy := X(Sy)n = X(y)n+1 = (x)1 = x1,

which implies XSy = SXy.

Theorem 7. Let M be as above. Then, the following are equivalent:

(i) M is regularly admissible.



338 S.M.A. Alsulami

(ii) The operator equation

AX − BXSM = −δM0 (E1)

has a unique bounded solution.

(iii) For every bounded linear operator C : M −→ E

AX − BXSM = C (E2)

has a unique bounded solution.

Proof. (i)=⇒(ii). Let M be admissible and G : M −→ M be the bounded
operator defined by Gy = x where x is the unique solution in M of the equa-
tion (8) with given y ∈ M and (Gy)n = (x)n. It is not difficult to see that
G is linear and closed. Thus, by the Closed Graph Theorem, G is a bounded
linear operator on M. It is also easy to see that G commutes with SM. Define
Xy = (Gy)0 := x0. It can been seen that G commutes with ϕn; in particular,
(Gy)n = Xϕny. Therefore, from y ∈ D(SM) it follows that (Gy)n ∈ D(SM)
and

BSM(Gy)n = (Gy)n+1 = xn+1 = Axn + yn = A(Gy)n + yn.

In particular, by putting n = 0 we obtain

BSM(Gy)0 = A(Gy)0 + y0,

i.e.

BSMXy = AXy + δM0 y ∀y ∈ D(SM).

By Lemma 6 we have

BXSMy = AXy + δM0 y ∀y ∈ D(SM).

Hence

AXy − BXSMy = −δM0 y ∀y ∈ D(SM).

Thus, X is a bounded solution of the operator equation (E1).

On the other hand, if X is a bounded solution of the operator equation
(E1), then for every y ∈ D(SM), the vector x ∈ M defined by x := (xn)n∈Z

where xn = Xϕny ∀n ∈ Z is a solution of equation (8). Indeed, we have

BSMxn = BSMXϕny = BXSMϕny

= (AX + δM0 )ϕny = AXϕny + ϕnδM0 y = Axn + yn.

Thus, for every y ∈ M the sequence x := (xn)n∈Z, where xn = Xϕny ∀n ∈
Z, is a solution in M of (8).

Since the solution in M is unique for every y ∈ M, it follows that the
solution X of the operator equation (E1) is unique.
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(ii)=⇒(iii). It follows from the uniqueness of the solution of the operator
equation (E1) that X = 0 is the only solution of the following operator equation:

AX − BXSM = 0.

From this it follows that a solution of the operator equation AZ−BZSM =
C is unique, if it exists. Let X be the unique bounded solution of the operator
equation (E1) and C be given bounded linear operator. By the assumption
above, we can define operator

Z : M → E byZy = Xỹ,

where (ỹ)n = −Cϕny.

Thus

AZy − BZSMy = −AX(Cϕny) + BXSM(Cϕny) = δ0(Cϕny) = Cy,

∀y ∈ D(Z),

i.e., AZ − BZSM = C.

(iii)=⇒(i). Since for every C there exists a unique solution X of the operator
equation (E2), then it follows that σ(A) ∩ σ(SM) = ∅ see [2].

But, from part ((i)=⇒(ii)), the sequence x := (xn)n∈Z, where (x)n = Xϕny,
is a solution in M of (8). We need to show that the solution is unique. Suppose
there exist two solutions v := (vn)n∈Z and w := (wn)n∈Z in M of (8). Consider
z := (zn)n∈Z where zn = vn − wn. Then, z is a solution of equation Bxn+1 =
Axn in M. Thus, by Theorem 1, Sp(z) ⊂ σ(A,B). Since z ∈ M, we have
Sp(z) ⊂ σ(SM). By Corollary 4, it follows from (iii) that σ(A,B)∩σ(SM) = ∅.
Hence, we have Sp(z) = ∅, which implies that z = 0.

Therefore, the solution is unique in M and M is regularly admissible.
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