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Abstract: Here we prove the existence of an integer a > 0 with the following
property. Let X C P* be a general union of x planes and a degree y smooth
rational cuve. Let k& > 1 be the minimal integer such that :1:(kJ2r2) —z(x—1)/2+
ky+1< (kfl). Assume x < k — a. Then X has the expected postulation. We
extend the result to P, n > 5, when the planes are either disjoint or contained
in a 4-dimensional linear subspace.
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1. Introduction

We will say that a union A C P* of finitely many planes is mazimally disjoint
if no line of P* is contained in at least 2 irreducible components of A and no
point of P4 is contained in at least 3 irreducible components of A. Thus if A is
a maximally disjoint union of = planes, then x(O4(t)) = x(tf) —z(x—1)/2 for
all t € N. Moreover h'(A, O4(t)) = :L‘(HQ'Q) —x(z —1)/2 and h'(A,OA(t)) =0
for all t > = (if x > 2 use x — 1 Mayer-Vietoris exact sequences, starting with
a plane and adding at each step a new plane). Notice that a general union
A C P* of finite many planes is maximally disjoint. Notice that h’(B, Op(t)) =
x(Op(t)) = yt + 1 for any smooth rational curve B C P", n > 3, such that
deg(B) = y and any integer ¢ > 0. These numbers explain the integer k
appearing in the following statements.
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Theorem 1. There is an integer o > 0 with the following properties. Fix
non-negative integers x,y. Let X C P* be a general union of = planes and a
degree y smooth rational curve. Let k be the minimal positive integer such that

x(k;—2>—x($—1)/2+ky+1§<kl_4>. (1)

Assume x < max{0,k — a}. Then h°(Zx(k — 1)) = 0 and h*(Zx(t)) = 0 for all
t>k.

Theorem 2. There is an integer oy > 0 with the following properties.
Fix non-negative integers n,y,x such that n > 5 and a 4-dimensional linear
subspace M C P™. Let k be the minimal positive integer such that

k+2 k
x( -; >—:v(x—1)/2—|—ky+1<< +”>. 2)
n
Assume x < k — 1. Let X C P" be a general union of a maximally disjoint
union of x planes of M and a general degree y smooth rational curve of P™.
Then h®(Zx(k —1)) =0 and h'(Zx(t)) =0 for all t > k.

Theorem 3. There is an integer ag > 0 with the following properties. Fix
non-negative integers n,y,x, such that n > 5. Let k be the minimal positive

integer such that
k+2 k
x( ;r )+ky+1§< Z") (3)

Assume r < k — ag. Let X C P"™ be a general union of x planes and a
general degree y smooth rational curve of P*. Then h®(Zx(k — 1)) = 0 and
hY(Zx(t)) =0 for all t > k.

Notice that in Theorems 2 and 3 the integers «; and ag are independent
from 7. Only numerical reasons in P° prevented us to check these two theorems
with the integers a; = ag = 0.

A scheme X with the cohomology claimed in the statements of Theorems 1,
2 and 3 is usually said to have mazimal rank or good postulation or the expected
postulation. The condition “h!(Zx(t)) = 0 for all t+ > k” is equivalent to the
condition “h%(Zx(t)) = (tJ;") - x(tf) —y(t+1) for all t > k” (with n =4 for
Theorem 1). Of course, to check the condition “h*(Zx(t)) = 0 for all t > k” it
is sufficient to prove h!'(Zx(k)) = 0 (e.g. use Castelnuovo-Mumford’s Lemma).
The integer k appearing in the statements of Theorems 1 and 2 is often called
the critical value of X or the critical value of the pair (z,y).

This paper was stimulated by [3] and [4].
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2. Preliminaries and Proof of Theorem 1

We work over an algebraically closed field K such that char(K) = 0.

Remark 1. Let X be any projective scheme and D any effective Cartier
divisor of X. For any closed subscheme Z of X let Resp(Z) denote the residual
scheme of Z with respect to D, i.e. the closed subscheme of X with Z, : Zp as
its ideal sheaf. For every L € Pic(X) we have the exact sequence

0= TResp(z) @ L(—D) = Iz ® L — Iznp,p ® (LID) — 0. (4)
From (4) we get
W(X,Zz ® L) < h'(X,TRes, () @ L(=D)) + h'(D,Zznp,p ® (L|D))

for every integer ¢ > 0.

