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Abstract: Here we prove the existence of an integer α ≥ 0 with the following
property. Let X ⊂ P

4 be a general union of x planes and a degree y smooth
rational cuve. Let k ≥ 1 be the minimal integer such that x

(

k+2
2

)

−x(x−1)/2+

ky + 1 ≤
(

k+4
4

)

. Assume x ≤ k −α. Then X has the expected postulation. We
extend the result to P

n, n ≥ 5, when the planes are either disjoint or contained
in a 4-dimensional linear subspace.

AMS Subject Classification: 14N05
Key Words: postulation, unions of planes, planes in P

4

1. Introduction

We will say that a union A ⊂ P
4 of finitely many planes is maximally disjoint

if no line of P
4 is contained in at least 2 irreducible components of A and no

point of P
4 is contained in at least 3 irreducible components of A. Thus if A is

a maximally disjoint union of x planes, then χ(OA(t)) = x
(

t+2
2

)

−x(x−1)/2 for

all t ∈ N. Moreover h0(A,OA(t)) = x
(

t+2
2

)

− x(x − 1)/2 and h1(A,OA(t)) = 0
for all t ≥ x (if x ≥ 2 use x − 1 Mayer-Vietoris exact sequences, starting with
a plane and adding at each step a new plane). Notice that a general union
A ⊂ P

4 of finite many planes is maximally disjoint. Notice that h0(B,OB(t)) =
χ(OB(t)) = yt + 1 for any smooth rational curve B ⊂ P

n, n ≥ 3, such that
deg(B) = y and any integer t ≥ 0. These numbers explain the integer k
appearing in the following statements.
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Theorem 1. There is an integer α ≥ 0 with the following properties. Fix

non-negative integers x, y. Let X ⊂ P
4 be a general union of x planes and a

degree y smooth rational curve. Let k be the minimal positive integer such that

x

(

k + 2

2

)

− x(x − 1)/2 + ky + 1 ≤

(

k + 4

4

)

. (1)

Assume x ≤ max{0, k − α}. Then h0(IX(k − 1)) = 0 and h1(IX(t)) = 0 for all

t ≥ k.

Theorem 2. There is an integer α1 ≥ 0 with the following properties.

Fix non-negative integers n, y, x such that n ≥ 5 and a 4-dimensional linear

subspace M ⊂ P
n. Let k be the minimal positive integer such that

x

(

k + 2

2

)

− x(x − 1)/2 + ky + 1 ≤

(

k + n

n

)

. (2)

Assume x ≤ k − α1. Let X ⊂ P
n be a general union of a maximally disjoint

union of x planes of M and a general degree y smooth rational curve of P
n.

Then h0(IX(k − 1)) = 0 and h1(IX(t)) = 0 for all t ≥ k.

Theorem 3. There is an integer α2 ≥ 0 with the following properties. Fix

non-negative integers n, y, x, such that n ≥ 5. Let k be the minimal positive

integer such that

x

(

k + 2

2

)

+ ky + 1 ≤

(

k + n

n

)

. (3)

Assume x ≤ k − α2. Let X ⊂ P
n be a general union of x planes and a

general degree y smooth rational curve of P
n. Then h0(IX(k − 1)) = 0 and

h1(IX(t)) = 0 for all t ≥ k.

Notice that in Theorems 2 and 3 the integers α1 and α2 are independent
from n. Only numerical reasons in P

5 prevented us to check these two theorems
with the integers α1 = α2 = 0.

A scheme X with the cohomology claimed in the statements of Theorems 1,
2 and 3 is usually said to have maximal rank or good postulation or the expected

postulation. The condition “h1(IX(t)) = 0 for all t ≥ k” is equivalent to the
condition “h0(IX(t)) =

(

t+n
n

)

− x
(

t+2
2

)

− y(t + 1) for all t ≥ k” (with n = 4 for
Theorem 1). Of course, to check the condition “h1(IX(t)) = 0 for all t ≥ k” it
is sufficient to prove h1(IX(k)) = 0 (e.g. use Castelnuovo-Mumford’s Lemma).
The integer k appearing in the statements of Theorems 1 and 2 is often called
the critical value of X or the critical value of the pair (x, y).

This paper was stimulated by [3] and [4].
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2. Preliminaries and Proof of Theorem 1

We work over an algebraically closed field K such that char(K) = 0.