Fix a hyperplane H of P", n > 4. For any P € P" and every integral C' C P"
such that P € Creg let xc(P) denote the first infinitesimal neighborhood
of P in C, i.e. the closed subscheme of C' with (Zpc)? as its ideal sheaf.
We have x¢(P)req = {P} and length(xc(P)) = dim(C) + 1. Notice that
x7(P) = x1pc(P), where TpC C P™ is the embedded tangent space of C' at its
smooth point P.

Remark 2. Take n = 4. Fix a plane U C H and a degree y curve
B C H intersecting transversally U. For every P € U N B choose a hyperplane
Hp C P* such that Hp contains the tangent line TpB to B at U. Set y :=
UpennuXip(P) and Y := U U B U x. Degenerating a general plane of P4 to U
we get the existence of a flat family of closed subschemes of P* whose special
fiber is Y and whose general fiber is the disjoint union of B and a plane. We
may also find a flat degeneration of ¥ whose general fiber is the disjoint union
of a plane and a curve projectively equivalent to B.

We introduce the following integers a, iz, bn kx> Unk,> and vy g ..

k42 4
x( N >—x(a:—l)/Q-i—k:'an,k@—l—l—l—bmk,x: (n: >, 0<byre <k—-1, (5

2
k+2 k
Z( ;_ ) +k'un,k,z+vn,k,z: <n:; )7 Ogvn,k,z <k-1. (6)

Taking the difference of the equation in (5) with the same equation for the
integer ' := z and k' := k — 1 we get the following equality:

k+n—1
k(z + ank,x — an,k—l,w) +ankz—1+ bn,k,w - bn,k—l,w = ( n—1 ) (7)
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Taking the difference of the equation in (5) for with the same equation for the
pair (k¥',2') := (k — 1,2 — 1) we get the following equality:

k+2
< > +1—-z+ k‘(l‘ -1+ Qp keon — an,kfl,xfl) + Qp k—1,2—1

2
k+n-—1
+ bn,k,x - bn,kfl,xfl - < n—1 > (8)

To prove Theorem 1 we define the following Assertion Ug(z).
Assertion Ug(z). k> 1, z > 0 and z(k;rQ) —2(z —1)/2 — k* — 1: For all
integers e > 0 and y > 0 such that

k+2 k+4
z( ; >—z(z—1)/2+ky+1+(k+1)e<< I >, 0<e<k-—1, (9

a general union X C P* of z planes, a degree y smooth rational curve and e
disjoint lines satisfies h'(Tx (k)) = 0.

For any y, e as in (9) call Ay, .(y, e) the difference between the right hand side
and the left hand side of the equation in (9). Thus Ay .(y,e) > 0. In the set-up
of Ug(z) we usually write X = AU BUD, where ANB=AND=BND =1,
A is a maximally disjoint union of planes, B is a smooth rational curve and D
is a disjoint union of lines.

Lemma 1. There is an integer § > 0 with the following property. For all
integers k, z such that k — § > z > 0 Assertion Uy(z) is true.

Proof. Fix an integer 5 > 2. The case z = 0 is true (see [2]). Hence
we may assume z > 0. Thus £ > 3. We assume Uy/(2') for all ¥/ < k —1
and all 2/ < k' — 3 and look at conditions on [ such that Uy(z) is true for all
z <k — [ —1 (this will always be satisfied) or for all z < k — 3 (this will be
true at least if [ is large, and here “large ” means “large independently of £”).
The lemma will follow by induction on k taking o = § with 3 large enough to
do the second inductive step for all large k.

(a) Here we assume z < k—  — 1. Hence Uy_;(2) is true. If Ay .(y,e) >
(kj[4) - (kf) = (k;rg), then we may take a solution coming from Uj_;(z) (use
Castelnuovo-Mumford’s Lemma). Hence we may assume Aj,_; ;(y,e) < 0, i.e.
either y +e > agp_1. 0r y = asp—1,. and e > by p_1 ..

First assume € > by 1. and y > ag 1, —bap—1,.. Let Y = AUBUD be
a solution of Uy_1(z) for the integers y1 := a4 3. —bap—3. and e := by p_3 .
Thus hi(Zy(k—1)) =0,i=0,1. Let E = By LID; C H be a general union of a
smooth rational normal curve By of degree y —ag 1. +bsp—1,. and e—byp_1.
lines, with the only restriction that B; contains exactly one point of B. Thus
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B U By is a flat limit of a flat family of smooth rational curves with degree .
Set X := Y U E. Obviously Resy(X) = H. The scheme Y N H is a general
union of z +y — ag k-1, + bar—1,. lines, and a4 1, — 1 points. By (7) and
(9) we have x(Oxnpu(k)) < (k;r:g) Hence h'(H,Zxnm(k)) =0 (see [1]). Apply
Remark 1.

Now assume e > by 1. and y < agp—1,. + byr—1.. We make the same
construction taking the curve Y/ = AUB’LID instead of the curve Y = ALBUD,
where B’ is a general smooth rational curve of degree y and By = ().

Now assume e < bgj_1.. Since Ag_j.(y,e) > 0, we may assume y >
a4, -1, —e. Let By C H be a general smooth rational curve containing exactly
one point of BN H and one point of by 1, — e lines of D. Set X :=Y U Bs.
Since a general union in H of z lines and a general smooth rational curve of
any degree has maximal rank (see [1]), then (7) gives h'(H,Zxnn(k)) = O,
concluding this case.

(b) Here we assume z = k — 3. Fix y, e satisfying (9) for z = k — 8. Fix a
general union A C P* of k — 8 — 1 planes and a general plane A’ C H. Thus
A’ U A is a maximally disjoint union of k — (3 planes.

(bl) Here we assume y + e > a4 41 4-3—1. Let u be the minimal integer

such that
k+1 k+3
(k—ﬂ—l)( 5 >—(k:—ﬁ—1)(k—ﬁ—2)/2+u+k(y+e—u)—|—1 < ( 4 ) (10)

Thus u = [((*]%) ~1=k(y+e)—(k=F-1)("1°) +(k—5-1)(k—5-2)/2)/ (k=1) .
Let f be the difference between the right hand and the left hand side of (10).
The maximality of u gives 0 < f < k — 2. First assume y +e —u > f + 1. Let
Y C P* be a general union of A, a smooth rational curve of degree y+e—u— f
and f lines. Set Y7 := Y\A. Since u > 0, the inductive assumption gives
hY(Zy (k — 1)) = 0. Hence (10) gives h°(Zy (k — 1)) = u

Claim. For general Y we have h°(ZTya(k — 1)) = 0.

Proof of the Claim. We specialize AU A" to A” U A’ U A; Un, where A”
is a general union of k — 0 — 2 planes, A; is a general plane in H and 7 is
some nilpotent structure supported by the line A’ N A;. By semicontinuity it
is sufficient to prove h°(Zy,uaruau anun(k —1)) = 0. Thus it is sufficient to
prove h®(Zy, anuarua(k — 1)) = 0. We specialize Y to a curve Yo = By U Fy
with each FE; union of a smooth rational curve and disjoint lines, Fs C H, no
irreducible component of E; is contained in H, h°(H,Zaa,08,(k — 1)) = 0
and h®(Zanyp, (k —2)) = 0. Since Resy (A" UA'U Ay U By U Ey) = A" U Ey, if
we may find such a degeneration, then the claim is true. ]
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To check the existence of the degeneration we use that 3 is sufficiently large.
Since ay 1., has order k3 /24 for k > 0 and all w < k, we have A4 fow — Q4 fe—1,0 ~
k%/8 for all w < k and k > 0. Thus we get (for any 3 > 0) u <~ k?/8. For small
A k—p—1(y,e) (say, Ag r—p—1(y,e) < 10k) the integer v depends essentially (up
to lower terms in k) only from k. Hence we write it has wug. In any case we
have u <~ u?/8 and uj_1 — up_o <~ k/4. Since h°(H,Zarya,uE,(k — 1)) =
h(H,Zg,(k—3)), we may take as Fa a general smooth rational curve of degree
> [((g) —1)/(k —3)| ~ k?/6. We use the inductive assumption to get E;. We
use that | (*51)/(k—1)] = [((5) = 1)/(k — 3)| ~ 2k/3 > up_1 — up—2 + 1.