Remark 1. Let X be any projective scheme and D any effective Cartier
divisor of X. For any closed subscheme Z of X let ResD(Z) denote the residual
scheme of Z with respect to D, i.e. the closed subscheme of X with IZ : ID as
its ideal sheaf. For every L ∈ Pic(X) we have the exact sequence

0 → IResD(Z) ⊗ L(−D) → IZ ⊗ L → IZ∩D,D ⊗ (L|D) → 0. (4)

From (4) we get

hi(X,IZ ⊗ L) ≤ hi(X,IResD(Z) ⊗ L(−D)) + hi(D,IZ∩D,D ⊗ (L|D))

for every integer i ≥ 0.

Fix a hyperplane H of Pn, n ≥ 4. For any P ∈ Pn and every integral C ⊂ Pn

such that P ∈ Creg let χC(P ) denote the first infinitesimal neighborhood
of P in C, i.e. the closed subscheme of C with (IP,C)2 as its ideal sheaf.
We have χC(P )red = {P} and length(χC(P )) = dim(C) + 1. Notice that
χT (P ) = χTP C(P ), where TP C ⊂ P

n is the embedded tangent space of C at its
smooth point P .

Remark 2. Take n = 4. Fix a plane U ⊂ H and a degree y curve
B ⊂ H intersecting transversally U . For every P ∈ U ∩B choose a hyperplane
HP ⊂ P

4 such that HP contains the tangent line TP B to B at U . Set χ :=
∪P∈B∩UχHP

(P ) and Y := U ∪B ∪ χ. Degenerating a general plane of P
4 to U

we get the existence of a flat family of closed subschemes of P
4 whose special

fiber is Y and whose general fiber is the disjoint union of B and a plane. We
may also find a flat degeneration of Y whose general fiber is the disjoint union
of a plane and a curve projectively equivalent to B.

We introduce the following integers an,k,x, bn,k,x, un,k,z and vn,k,z.

x

(

k + 2

2

)

−x(x−1)/2+k ·an,k,x +1+bn,k,x =

(

n + 4

n

)

, 0 ≤ bn,k,x ≤ k−1, (5)

z

(

k + 2

2

)

+ k · un,k,z + vn,k,z =

(

n + k

n

)

, 0 ≤ vn,k,z ≤ k − 1. (6)

Taking the difference of the equation in (5) with the same equation for the
integer x′ := x and k′ := k − 1 we get the following equality:

k(x + an,k,x − an,k−1,x) + an,k,x−1 + bn,k,x − bn,k−1,x =

(

k + n − 1

n − 1

)

. (7)
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Taking the difference of the equation in (5) for with the same equation for the
pair (k′, x′) := (k − 1, x − 1) we get the following equality:

(

k + 2

2

)

+ 1 − x + k(x − 1 + an,k,n − an,k−1,x−1) + an,k−1,x−1

+ bn,k,x − bn,k−1,x−1 =

(

k + n − 1

n − 1

)

. (8)

To prove Theorem 1 we define the following Assertion Uk(z).

Assertion Uk(z). k ≥ 1, z ≥ 0 and z
(

k+2
2

)

− z(z − 1)/2 − k2 − 1: For all

integers e ≥ 0 and y > 0 such that

z

(

k + 2

2

)

− z(z − 1)/2 + ky + 1 + (k + 1)e ≤

(

k + 4

4

)

, 0 ≤ e ≤ k − 1, (9)

a general union X ⊂ P
4 of z planes, a degree y smooth rational curve and e

disjoint lines satisfies h1(IX(k)) = 0.

For any y, e as in (9) call ∆k,z(y, e) the difference between the right hand side
and the left hand side of the equation in (9). Thus ∆k,z(y, e) ≥ 0. In the set-up
of Uk(z) we usually write X = A⊔B ⊔D, where A∩B = A∩D = B ∩D = ∅,
A is a maximally disjoint union of planes, B is a smooth rational curve and D
is a disjoint union of lines.

Lemma 1. There is an integer δ ≥ 0 with the following property. For all

integers k, z such that k − δ ≥ z ≥ 0 Assertion Uk(z) is true.

Proof. Fix an integer β ≥ 2. The case z = 0 is true (see [2]). Hence
we may assume z > 0. Thus k ≥ 3. We assume Uk′(z′) for all k′ ≤ k − 1
and all z′ ≤ k′ − β and look at conditions on β such that Uk(z) is true for all
z ≤ k − β − 1 (this will always be satisfied) or for all z ≤ k − β (this will be
true at least if β is large, and here “large ” means “large independently of k”).
The lemma will follow by induction on k taking α = β with β large enough to
do the second inductive step for all large k.

(a) Here we assume z ≤ k − β − 1. Hence Uk−1(z) is true. If ∆k−1,z(y, e) ≥
(

k+4
4

)

−
(

k+3
4

)

=
(

k+3
3

)

, then we may take a solution coming from Uk−1(z) (use
Castelnuovo-Mumford’s Lemma). Hence we may assume ∆k−1,z(y, e) < 0, i.e.
either y + e > a4,k−1,z or y = a4,k−1,z and e > b4,k−1,z.

First assume e ≥ b4,k−1,z and y ≥ a4,k−1,z − b4,k−1,z. Let Y = A⊔B ⊔D be
a solution of Uk−1(z) for the integers y1 := a4,k−3,z − b4,k−3,z and e1 := b4,k−3,z.
Thus hi(IY (k− 1)) = 0, i = 0, 1. Let E = B1 ⊔D1 ⊂ H be a general union of a
smooth rational normal curve B1 of degree y−a4,k−1,z +b4,k−1,z and e−b4,k−1,z

lines, with the only restriction that B1 contains exactly one point of B. Thus
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B ∪ B1 is a flat limit of a flat family of smooth rational curves with degree y.
Set X := Y ∪ E. Obviously ResH(X) = H. The scheme Y ∩ H is a general
union of z + y − a4,k−1,z + b4,k−1,z lines, and a4,k−1,z − 1 points. By (7) and

(9) we have χ(OX∩H(k)) ≤
(

k+3
3

)

. Hence h1(H,IX∩H(k)) = 0 (see [1]). Apply
Remark 1.

Now assume e ≥ b4,k−1,z and y < a4,k−1,z + b4,k−1,z. We make the same
construction taking the curve Y ′ = A⊔B′⊔D instead of the curve Y = A⊔B∪D,
where B′ is a general smooth rational curve of degree y and B1 = ∅.

Now assume e < b4,k−1,z. Since ∆k−1,z(y, e) > 0, we may assume y ≥
a4,k−1,z − e. Let B2 ⊂ H be a general smooth rational curve containing exactly
one point of B ∩ H and one point of b4,k−1,z − e lines of D. Set X := Y ∪ B2.
Since a general union in H of z lines and a general smooth rational curve of
any degree has maximal rank (see [1]), then (7) gives h1(H,IX∩H(k)) = 0,
concluding this case.

(b) Here we assume z = k − β. Fix y, e satisfying (9) for z = k − β. Fix a
general union A ⊂ P

4 of k − β − 1 planes and a general plane A′ ⊂ H. Thus
A′ ∪ A is a maximally disjoint union of k − β planes.

(b1) Here we assume y + e ≥ a4,k−1,k−β−1. Let u be the minimal integer
such that

(k−β−1)

(

k + 1

2

)

−(k−β−1)(k−β−2)/2+u+k(y+e−u)+1 ≤

(

k + 3

4

)

. (10)

Thus u = ⌈(
(

k+3
4

)

−1−k(y+e)−(k−β−1)
(

k+3
4

)

+(k−β−1)(k−β−2)/2)/(k−1)⌋.
Let f be the difference between the right hand and the left hand side of (10).
The maximality of u gives 0 ≤ f ≤ k − 2. First assume y + e − u ≥ f + 1. Let
Y ⊂ P

4 be a general union of A, a smooth rational curve of degree y + e−u−f
and f lines. Set Y1 := Y \A. Since u ≥ 0, the inductive assumption gives
h1(IY (k − 1)) = 0. Hence (10) gives h0(IY (k − 1)) = u.

Claim. For general Y we have h0(IY ∪A′(k − 1)) = 0.