Here we also assume u > k. Hence u > max{e — f, f — e}. First assume
e > f. Let B4U Dy C H be a general union of a smooth rational curve By of
degree u — e + f and e — f lines. Since B4 U Dy is general in H, it intersects
transversally A’. Set S := A'N(B4U Dy). For each P € S take a 3-dimensional
linear subspace Hp # H containing the tangent line in P of the connected
component of By U D. Set x := Upesxm,(P)and X :=Y UA"UBsUD4U .
Remark 2 gives that X is a flat limit of a flat family of disjoint unions of AU A’,
a smooth rational curve of degree y and e disjoint lines. Since X N H is a
general union of A’ the k — 3 — 1 general lines AN H, ByU D4 and the general
points (H\ (B4 U Dy4)) NY1, h'(H,Zxnr(k)) = 0. Hence it is sufficient to prove
W' (H, TReg,, (x)(k — 1)) = 0. We have Resp(X) = Y U S. Since By U Dy is
general, S is a general subset of A’ with cardinality u. Since h'(Zy(k—1)) =0,
h9(Zy (k — 1)) = u and S is general in A’, the claim gives hi(Zy g(k — 1)) = 0,
1 = 0,1, concluding the proof in this case. If e < f we take Dy = () and take as
B, a general smooth rational curve of H with degree u with the only restriction
that it contains exactly one point of each connected component of Y7.

(b2) Here we assume that either y+e > a4 1 x—g—1 or v < k. In both cases
Ak g—p—2(y,e) is very large (of order k) and hence we may use a solution of
Ug—1(k— B —2), say associated to ¢/ = min{e,k —2} and ¥/ = a4 —1 -2 —3k
with Ay g—p_a2(y,e) — k? < Ap_1,—p—2v,€') < Apr—p—o(y,e) — k. The new
integer v’ satisfies v’ > k. O

Proof of Theorem 1. Set a := § 4+ 2, where § is the non-negative integer
whose existence was proved in Lemma 1. Fix z,y with critical value k£ and
assume x < k — o. Let X C P be a general union of 2 planes and of a general
smooth rational curve of degree y. Since X (i.e. the triple (4, z,y)) has critical
value k, we have a4 r—1, <y < agp,. To prove Theorem 1 it is sufficient to
prove h%(Zx(k — 1)) = 0 and h'(Zx(k)) = 0.

(a) Here we prove h?(Zx(k — 1)) = 0. Take a solution Y = AL B U D of
Uy—2(z) for the integers (v, €') := (a4 k—2.2—bak—2.4,bsk2.). Hence h*(Zy (k—
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2)) =0,7=0,1. Then we adapt part (a) of the proof of Lemma 1, i.e. the easy
part of the proof, taking as target the triple (k¥',4/,¢’) = (k — 1,4,0) and with
hY instead of h'.

(b) Here we prove h!(Zx(k)) = 0. Apply Assertion Ug(x) with respect to
the pair (v/,€¢’) = (y,0). O

Proof of Theorem 2. Fix a hyperplane H of P™ such that M C H. For all
integers n, k, x such that n > 5 and k > x > 0 we define the following Assertion
Vn,k(x)

Assertion V,, (x). Let Y C P" be a general union of x planes of M, a
smooth rational curve of degree an j , — by k. and by j . disjoint lines. Then
h'(Zy(k)) =0,i=0,1.