Proof of the Claim. We specialize A ∪ A′ to A′′ ∪ A′ ∪ A1 ∪ η, where A′′

is a general union of k − β − 2 planes, A1 is a general plane in H and η is
some nilpotent structure supported by the line A′ ∩ A1. By semicontinuity it
is sufficient to prove h0(IY1∪A′′∪A′∪A′′∪η(k − 1)) = 0. Thus it is sufficient to
prove h0(IY1∪A′′∪A′∪A′(k − 1)) = 0. We specialize Y1 to a curve Y2 = E1 ∪ E2

with each Ei union of a smooth rational curve and disjoint lines, E2 ⊂ H, no
irreducible component of E1 is contained in H, h0(H,IA′∪A1∪E2

(k − 1)) = 0
and h0(IA′′∪E1

(k − 2)) = 0. Since ResH(A′′ ∪ A′ ∪ A2 ∪ E1 ∪ E2) = A′′ ∪ E1, if
we may find such a degeneration, then the claim is true.
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To check the existence of the degeneration we use that β is sufficiently large.
Since a4,k,w has order k3/24 for k ≫ 0 and all w ≤ k, we have a4,k,w−a4,k−1,w ∼
k2/8 for all w ≤ k and k ≫ 0. Thus we get (for any β ≥ 0) u ≤∼ k2/8. For small
∆k,k−β−1(y, e) (say, ∆k,k−β−1(y, e) ≤ 10k) the integer u depends essentially (up
to lower terms in k) only from k. Hence we write it has uk. In any case we
have u ≤∼ u2/8 and uk−1 − uk−2 ≤∼ k/4. Since h0(H,IA′∪A1∪E2

(k − 1)) =
h0(H,IE2

(k−3)), we may take as E2 a general smooth rational curve of degree
≥ ⌈(

(

k
3

)

− 1)/(k − 3)⌋ ∼ k2/6. We use the inductive assumption to get E1. We

use that ⌊
(

k+1
3

)

/(k − 1)⌋ − ⌈(
(

k
3

)

− 1)/(k − 3)⌋ ∼ 2k/3 > uk−1 − uk−2 + 1.

Here we also assume u ≥ k. Hence u ≥ max{e − f, f − e}. First assume
e ≥ f . Let B4 ∪ D4 ⊂ H be a general union of a smooth rational curve B4 of
degree u − e + f and e − f lines. Since B4 ∪ D4 is general in H, it intersects
transversally A′. Set S := A′ ∩ (B4 ∪D4). For each P ∈ S take a 3-dimensional
linear subspace HP 6= H containing the tangent line in P of the connected
component of B4 ∪ D. Set χ := ∪P∈SχHP

(P ) and X := Y ∪ A′ ∪ B4 ∪ D4 ∪ χ.
Remark 2 gives that X is a flat limit of a flat family of disjoint unions of A∪A′,
a smooth rational curve of degree y and e disjoint lines. Since X ∩ H is a
general union of A′, the k− β − 1 general lines A∩H, B4 ∪D4 and the general
points (H\(B4 ∪D4)) ∩ Y1, h1(H,IX∩H(k)) = 0. Hence it is sufficient to prove
h1(H,IResH(X)(k − 1)) = 0. We have ResH(X) = Y ∪ S. Since B4 ∪ D4 is

general, S is a general subset of A′ with cardinality u. Since h1(IY (k−1)) = 0,
h0(IY (k − 1)) = u and S is general in A′, the claim gives hi(IY ∪S(k − 1)) = 0,
i = 0, 1, concluding the proof in this case. If e < f we take D4 = ∅ and take as
B4 a general smooth rational curve of H with degree u with the only restriction
that it contains exactly one point of each connected component of Y1.

(b2) Here we assume that either y+e ≥ a4,k−1,k−β−1 or u < k. In both cases
∆k,k−β−2(y, e) is very large (of order k3) and hence we may use a solution of
Uk−1(k−β−2), say associated to e′ = min{e, k−2} and y′ = a4,k−1,k−β−2−3k
with ∆k,k−β−2(y, e) − k2 ≤ ∆k−1,k−β−2(y

′, e′) ≤ ∆k,k−β−2(y, e) − k. The new
integer u′ satisfies u′ ≥ k.