In the case n = 4 we required more: Assertion Vj () is just the part of
Assertion Uy(x) concerning the pair (y,e) := (an ko — bnkzs bnkz). The proof
of Lemma 1 gives the existence of an integer §; such that V,, () is true for all
n,k,x such that 0 < x < k — d1; we need both parts (a) and (b) of the proof
of Lemma 1, but in the modification of part (b) no claim is needed, because
now A’ N (B4 U Dy) = ; the integer d; substitute several numerical lemmas
concerning the integers an gz, an ke — Onk—1,0) ke — Ank—la—1, Gn-1k—1z
and ap_1k—1,.—1 With asymptotic extimates for the same integers. We are
unable to do the numerical lemmas. Set a; := §; +2. Fix non-negative integers
n,k,x,y such that n > 5, (n,x,y) has critical value k and x < k — ay. Let
X C P” be a general union of x planes of M and of a general smooth rational
curve of degree y. To prove Theorem 2 it is sufficient to prove h®(Zx (k—1)) = 0
and h'(Zx(k)) = 0.

(a) Here we prove h(Zx(k—1)) = 0. Since (n, z,y) has critical value k, we
have y > ap -1, Since z <k —a; =k —6; — 2, we may use V,, ,_1(x). Let
T = AU By U Dy be a solution of V,, ,_o(x). Hence h*(Zr(k —2)) =0, i=0,1.
For large 1 the integer k is large and hence ay, p—1 4 —ap -2, > k forallz <k
(use (5) and (7). Hence we may add to 7" a general smooth rational curve By
of H, with the only restriction that it contains Dy N H and exactly one point
of By N H. With this modification we copy part (a) of the proof of Lemma 1.

(b) Here we prove h'(Zx(k)) = 0. For this part it is sufficient to do the case
Y = angz Let ALBUD be a solution of V,, x_1(z). Hence h'(Zy (k — 1)) = 0,
i = 0,1. Modify the proof of V,, _1(z) = Vj, x—1(z) to arrive at the end with
a smooth rational curve and no line, i.e. add in H a general smooth rational
curve By of degree ay, . » — @p—1, containing all points of Dy N H and exactly
one point of B4 N H. Here we use the inequality a, k. — apk—12 = by r—1,2 tO
get B4 with this property. This inequality is true if ap o — app—12 > k — 2.
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The latter inequality is true for large k£ by (5) and (7), but only because the

integer « allowed us to omit finitely many critical value k. U

Proof of Theorem 3. In the proof of Theorem 2 add at each step a general

plane of H, instead of a general plane of M. O
Acknowledgments

The author was partially supported by MIUR and GNSAGA of INdAM (Ttaly).

1]

References

E. Ballico, On the postulation of disjoint rational curves in a projective
space, Rend. Sem. Mat. Univ. Politec. Torino, 44, No. 2 (1986), 207-249.

E. Ballico, Ph. Ellia, On the postulation of many disjoint rational curves
in PN, N >4, Boll. U.M.I., 6, No. 4-B (1985), 585-599.

E. Carlini, M.V. Catalisano, A.V. Geramita, Subspace arrangements,
configurations of linear spaces and quadrics containing them, ArXiv:
0909.3821[math.AG] (21 Sep., 2009).

E. Carlini, M.V. Catalisano, A.V. Geramita, Bipolynomial Hilbert func-
tions, ArXiv: 0910.3569[math.AG].

R. Hartshorne and A. Hirschowitz, Droites en position générale dans P",
Algebraic Geometry, Proceedings, La Rabida (1981), 169-188; Lect. Notes
in Math., 961, Springer, Berlin (1982).

R. Hartshorne, A. Hirschowitz, Smoothing algebraic space curves, Alge-
braic Geometry, Sitges (1983), 98-131; Lecture Notes in Math., 1124,
Springer, Berlin (1985).

A. Hirschowitz, Sur la postulation générique des courbes rationnelles, Acta
Math., 146 (1981), 209-230.

D. Perrin, Courbes passant par m points généraux de P3, Bull. Soc. Math.
France, Mémoire 28/29 (1987).

E. Sernesi, On the existence of certain families of curves, Invent. Math.,
75, No. 1 (1984), 25-57.