Proof of Theorem 1. Set α := δ + 2, where δ is the non-negative integer
whose existence was proved in Lemma 1. Fix x, y with critical value k and
assume x ≤ k − α. Let X ⊂ P

4 be a general union of x planes and of a general
smooth rational curve of degree y. Since X (i.e. the triple (4, z, y)) has critical
value k, we have a4,k−1,x < y ≤ a4,k,x. To prove Theorem 1 it is sufficient to
prove h0(IX(k − 1)) = 0 and h1(IX(k)) = 0.

(a) Here we prove h0(IX(k − 1)) = 0. Take a solution Y = A ⊔ B ⊔ D of
Uk−2(x) for the integers (y′, e′) := (a4,k−2,x−b4,k−2,x, b4,k−2,x). Hence hi(IY (k−
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2)) = 0, i = 0, 1. Then we adapt part (a) of the proof of Lemma 1, i.e. the easy
part of the proof, taking as target the triple (k′, y′, e′) = (k − 1, y, 0) and with
h0 instead of h1.

(b) Here we prove h1(IX(k)) = 0. Apply Assertion Uk(x) with respect to
the pair (y′, e′) = (y, 0).

Proof of Theorem 2. Fix a hyperplane H of P
n such that M ⊆ H. For all

integers n, k, x such that n ≥ 5 and k ≥ x ≥ 0 we define the following Assertion
Vn,k(x).

Assertion Vn,k(x). Let Y ⊂ P
n be a general union of x planes of M , a

smooth rational curve of degree an,k,x − bn,k,x and bn,k,x disjoint lines. Then

hi(IY (k)) = 0, i = 0, 1.

In the case n = 4 we required more: Assertion V4,k(x) is just the part of
Assertion Uk(x) concerning the pair (y, e) := (an,k,x − bn,k,x, bn,k,x). The proof
of Lemma 1 gives the existence of an integer δ1 such that Vn,k(x) is true for all
n, k, x such that 0 ≤ x ≤ k − δ1; we need both parts (a) and (b) of the proof
of Lemma 1, but in the modification of part (b) no claim is needed, because
now A′ ∩ (B4 ∪ D4) = ∅; the integer δ1 substitute several numerical lemmas
concerning the integers an,k,x, an,k,x − an,k−1,x, an,k,x − an,k−1,x−1, an−1,k−1,x

and an−1,k−1,x−1 with asymptotic extimates for the same integers. We are
unable to do the numerical lemmas. Set α1 := δ1 +2. Fix non-negative integers
n, k, x, y such that n ≥ 5, (n, x, y) has critical value k and x ≤ k − α1. Let
X ⊂ P

n be a general union of x planes of M and of a general smooth rational
curve of degree y. To prove Theorem 2 it is sufficient to prove h0(IX(k−1)) = 0
and h1(IX(k)) = 0.

(a) Here we prove h0(IX(k− 1)) = 0. Since (n, x, y) has critical value k, we
have y > an,k−1,x. Since x ≤ k − α1 = k − δ1 − 2, we may use Vn,k−1(x). Let
T = A ⊔ B1 ⊔ D1 be a solution of Vn,k−2(x). Hence hi(IT (k − 2)) = 0, i = 0, 1.
For large δ1 the integer k is large and hence an,k−1,x−an,k−2,x ≥ k for all x ≤ k
(use (5) and (7). Hence we may add to T a general smooth rational curve B4

of H, with the only restriction that it contains D1 ∩ H and exactly one point
of B1 ∩ H. With this modification we copy part (a) of the proof of Lemma 1.

(b) Here we prove h1(IX(k)) = 0. For this part it is sufficient to do the case
y = an,k,x. Let A⊔B ⊔D be a solution of Vn,k−1(x). Hence hi(IY (k − 1)) = 0,
i = 0, 1. Modify the proof of Vn,k−1(x) =⇒ Vn,k−1(x) to arrive at the end with
a smooth rational curve and no line, i.e. add in H a general smooth rational
curve B4 of degree an,k,x − an−1,k,x containing all points of D4 ∩H and exactly
one point of B4 ∩ H. Here we use the inequality an,k,x − an,k−1,x ≥ bn,k−1,x to
get B4 with this property. This inequality is true if an,k,x − an,k−1,x ≥ k − 2.
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The latter inequality is true for large k by (5) and (7), but only because the
integer α allowed us to omit finitely many critical value k.

Proof of Theorem 3. In the proof of Theorem 2 add at each step a general
plane of H, instead of a general plane of M .
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